	Microporous gold	7/01/14	Page 1/12
1		Revision 1	
2		Microporous gold:	
3	Comparison of	f textures from Nature a	and experiments
4			
5	Victor M. Okrugin ^{1,2} , Elena A	ndreeva ^{1,2} , Barbara Etschma	nn ^{3,4} , Allan Pring ³ , Kan Li ⁴ , Jing
6 7	Zhao ^{3,4} , Grant Griffiths ⁵ ,	, Gregory R. Lumpkin ⁵ , Gerry '	Triani ⁵ and Joël Brugger ^{3,*}
8	1. Institute of Volcano	ology and Seismology, R	ussian Academy of Science,
9	Petropavlovsk-Kamcha	tsky, 683 006, Russia	
10	2. Vitus Bering Kamcha	tka State University Petrop	oavlovsk-Kamchatsky, 683 006
11	Russia		
12	3. Mineralogy, South Au	ıstralian Museum, North T	errace, Adelaide, 5000, South
13	Australia		
14	4. School of Chemical Eng	ineering, The University of Ac	lelaide, 5005, South Australia
15	5. Institute of Materials	Engineering, Australian N	Nuclear Science & Technology
16	Organisation, Kirrawee	DC, NSW 2232, Australia	
17			
18			
19	* Correspor	nding author: j <u>oel.brugger@ac</u>	<u>delaide.edu.au</u>
20			
21			
22	<u>Submitt</u>	<u>ed to</u> : American Mineralogist	as a Letter
23	(max 15 pages of m	anuscript, one figure per page	e, separate title page).
24			
25			

1/22

Microporous gold

7/01/14

Page 2/12

1/22

26

27 Abstract

28 Recent experiments have shown that microporous gold can be obtained via the oxidative 29 dealloying of Au(Ag)-tellurides such as calaverite (AuTe₂), krennerite (Au₃AgTe₈) and 30 sylvanite ((Au,Ag)₂Te₄) under mild hydrothermal conditions. The same Au textures have 31 been found in natural gold-telluride ores from the Late Miocene epithermal Aginskoe Au-32 Ag-Te deposit in Kamchatka, Russia. This confirms that natural microporous gold can form 33 via the replacement of telluride minerals. This replacement may take place under 34 hydrothermal conditions, e.g. during the late stage of the ore-depositing event, explaining 35 the wide distribution of 'mustard gold' in some deposits. At Aginskoe, the oxidation of Au-36 tellurides appears to have resulted only in local redistribution of Au and Te, because the 37 associated oxidation of chalcopyrite scavenged the excess Te, inhibiting the crystallization 38 of secondary Te minerals more than a few μ m in size. Such cryptic mobility may explain the 39 lack of reported secondary Te minerals in many Te-bearing deposits.

40

41 Microporous gold in nature and aims of this study

42 Microporous gold, also known as 'mustard gold' (Wilson 1984), is a common product of the 43 weathering of Au-Te ores (e.g., Ashanti Au deposit, Ghana, Bowell 1992; Kalgoorlie Au 44 deposit, Western Australia, Wilson 1984). In some economic deposits, microporous gold 45 can account for a large portion of the gold. For example, the Hercynian Dongping Au-Te 46 Deposit (Hebei Province, People's Republic of China) contains in excess of 70 tons of Au 47 (Nie, 1998), and Song et al. (1996) estimated that "secondary gold" accounts for 31-50% of 48 gold at this deposit. Petersen et al. (1999) and Li and Makovicky (2001) showed that the 49 microporous gold from Dongping results from the weathering of Au-(Ag) tellurides, in 50 particular calaverite. In some grains, the porosity of the microporous gold from Dongping is 51 open, but in others it is filled by a variety of oxide phases, including goethite, Pb-Te-oxides, 52 Fe-Te-oxides, Te oxides, or Mn-Pb-(Te) oxides (Li and Makovicky, 2001).

