1	
2	
3	
4	
5	
6	
7	Genesis of chromium-rich kyanite in eclogite-facies Cr-spinel-bearing gabbroic
8	cumulates, Pohorje Massif, Eastern Alps
9	Christoph A. Hauzenberger ¹ , Harald Taferner ¹ , and Jürgen Konzett ²
10	
11	¹ Institute of Earth Sciences, Karl-Franzens-University of Graz, Universitaetsplatz 2, Graz, 8010,
12	Austria
13	² Institute of Mineralogy und Petrography, University of Innsbruck, Innrain 52, Innsbruck, 6020,
14	Austria
15	
16	
17	Revision 1

1

18

ABSTRACT

19 Natural kyanites with Cr₂O₃ contents >1 wt% are very rare and known only from high-P environments. 20 One example are eclogite-facies gabbroic cumulates containing Cr-spinel from the Pohorje Massif, 21 Eastern Alps, Slovenia. In these rocks turquoise coloured Cr-rich kyanites are present in two different 22 textural types: A first type has formed as blocky crystals of several hundred μ m in size around clusters 23 of small drop-like Cr-spinels. This kyanite shows a highly irregular Cr distribution and may contain up 24 to 15.6 wt% Cr₂O₃ which is one of the highest Cr₂O₃ contents reported so far. A second type is present 25 as part of reaction coronas around large red-brownish Cr-spinel and forms deep-blue needle-like 26 crystals which rarely exceed 100 µm in size. This kyanite contains up to 8.2 wt% Cr₂O₃ and is 27 associated with Cr-rich corundum (≤ 9.1 wt% Cr₂O₃) and Cr-Al-rich pargasite (≤ 3.9 wt% Cr₂O₃). The 28 formation of kyanite around Cr-spinel droplets is interpreted to be the result of increasing PT 29 conditions during prograde metamorphism where Cr-spinel and plagioclase or quartz react to Cr-30 kyanite, ±garnet, ±omphacite. In contrast, the formation of kyanite associated with Cr-rich corundum 31 and Cr-rich pargasite within coronas around Cr-spinel occurred in an early stage of the retrogressive 32 evolution of the gabbroic cumulates at eclogite-facies conditions of ~2.5 GPa and 750 - 800°C 33 triggered by the influx of H₂O-rich fluids. The driving force for developing these coronas was an 34 increase in the chemical potential of silica caused by the infiltrating hydrous fluid phase. PT estimates 35 using matrix mineral assemblage place the peak metamorphic conditions close to the quartz/coesite 36 transition with temperatures in the range of 750–810°C and pressures of ~2.9 GPa.

37

38 Keywords: Cr-rich kyanite, Cr-rich corundum, eclogite facies cummulates, Pohorje Massif,

39

40

41

INTRODUCTION

Kyanite is a common metamorphic mineral in metapelites and Al-rich metabasites at medium to 42 43 high pressures and can accomodate substantial amounts of manganese, iron (e.g. Chinner et al. 1969; 44 Grambling and Williams 1984) and especially chromium in its crystal structure. Cr-Al substitution 45 results in a spectacular turquoise-blue color and strong pleochroism as reported by Sobolev (1968), 46 Cooper (1980), and Gil-Ibarguchi (1991). Cr-Al substitution in synthetic kyanite, on the other hand, 47 produces a deep emerald green color (Langer and Seifert 1974). This suggestes that the blue color of 48 natural Cr-bearing kyanite results from a combination of Cr and additional minor substituents such as 49 Fe and/or Ti (White and White 1967; Rost and Simon 1972). Natural kyanite with Cr_2O_3 contents >1 50 wt% have been known so far only from high-P environments. The highest Cr_2O_3 content documented 51 in the literature so far is 15.7 wt% which corresponds to $\sim 18 \text{ mol}\% \text{ Cr}_2 \text{SiO}_5$ component and was 52 reported by Negulescu and Sabau (2012) from chromite-bearing meta-gabbroic eclogites. Kyanite with 53 up to 12.7 and 11.8 wt% Cr₂O₃ were reported by by Sobolev et al. (1968) and Pivin et al. (2011) from 54 kimberlite-derived grosspydite and clinopyroxenite nodules. Kyanite with up to 25 mol% Cr₂SiO₅ was 55 synthesized by Langer and Seifert (1974) at 3 GPa and 1300-1500°C. These authors suggested that 56 significant amounts of Cr can enter the kyanite structure only at P \ge 1.8 GPa and T \ge 900°C and that the 57 amount of Cr incorporated is positively correlated with both P and T. A comparison with PT conditions 58 of equilibration estimated for Cr-kyanite-bearing eclogite from the South Carpathians by Negulescu 59 and Sabau 2012 shows that whereas high pressures are indeed essential, temperatures as low as 600°C 60 are sufficient to allow substantial Al-Cr substitution Hence, high pressures in excess of ~2GPa and a 61 suitable source of Cr which is usually Cr-spinel are essential pre-requisites for the formation of Cr-rich 62 kyanite.

