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Figure S1: The unit-cell volumes of (a) B20 FeSi and (b) B2 FeSi from the DFT calculations. The 
solid black and red circles are from the GGA and LDA calculations, respectively, in this study. 
The curves are calculations from the literature (Caracas and Wentzcovitch, 2004; Moroni et al., 
1999; Vocadlo et al., 1999; Zhao et al., 2011). The open red circle is calculated by Moroni et al. 
(1999) using a local-spin-density approximation. 
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Figure S2: Rietveld refinement on a XRD pattern of the synthesized products at 46.1 GPa and 300 
K. (a) Unrolled two-dimensional diffraction image. Diffraction peaks belonging to the B20 and 
B2 phases are highlighted with the blue and red boxes, respectively. (b) The best-fit result to the 
integrated pattern using GSAS-II. Both the B2 and B20 phases exist, indicated by the blue and red 
ticks, respectively. B2 is the predominant phase, about 95.6%, derived from the best fit. The spotty 
diffraction rings in the 2D image show that the sample was well heated and consequently 
recrystallized and stress-relaxed sufficiently. 
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Figure S3: X-ray diffraction patterns of the synthesized B20 and B2 phases from high P-T 
reactions between FeSi and H. (a and b) XRD patterns of the fresh and temperature-quenched 
samples at 42.6 and 57.5 GPa, respectively. (c and d) Decompression XRD patterns of the 
synthesized products from heating at 46.1 and 61.9 GPa, respectively. The blue and red ticks 
indicate the expected peak positions for the B20 and B2 phases, respectively. After heating up to 
3500 K at 42.6 GPa, both the B20 and the B2 phases still exist, while after heating up to 2000 K 
at 57.5 GPa, only the B2 phase remains. A substantial decrease in peak widths found in a and b 
show that the samples were heated sufficiently for recrystallization and stress relaxation. The 
wavelength of the incident X-ray is 0.3344 Å. 
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Figure S4: Additional crystal structure models considered for H alloying in the FeSi phases in this 
study. (a) The B20-structured FeSiH. (b) The B2-structured FeSiH. In a, H occupies the interstitial 
sites of all cubic centers. In b, H occupies 1/3 of the distorted octahedral interstitial sites. 
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Table S1: Parameters for the density functional theory calculations in this study. Encut: kinetic 
energy cutoff; k grids: Monkhorst-Pack k-point grids; Cells: Super-cell configuration. 
 

Phases Encut (eV) k grids Cells 
B20 FeSi 1200 6×6×6 1×1×1 
B20 FeSiH 1200 6×6×6 1×1×1 
B20 FeSiH0.25 1200 6×6×6 1×1×1 
B2 FeSi 1200 10×10×10 1×1×1 
B2 FeSiH 1200 10×10×10 1×1×1 
B2 Fe8Si7H 1200 12×12×12 2×2×2 
B2 Fe7Si8H 1200 12×12×12 2×2×2 
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Table S2: Equation of state parameters for the B20 and B2 phases of FeSi and FeSiHx from our 
experiments and DFT calculations. Exp.: experiments; Str.: structure. 
 

Str
. Method Phase and reference V0 

(Å3) 
K0 

(GPa) K’0 

B2
0  Exp. 

FeSiHx (this study) 92.5(2) 192(10) 5.8(10) 
FeSi (Knittle and Williams, 1995) 89.0(1) 209(6) 3.5(4) 

FeSi (Fischer et al., 2014) 90.4(1) 192.2(1
6) 

5.03(17
) 

FeSi (Lin et al., 2003) 90.2(1) 184.7(3
9) 

4.75(37
) 

FeSi (Guyot et al., 1997) 90.4(1) 172(3) 4 

B2
0 DFT  

FeSi (GGA, this study) 89.1 220.4 4.50 
FeSi (LDA, this study) 84.1 255.1 4.49 

FeSiH (GGA, this study) 98.1 206.5 4.40 
FeSiH (LDA, this study) 92.6 238.8 4.37 

FeSiH0.25 (GGA, this study) 91.5 211.2 4.55 
FeSiH0.25 (LDA, this study) 86.3 245.0 4.54 

FeSi (GGA, Caracas and 
Wentzcovitch, 2004) 90.2 221 4.18 

FeSi (LDA, Caracas and 
Wentzcovitch, 2004) 84.1 255 4.14 

B2  Exp. 

FeSi (this study) 21.4 208(8) 4 

FeSi (Fischer et al., 2014) 21.3 230.6(1
8) 4.17 

FeSi (Ono, 2013) 21.3 225(2) 4 

FeSi (Sata et al., 2010) 21.4 221.7(3
2) 4.17(6) 

B2 DFT 

FeSi (GGA, this study) 21.3 234.4 4.53 
FeSi (LDA, this study) 20.1 275.1 4.53 

Fe7Si8H (GGA, this study) 21.0 220.4 4.47 
Fe7Si8H (LDA, this study) 19.8 259.1 4.42 
Fe8Si7H (GGA, this study) 20.8 219.9 4.53 
Fe8Si7H (LDA, this study) 19.5 271.8 4.34 
FeSiH (GGA, this study) 26.3 168.6 4.44 
FeSiH (LDA, this study) 24.7 197.6 4.47 
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FeSi (GGA, Caracas and 
Wentzcovitch, 2004)  21.4 220 4.55 

FeSi (LDA, Caracas and 
Wentzcovitch, 2004) 19.6 262 4.80 

FeSi (GGA, Zhao et al., 2011) 21.6 199 4.78 
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