Microporous gold 7/01/14 Page 3/12

53

54 The aims of this communication are to describe a new occurrence of microporous gold from 55 the Aginskoe low sulfidation epithermal deposit in Central Kamchatka (Russia), and to 56 compare the textures of microporous gold from this natural occurrence with those obtained 57 experimentally via the dealloying of Au(Ag)-tellurides (calaverite, sylvanite and 58 krennerite ;Zhao et al., 2009, 2010, 2013; Xu et al. 2013). We describe the different modes 59 of Au, Te and Ag occurrence in the samples from Aginskoe, and for the first time we assess 60 the role that hydrothermal fluids may play in the formation of microporous gold, as 61 opposed to typical weathering processes.

62

63 Analytical methods and synthesis of microporous gold

64 The samples were imaged using a Quanta 450 FEG Environmental Secondary Electron 65 Microscope (SEM) with Energy Dispersive Spectrometry (EDS) and a Silicon Drift Detector 66 (SDD); sample compositions were measured using a CAMECA SX51 Electron Microprobe, 67 operated at 15 keV and 20 nA. For most analyses, the beam was defocused to 5 µm diameter. 68 Standards included Au (Au), Bi₂Se₃ (Se), PbS (Pb), Ag₂Te (Ag, Te), Sb₂S₃ (Sb) CuFeS₂ (Cu, Fe, 69 S) and GaAs (As). Milling (Ga beam; 20-30 kV; currents ranging from 21 to 0.093 nA) and 70 chemical X-ray mapping (20 kV) were done using a FEI Helios NanoLab Focused Ion Beam 71 FIB-SEM (FEI, Netherlands).

72

We prepared microporous gold by dealloying both synthetic (pure AuTe₂; Sample 7-5) and
natural calaverite (Sample 7-4; from the Golden Mile deposit in Kalgoorlie, Western
Australia, South Australian Museum collection G29494; composition Au_{0.94}Ag_{0.05}Sb_{0.02}Te_{2.00}
according to Zhao et al. 2009). The synthetic calaverite was made following the procedure
described by Deschênes et al. (2006).

78

	Microporous gold	7/01/14	Page 4/12
79	These calaverite samples had grain	sizes of <100 μm for synth	netic and 75-150 μm for
80	natural samples. They were heated a	at 200 °C in a Teflon-lined	stainless steel cell using
81	either (i) a buffer solution of 0.48 m	h NaH ₂ PO ₄ •2H ₂ O and 0.52	m H_3PO_4 , resulting in a
82	measured pH of 1.86 at 24.6 °C or (ii)	a buffer solution of 0.66 m	H_3BO_3 and 0.47 m NaOH,
83	resulting in a measured pH of 9.83 a	t 21.3 °C. The reaction was	conducted for 11 hours,
84	after which the cells were removed fro	m the oven and cooled to ro	om temperature with the
85	use of fans.		

86

87 Modes of gold occurrence at the Aginskoe deposit

88 The Aginskoe deposit is a Late Miocene (6.9-7.1 My) Au-Ag deposit belonging to the Central 89 Kamchatka epithermal district (Andreeva, et al. 2013; Takahashi et al. 2013). Samples 19 90 and 29 (A10) (South Australian Museum collection G33885 and G33896) were collected 91 from the Aginskoe open pit, which has an elevation of 1230 m and is the most intensively 92 oxidized part of the ore body. The ore consists of quartz and adularia (KAlSi₃O₈), displaying 93 complex banding and brecciation (Andreeva et al. 2013). Ore minerals (mainly 94 chalcopyrite) line some of the growth bands and some of the quartz clasts. Gold in these 95 samples occurs in a number of forms.