63

64 Eclogites within the Eastern alpine crystalline basement typically appear as lenses and small 65 bodies of up to several hundred meters in size within a narrow E-W trending zone, ~ 400 km in length, 66 immediately north of the Periadriatic Lineament which is termed Eo-alpine high pressure belt (EHB) 67 (Hoinkes et. al. 1991; Thöni and Jagoutz 1993; Exner et al. 2001; Sölva et al. 2005 a,b). The south-68 easternmost part of the EHB is represented by eclogites of the Pohorje massif (e.g. Ippen 1892; 69 Hinterlechner-Ravnik and Moine 1977; Hinterlechner-Ravnik et al. 1991a,b; Janak et al. 2004; Miller 70 et al. 2005a; Vrabec et al. 2012) and of the Koralpe and Saualpe basement complexes (Miller 1990; 71 Miller and Thöni 1997; Miller et al. 2005b) (Fig. 1a). Most Eoalpine eclogites including those from the 72 Pohorje massif are derived from MORB-type precursors (Miller et al. 1988; Miller and Thöni 1997; 73 Miller et al. 2005b) and only a minor part has intra-plate characteristics (Hoinkes et al. 1991; Konzett 74 et al. 2011). Major and trace element systematics of the Koralpe-Saualpe-Pohorje eclogites indicate 75 two different modes of formation of the precursors: (1) low-Mg gabbros derived from evolved tholeiitic 76 magmas not significantly influenced by cumulate formation and (2) high-Mg-Al-Ca gabbros depleted 77 in alkalis and with pronounced positive Eu-anomalies which are thought to represent plagioclase-rich 78 cumulates (Miller 1990; Sassi et al. 2004). A significant portion of these meta-cumulates contains 79 kyanite as a major constitutent of the eclogite-facies assemblage (Sassi et al. 2004; Miller et al. 2005b, 80 2007).

Here we report the occurrence of high-Mg cumulate-type eclogites from the Pohorje Massif that are unique amongst all eastern Alpine eclogites known so far in that their precursors contain Cr-spinel as cumulate phase. These Cr-spinels create a geochemical micro-environment in which unusually Crrich kyanite is present together with Cr-rich omphacite, pargasite and corundum. The Cr-contents of kyanite are amongst the highest found so far in a natural environment. We present (1) mineral chemical data for the Cr-rich high pressure assemblage along with bulk rock compositions of the host rocks, (2) results of phase equilibrium calculations to determine *PT* conditions of formation of the Cr-rich phase
assemblage, and (3) a model for the formation of the Cr-rich phase assemblage