96 (i) Small (up to $10 \ \mu$ m) inclusions, oval in shape, of Au-Ag-tellurides, mostly petzite 97 (Ag₃AuTe₂), occur preferentially within chalcopyrite (Fig. 1A). Other tellurides in the ores 98 include calaverite (crystals up to 10 μ m in the matrix; e.g., Fig. 1B), altaite (PbTe, up to 99 50 μ m, in the matrix), and hessite (Ag₂Te, $\leq 5 \ \mu$ m, in the chalcopyrite weathering rims).

(ii) The chalcopyrite grains usually display an oxidized rim, which contains gold. Based on
153 point analyses, these rims consist of Fe (average 17 wt%) – Cu (average 21 wt%)
oxides with inhomogeneous composition (Figs. 1B, E, F, H); these rims also contain varying
amounts of Pb (up to 21 wt%; average 6.2 wt%), Te (up to 60 wt%; average 18.9 wt%), S
(average 0.7 wt%), Au and Ag. One source of Au and Ag together with minor Te are Au-Ag-

	Microporous gold	7/01/14	Page 5/12
105	telluride inclusions, which do not survi	ve the chalcopyrite oxidation (Fig. 1B).	Within the
106	oxide rims, Au is found as porous grain	s and micro- to nano-particles (Figs. 1E	,E,F,H), and
107	silver as electrum and as hessite inclusio	ns. Elemental mapping reveals the co-lo	cation of Fe
108	and Te in this sample, but overall there	is no significant correlation amongst T	e and Fe. A
109	good correlation ($R^2 = 0.93$) exists betw	ween Te and Pb in the oxidized chalco	pyrite rims,
110	with $Te = 4.1$ times Pb on an atomic	ratio basis. This could indicate the	presence of
111	submicroscopic inclusions of one or m	ore Pb-Te phases, although no known	tellurite or
112	tellurate has a stoichiometric Te:Pb ratio	o > 2.	
113	(iii) Grains of Au-Ag alloy up to 100 μm	in size also occur in the sulfide-rich ban	ds (Fig. 1A),
114	and show a narrow composition range	with an average Ag/(Ag+Au) of 0.11	4(4) (molar

ratio, based on 43 point analyses). These gold grains often contain numerous quartzinclusions (Fig. 1D).

117 (iv) Microporous gold, forming xenomorphic grains up to \sim 500 µm in size (Fig. 1A,C,D). 118 EMP analyses conducted with a 5 µm defocused beam (186 points) reveal that this gold is 119 compositionally inhomogeneous, containing varying amounts of Pb (min, max, average in 120 wt%: 0.5, 20.3, 7.2), Fe (<0.05, 22.3, 4.1), Cu (<0.05, 14.0, 5.1), Ag (0.6, 6.9, 2.0), and Te 121 (<0.05, 32, 13).

122

123 Comparison of experimental and natural textures of microporous gold

Grains of the microporous gold from Aginskoe consist of aggregates of small fibers. The diameter of these fibers can vary within single grains, with coarse fibers having diameters ≥ 300 nm, while fine fibers have diameters ≤ 30 nm (Fig. 2B,C). The fibers may be longer than 5 µm in length (Fig. 2C). The fibers are aligned in consistent domains, sometime radiating, and in some cases appearing to grow perpendicular to the surface of lozengeshaped subgrains within the porous gold grain (Fig. 2A). Imaging FIB-cut sections reveals that some of the pores (up to 75 nm in diameter) are filled with a tellurium oxide (most

	Microporous gold	7/01/14	Page 6/12
131	probably tellurite), while others remai	in open (Fig. 2B, inset). No ren	nnants of the parent Au
132	telluride were found within any of the	imaged microporous gold grai	ns.
133			
134	The textures obtained by dealloying	g of calaverite grains under	acidic conditions are
135	compared to those of microporous g	old from Aginskoe in Figure 2	2. Figure 2D shows the
136	surface of a partially replaced calave	rite grain; a break reveals tha	at the gold fibers grow
137	perpendicular to the calaverite surface	e, resulting in radiating aggreg	ates (see e.g. Zhao et al.
138	2009). FIB cuts through the grains s	how that the gold fibers (Fig	. 2E,F) have diameters
139	ranging from ~ 60 to 250 nm.		
140			
141	Discussion		
142	Formation of microporous gold at Aginskoe		
143	The composition of microporous g	old (Fig. 3) clearly reflects	its formation via the
144	dealloying of a Au-(Ag) telluride (Pe	etersen et al. 1999; Li and	Makovicky 2001). The
145	transformation was complete in the	investigated samples from	the open cut, with no
146	remnant of the original telluride found	l. Calaverite is a likely precurs	or (Fig. 3). According to
147	Andreeva et al. (2013), calaverite is t	he main Au-telluride at Agins	koe, and often displays
148	partial alteration to porous gold. Th	e Pb contents of microporou	is gold are due to the
149	weathering of altaite inclusions that w	vere associated with the prec	ursor calaverite. In the
150	investigated samples, small idiomorph	ic calaverite inclusions (<10 μ	m) are found dispersed

in the matrix, sometimes close to microporous gold (e.g., Fig. 1C). These relicts may have
been preserved in the absence of pathway for the oxidizing fluid responsible for the
dealloying.

154

During the oxidative dealloying of a gold telluride, Te is liberated into solution, probably asa tellurite complex (Zhao et al. 2009). Assuming that all Te re-precipitates immediately as

	Microporous gold	7/01/14		Page 7/12
157	$TeO_2(s)$, the reaction is associ	ated with a large vol	ume increase in the m	ineral products
158	relative to that of the reactant,	e.g.,		
159	calaverite [AuTe ₂] + 2 O ₂ (aq)	= gold +	2 tellurite [TeO ₂]	(1)
160	48.6 cm ³ /mole	10.2 cm ³ /mole	2 x 27.4 cm ³ /mole; Δ	AV = +33.7%.
161				
162	In the case of the oxidation of	chalcopyrite, little sul	fur remains among the	products (80%
163	of the EMP points show $\leq 1 \text{ wt\% S}$), and a simplified model reaction suggests a volume			gests a volume
164	deficiency:			
1:65 51c	opyrite [CuFeS ₂] + 2.5 H ₂ O + 4.25	5 O2(aq) = goethite [Fe	O(OH)] + tenorite [CuO] + 2 SO_4^{2-} + 4H ⁺ (2)
166	43.9 cm ³ /mole	21.3 cm ³ /1	nole 12.2 cm ³ /mc	ble; $\Delta V = -24\%$
167	Therefore, the volume loss d	uring chalcopyrite o	xidation can provide t	he extra space
168	required for deposition of soli	id calaverite oxidation	n products. This coupli	ng between the
169	weathering of chalcopyrite and	l the dealloying of the	telluride precursor of	the porous gold
170	accounts for the conspicuous T	e contents found in th	e chalcopyrite alteratio	n rims (average
171	~19 wt%). Only a small amou	nt of this Te can be a	attributed to the destru	action of petzite
172	inclusions contained in chalc	opyrite upon weathe	ering (Fig. 1B), becaus	se of the small
173	volumes of these inclusions. Th	nerefore, the excess T	e liberated during the d	ealloying (most
174	likely as a tellurite ion) was s	scavenged by the cha	lcopyrite weathering c	rusts, either via
175	sorption by Fe oxi-hydroxides,	or by the formation o	f insoluble tellurite min	erals (Grundler
176	et al. 2013).			
177				
178	Zhao et al. (2009, 2010) have	shown that availabilit	y of a suitable oxidant	is a key control

2hao et al. (2009, 2010) have shown that availability of a suitable oxidant is a key control on the progress and kinetics of the oxidative dealloying of calaverite. The timing of this oxidation event is unknown at Aginskoe. The two most likely periods of influx of oxidizing waters are 1) during the late stage of mineralization, and 2) during late weathering. Chemical weathering in Kamchatka is expected to be slow, due to cold climatic conditions.