89

90

GEOLOGICAL SETTING

91 Eclogites and associated high-pressure metapelites form an important albeit small portion of the 92 Eastern alpine crystalline basement and testify to intracontinental subduction during Jurassic to 93 Cretaceous collision of the African and Eurasian lithospheres (Thöni 1999). Peak PT-conditions for the 94 Eoalpine eclogite-facies metamorphism increase from ~1.2 GPa and 550°C in the westernmost portions 95 of the Eastern Alps to ~3.0 GPa and 800°C in the Pohorje Massif (Hoinkes et al. 1991; Janak et al. 96 2004; Miller and Konzett 2005; Vrabec et al. 2012; this study). A multitude of geochronological 97 methods applied to the eclogite facies assemblages yields consistent ages of 85–115 Ma (Thöni 2006) 98 and references; Konzett et al. 2011). For the Pohorje Massif the age of high-P metamorphism is tightly 99 constrained by U-Pb zircon and whole rock-garnet Sm-Nd ages for eclogites and their host metapelites 100 with 90.7±1.0 and 92.0±0.5 Ma, respectively (Miller et al. 2007; Janak et al. 2009). For the mainly 101 gabbroic eclogite precursors, Permian emplacement ages in the range 247–275 Ma were determined 102 (Thöni and Jagoutz 1993; Miller and Thöni 1997). In terms of large-scale tectonics the Pohorje Massif 103 is a nappe stack which consists of three tectonic units (Mioč and Žnidarčič 1977; Fodor et al. 2003) 104 (Fig. 1b). The lowermost unit is termed Pohorje nappe (Janák et al. 2006) and consists of medium to 105 high-grade micaschist, gneiss and amphibolite with lenses of marble, quartzite, eclogite and ultrabasic 106 rocks. This unit is folded into an ESE-WNW-striking antiform containing the Pohorje tonalite-107 granodiorite in its core which was emplaced during the Oligocene to Miocene (Altherr et al. 1995; 108 Fodor et al. 2008). The Pohorje nappe is overlain by low-grade metamorphic Paleozoic slate and 109 phyllite and the uppermost nappe on top of these rocks consists of Permo-Triassic sandstone and 110 conglomerate. This nappe stack is covered by early Miocene sediments of the Pannonian Basin.

111	The eclogite samples investigated in this study were collected from poorly exposed outcrops
112	along a road situated at N 46° 24' 14.3" and E 015° 29' 25.7" close to Slovenska Bistrica (Fig. 1b).
113	
114	ANALYTICAL METHODS
115	Mineral compositions were determined with a scanning electron microprobe JEOL JSM-6310 at the University of
116	Graz, Austria, using an energy and wavelength dispersive spectrometer (15 kV acceleration voltage and 6 nA beam current)
117	with 30 seconds on peak and 15 seconds on background for elements determined by WDX. The following standards were
118	used: Na (WDX), jadeite; Fe, Mg (EDX), garnet and kaersutite; K, Al, Si (EDX), adularia; Ca, Ti (EDX), titanite; Cr
119	(EDX), chromite; Mn (EDX), rhodonite; Zn (EDX), gahnite; F (WDX), synthetic F-phlogopite. Since Si content in phengite
120	is crucial for pressure determination, a muscovite standard was used instead of adularia for Si in order to ensure a similar
121	matrix for analyses of unknowns and standard. Additional electron microprobe analyses were obtained using a JEOL
122	Superprobe JXA 8200, Universitaetszentrum für Angewandte Geowissenschaften (UZAG) at the University of Leoben
123	(Austria). Analytical conditions were 15 kV accelerating voltage and 10 nA beam current with 30 seconds on peaks and 15
124	seconds on backgrounds of the X-ray lines. Zirconium in rutile was analyzed using a JEOL JXA-8100 Superprobe at the
125	University of Innsbruck with analytical conditions of 15 kV and 150 nA. Counting times were set to 300 sec on the peak
126	and 150 sec on the backgrounds of the ZrLa line using a PETH-crystal. This yields a 2-sigma count statistical error of 9%
127	for a Zr concentration of 300 ppm. The accuracy of Zr measurements was checked intermittently with a rutile standard
128	kindly supplied by T. Zack. Mineral formulae and single geothermobarometer reactions were calculated with the
129	Mathematica package PET (Dachs 2004).
130	Whole rock major and trace element compositions were determined by X-ray fluorescence spectroscopy using a

Whole rock major and trace element compositions were determined by X-ray fluorescence spectroscopy using a Bruker Pioneer S4 XRF at the Institute of Earth Sciences, University of Graz. The samples were prepared as fused pellets using 7 gram of Li_2B4O_7 and 1 gram of finely powdered and dried sample. The loss on ignition (LOI) was determined from the total weight change after heating to $1030^{\circ}C$ for 1 hour.

Unpolarized spectra of kyanites were measured on a HORIBA Labram HR-800 confocal Raman-spectrometer, using the 514 nm excitation wavelength of a 30 mW Nd-YAG laser, through a 100x objective with a numerical aperture of 0.9. Standard optical and electron microprobe backscattered electron images were used to target areas that are homogeneous in composition and free of visible inclusions. Size and power of the laser spot on the surface was approximately 1 µm and 5 mW, respectively. Confocal pinhole and entrance slit were set to 1000 and 100 μ m. The scattered Raman light was dispersed by a grating with 1800 lines/mm and detected by an open-electrode CCD with 1024 x 256 pixels, each sizing 43 μ m. The spectral resolution, determined by measuring the Rayleigh line, was 1.4 cm⁻¹. Background and Raman bands were fitted by the built-in spectrometer software LabSpec to first or second order polynomials and convoluted Gauss-Lorentz functions. The accuracy of Raman line shifts was checked by regular measurements of the emission lines of a Ne spectral calibration lamp and is on the order of 0.5 wavenumbers.

- 144
- 145

WHOLE ROCK GEOCHEMISTRY AND SAMPLE PETROGRAPHY

146 The samples contain 43.3–49.9 wt% SiO₂ along with 13.6–22.9 wt% Al₂O₃, 11.8–18.5 wt% 147 CaO and 9.1–14.7 wt% MgO. Mg-numbers [100*Mg/(Mg+Fe)] are between 75 and 91. Na₂O shows a 148 variation of 1.4–3.1 wt%, Cr and Ni contents are 476–4908 ppm and 166–469 ppm, respectively, with 149 the Cr-spinel bearing samples PM22 and PM26 showing the highest Cr and Ni contents of any 150 eclogites reported so far from the Pohorje Massif (Sassi et al. 2004; Miller et al. 2007). In the Al₂O₃-151 TiO₂ diagram devised by Pearce (1983) all but two samples plot into the field for plagioclase-rich 152 cumulates (Fig. 2a) which is consistent with high Mg-numbers and CaO contents and with the 153 extremely low K₂O and P₂O₅ contents. The positive correlation trends in X_{mg} versus Cr, Ni, Al₂O₃, 154 CaO are similar albeit with a larger scatter compared to those reported by Sassi et al. (2004) and Miller 155 et al. (2007) for cumulate-type (high-Mg) eclogites (Figs. 2b-e) from other localities of the Pohorje 156 Massif.

All investigated eclogites show either equigranular, or in rare instances, corona textures with a mm-scale grain size and characterized by the assemblage omphacite+garnet+rutile. Kyanite, calcic amphibole, zoisite, quartz and accessory phase zircon are common in most samples while phengite and corundum are rarely present. The Cr-spinel bearing samples PM22 and PM26 contain omphacite+garnet+kyanite+calcic amphibole+phengite+quartz+rutile+zircon and omphacite+garnet+calcic amphibole+kyanite+zoisite+corundum, respectively (Figs. 3a,b). Both, PM22
 and PM26, show variable degrees of retrogression evidenced by extremely fine-grained symplectites
 around omphacite, garnet, kyanite, phengite, and calcic amphibole.

Matrix omphacite forms anhedral to subhedral grains which appear unaffected by retrogression or, more commonly, are mantled by plagioclase±calcic amphibole±clinopyroxene symplectites (symp I) (Fig. 4a). The textures of the omphacite-symplectites indicate a two stage growth commencing with the formation of clinopyroxene+plagioclase followed by calcic amphibole growth at the expense of the former two phases. Omphacite is also present as well preserved inclusions in large matrix kyanite even when matrix omphacite was completely retrogressed and as rare constituent of reaction coronas around Cr-spinel.

Garnet forms rounded grains with inclusions of kyanite and/or omphacite and are often partially replaced by calcic amphibole±plagioclase symplectites (symp II) (Fig. 4a,b). Sometimes chlorite is part of the garnet-symplectites and partially replaces calcic amphible.