	Microporous gold	7/01/14	Page 8/12
183	The whole of Kamchatka was undern	eath a glacier in the M	liddle Pleistocene, and Aginskoe
184	was covered by glaciers during the las	st glacial maximal (~2	1 ky) as well (Barr and Solomina
185	2013). In contrast, because epitherm	al systems are shallow	v depositional systems, influx of
186	highly oxidizing waters during miner	alization is common;	for example, Mn ⁴⁺ minerals such
187	as cryptomelane (K(Mn ⁴⁺ ₇ Mn ³⁺)O ₁₆)	are intimately associa	ted with high-grade ores at the
188	\sim 4.5 My old Asachinskoe deposit (Ta	akahashi et al. 2007);	Asachinskoe and Aginskoe are
189	currently the only producing Au-Ag n	nines in Kamchatka. T	hese influxes of oxidizing waters
190	may be contemporaneous with miner	alization, or related to	b later hydrothermal circulation;
191	such circulation is likely to occur sind	ce volcanic and associa	ated geothermal activity are still
192	ongoing in Kamchatka; for example,	the large Pleistocene-	Holocene Ichinsky stratovolcano
193	(3621 m altitude) is less than 30 km	away from Aginskoe.	Chemical weathering of the ores
194	under conditions of elevated tempera	atures can explain the	extent of the dealloying and the
195	absence of preservation of the precur	sor telluride, since une	der mild conditions (150-220 °C)
196	experiments show very fast (over d	ays) replacements of	a variety of telluride minerals
197	(Zhao et al. 2009, 2010, 2013; Xu et al	. 2013).	
198			

Note that Te mobility in the studied samples was extensive, but occurred only over a small length scale. This length scale was limited by the coupling between the dealloying reaction and chalcopyrite weathering. Oxidized Te species are extremely fine grained (<<5 μm) and cryptic. Such occurrence may explain the lack of reported secondary Te minerals in many telluride ores found in volcanogenic and strong weathering environments, with only exceptional circumstances leading to the development of rich assemblages of secondary Te(IV) and Te(VI) minerals in the oxidation zone (Grundler et al. 2008).

206

Microporous gold 7/01/14 Page 9/12

207 Textural homology among natural and synthetic products

208 The textures of microporous gold from Aginskoe and those produced by the dealloying of 209 calaverite under hydrothermal acidic conditions are remarkably similar, both in terms of 210 morphology and size of the gold nanocrystals (Fig. 2). Xia et al. (2009) illustrated the effect 211 of pH on the texture of the products of interface-coupled dissolution-reprecipitation 212 reactions using the replacement of leucite (KAlSi₂ O_6) by analcime (NaAlSi₂ O_6 H₂O) as an 213 example. We tested such an effect of the replacement of calaverite by gold by performing a 214 set of experiments at high pH ($pH_{21,3}$ °_C = 9.83, using a H_3BO_3 /NaOH buffer). Figure 4 shows 215 that the resulting textures indeed differ from the textures obtained under acidic condition: 216 the gold crystallites do not display fibrous growth, but rather form a three-dimensional 217 network of 300–1000-nm-sized crystals. The similarity in the textures of microporous gold 218 from Aginskoe with those obtained via the oxidative dealloying of calaverite at 200 °C may 219 reflect similar conditions of formation; in particular, we observed that mustard gold formed 220 during weathering of the Au-tellurides at the Kalgoorlie gold mine is coarser than that 221 obtained during hydrothermal synthesis. However, a better understanding of the controls 222 on the texture of the gold obtained via such a route is required in order to gain confidence 223 in this interpretation.

224

225 Acknowledgement

We acknowledge AINSE for funding the study conducted at ANSTO under award ALNGRA 12016; financial support from the Australian Research Council DP1095069, and financial support from the Russian Ministry of Science and Education (Programme of the Strategical Development Vitus Bering Kamchatka State University 2012-2016). We would like to thank the editor and reviewers for their helpful comments.

231

	Microporous gold	7/01/14	Page 10/12
232	References		
233	Andreeva, E.D., Matsueda, H.,	Okrugin, V.M., Takahashi, R., and	d Ono, S. (2013) Au-Ag-Te
234	mineralization of the low-	sulfidation epithermal Aginskoe	deposit, Central Kamchatka,
235	Russia. Resource Geology,	63, 337-349.	
236	Barr, I.D., and Solomina, O. (20	13) Pleistocene and Holocene gla	acier fluctuations upon the
237	Kamchatka Peninsula. Glo	bal and Planetary Change. DOI:10.1	1016/j.gloplacha.2013.08.005
238	Bowell, R.J. (1992) Supergene	gold mineralogy at Ashanti, G	hana: Implications for the
239	supergene behaviour of g	old. Mineralogical Magazine, 56, 5	45-560.
240	Deschênes, G., Pratt, A., Fulton,	M., and Guo, H. (2006) Kinetics a	and mechanism of leaching
241	synthetic calaverite in cy	anide solutions. Minerals and M	etallurgical Processing, 23,
242	133-138.		
243	Grundler, P., Brugger, J., Meisse	r, N., Ansermet, S., Borg, S., Etschr	nann, B., Testemale, D., and
244	Bolin, T. (2008) Xocola	atlite, $Ca_2Mn^{4+}_2Te_2O_{12}\cdot H_2O$, a i	new tellurate related to
245	kuranakhite: description	and measurement of Te ox	xidation state by XANES
246	spectroscopy. American M	lineralogist, 93, 1911-1920.	
247	Grundler, P., Brugger, J., Etschm	ann, B., Helm, L., Liu, W., Spry, F	P.G., Tian, Y., Testemale, D.,
248	and Pring, A. (2013) Spec	iation of aqueous tellurium(IV) in	hydrothermal solutions and
249	vapors, and the role of or	kidized tellurium species in Te tra	unsport and gold deposition.
250	Geochimica et Cosmochim	ica Acta, 120, 298–325.	
251	Li, J.L., and Makovicky, E. (2001) New studies on mustard gold fro	om the Dongping Mines,
252	Hebei Province, China: Th	e tellurian, plumbian, manganoan	and mixed varieties:
253	Neues Jahrbuch Fur Mine	calogie-Abhandlungen, 176, 269-2	297.
254	Nie, F. J. (1998) Geology and or	gin of the Dongping alkalic-type g	old deposit, Northern
255	Hebei province, People's I	Republic of China. Resource Geolo	gy, 48, 139-158.
256	Petersen, S.B., Makovicky, E.,	Li, J.L., and Rose-Hansen, J. (199	9) Mustard gold from the
257	Dongping Au-Te deposit,	Hebei Province, People's Republi	c of China. Neues Jahrbuch
258	für Mineralogie-Monatshe	efte, 8, 337-357.	

	Microporous gold 7/01/14 Page 11/12
259	Song, G. R., Liuang, H. F., and Tian, S. (1996) Geology of Dongping Alkaline Complex-Hosted
260	Gold Deposit in Hebei Province Publ. House Earthquake, pp. 181. (in Chinese, Engl.
261	abstract, 171-174).
262	Takahashi, R., Matsueda, H., Okrugin, V.M., and Ono, S. (2007) Epithermal gold-silver
263	mineralization of the Asachinskoe deposit in south Kamchatka, Russia. Resource
264	Geology, 57, 354-373.
265	Takahashi, R., Matsueda, H., Okrugin, V.M., Shikazono, N., Ono, S., Imai, A., Andreeva, E.D.,
266	and Watanabe, K. (2013) Ore-forming Ages and Sulfur Isotope Study of Hydrothermal
267	Deposits in Kamchatka, Russia. Resource Geology, v. 63, p. 210-223.
268	Wilson, A. F. (1984) Origin of quartz-free gold nuggets and supergene gold found in soils
269	and laterites -a review and some new observations. Australian Journal of Earth
270	Sciences, 31, 303-316.
271	Xia, F., Brugger, J., and Pring, A. (2009) Three dimensional ordered arrays of zeolite
272	nanocrystals with uniform size and orientation by a pseudomorphic coupled
273	dissolution-reprecipitation replacement route. Crystal Growth & Design, 9, 4902-4906
274	Xu, W., Zhao, J., Brugger, J., Chen, G., and Pring, A. (2013) Mechanism of mineral
275	transformations in krennerite, Au_3AgTe_8 , under hydrothermal conditions. American
276	Mineralogist, 98, 2086-2095.
277	Zhao, J., Brugger, J., Grundler, P.V., Xia, F., Chen, G., and Pring, A. (2009) Mechanism and
278	kinetics of a mineral transformation under hydrothermal conditions: Calaverite to
279	metallic gold. American Mineralogist, 94, 1541-1555.
280	Zhao, J., Xia, F., Pring, A., Brugger, J., Grundler, P.V., and Chen, G. (2010) A novel pre-

- treatment of calaverite by hydrothermal mineral replacement reactions. Minerals
 Engineering, 23, 451-453.
- Zhao, J., Brugger, J., Xia, F., Nogthai, Y., Chen, G., and Pring, A. (2013) Dissolutionreprecipitation vs. solid state diffusion: Mechanism of mineral transformations in sylvanite,
- reprecipitation vs. solid state diffusion: Mechanism of mineral transformations in sylvanite,

Microporous gold

7/01/14

Page 12/12

286

Figures captions

288 289 Figure 1. Modes of occurrence of gold at the Aginskoe gold deposit. A. Overview of high 290 grade band. B. Chalcopyrite grain with oxidized rim. Gold is present as oval inclusion of Au-291 Ag tellurides (mainly petzite) within the chalcopyrite. C. Overview of a microporous gold 292 grain from Aginskoe. D. Grains of Au-Ag alloy with many quartz inclusions in contact with 293 microporous gold and Fe-oxy-hydroxides. **E.** Detail of oxidation rim around chalcopyrite. 294 F. High-resolution image showing the redistribution of Au in the rim in the form of micro- to 295 nano-particles. G. Location of FIB cut. H. RGB image (red – Au; green – Cu; blue – Fe) of the 296 FIB cut and surrounding area, showing inhomogeneous distribution of Cu and Fe, and the 297 presence Au particles. Te is associated with Fe in this area. Abbreviations: Au, native gold; 298 p-Au, microporous native gold; cal, calaverite; cpy, chalcopyrite; o-cpy, oxidized 299 chalcopyrite; ptz, petzite; Te-O, Te-rich oxide minerals. A-F SEM BSE images, G SE-SEM, and 300 H X-ray image. 301 302 Figure 2. Comparison of the microtextures of porous gold from the Aginskoe deposit (A-C) 303 with those of synthetic Au (and Au-Ag alloy) obtained experimentally via the de-alloying of 304 calaverite at 200 °C and $pH_{24.6C} = 1.86$ (**D-F**). Horizontal stripes in **E** are due to charging on 305 the uncoated, freshly cut surface. 306 307 Figure 3. Triangular plot showing the Au, Ag and Te contents of porous and non-porous

308 gold, oxidized chalcopyrite rims (o-cpy), and the tellurides calaverite, hessite and petzite in
309 the investigated samples from Aginskoe.

310

311 Figure 4. Effect of pH on the porous gold textures obtained via replacement of calaverite.

312 Textures in this figure were obtained at $pH_{21.3} \circ_{C} = 9.83$; compare with textures obtained at

313 $pH_{24.6} \circ_{C} = 1.86$ in Fig. 2D,E,F.