175 Kyanite is present as large euhedral crystals up to several hundred μ m in size either as a matrix 176 phase or as tiny ($\leq 10 \ \mu m$) needles included in garnet. In sample PM22 matrix kyanite sometimes 177 contains clusters of small (<50-100 µm) drop-like Cr-spinel inclusions in part intergrown with rutile 178 and omphacite (Fig. 3a). Around these spinel inclusions the kyanite shows a strikingly blue to turquoise 179 color and an intense deep-blue–light blue pleochroism. A second textural type of kyanite only occurs as 180 part of Al-rich reaction coronas around large (≤ 1 mm) Cr-spinel matrix grains in sample PM26 (Fig. 181 3b). The kyanite, too, shows deep blue color and forms needle-like crystals intergrown with chromian 182 Al-rich pargasite and Cr-rich corundum. Matrix kyanite often displays variable degrees of retrogressive 183 replacement by extremely fine-grained symplectite rims (symp III). BSE-imaging reveals a two layer 184 structure with an inner layer immediately adjacent to kyanite consisting of intermediate plagioclase 185 (An_{50}) +corundum+spinel±sapphirine and an outer layer of calcium-richer plagioclase (An_{90}) ±calcic amphibole directed towards the eclogite matrix phases (Fig. 4c). Both corundum and spinel are close to endmember Al_2O_3 and $MgAl_2O_4$, respectively and sapphirine is strongly peraluminous.

Phengite was only found in PM22 as rare lath-shaped crystals of up to 300 µm in length which
are partially replaced by biotite+plagioclase symplecites (symp IV) (Figs. 4d,e).

190 Two textural types of amphibole are present in the samples investigated. Texturally primary 191 amphibole forms large subhedral and almost colorless grains scattered in the matrix which are in 192 textural equilibrium with omphacite, garnet and kyanite. This amphibole develops, in some instances, 193 thin symplectitic rims (symp V) (Fig. 4d). Texturally secondary amphibole is present as reaction rims 194 around garnet and as part of Al-rich reaction coronas around Cr-spinel matrix grains as found in sample 195 PM26 (Fig. 4f). Secondary amphibole which is part of the Al-rich reaction coronas do not exceed ~ 300 196 µm in size and, if sufficiently rich in Cr, may show a pronounced lime green color and green-to-197 colorless pleochroism (Fig. 3b).

Corundum is present in three textural types: corundum-I is a matrix phase and forms euhedral colorless crystals of up to 300 µm in size in textural equilibrium with garnet, omphacite and calcic amphibole. It often contains inclusions of kyanite and omphacite (Fig. 4f). Corundum-II forms vermicular grains as part of symplectites around kyanite (Fig. 4c) and corundum-III is exclusively present in Cr-spinel reaction coronas intergrown with chromian Al-rich pargasite and Cr-kyanite and shows an intensely red to pink color and strong pleochroism (Fig. 4f).

204 Cr-spinel was found in PM22 as clusters of honey yellow droplets $<50-100 \ \mu m$ in size included 205 in matrix kyanite (Fig. 3a) and in PM26 as reddish-brown euhedral and often strongly poikilitic crystals 206 of up to 1 mm in size. Cr-spinel in PM26 always possesses a spectacular two-layer reaction corona 207 which consists of an inner layer of blue kyanite needles intergrown with pink corundum-III and an 208 outer layer of light green pargasite (Fig. 3b).

209 Additional minor to accessory constituents of the eclogite-facies assemblages from sample

213

214

MINERAL CHEMISTRY

Garnet is pyrope-rich with an observed compositional range pyrope₄₉₋₅₃grossular₁₉₋₂₀ Garnet is pyrope-rich with an observed compositional range pyrope₄₉₋₅₃grossular₁₉₋₂₀ almandine₂₇₋₃₁spessartite_{0.5-2} in PM22 and pyrope₆₀₋₆₈grossular₂₁₋₂₅almandine₁₁₋₁₄spessartine_{<1} in PM26, respectively (Figs. 4a,b; Tables 1, 2). No significant compositional zoning could be observed in any of the garnets analyzed. The garnet composition mainly reflects differences in the whole rock composition of the two samples as evidenced by garnet X_{Mg} [=Mg/(Mg+Fe²⁺)] of 0.61-0.66 in PM22 and of 0.81-0.86 in the unusually Mg-rich cumulate PM26. (Table 2).

Matrix omphacite and omphacite inclusions in kyanite are typically unzoned with an observed compositional range diopside₅₆₋₅₉jadeite₃₁₋₃₄calcium Tschermak's pyroxene_{0.03-0.04}acmite_{0.00-0.03} in PM22 and diopside₅₇₋₆₃jadeite₂₇₋₂₉calcium Tschermak's pyroxene_{0.05-0.08}acmite_{<0.01} in PM26, respectively (Tables 1, 2). Aside from large Cr-poor matrix omphacite, Cr-rich omphacite is present in sample PM26 as part of a reaction corona around large Cr-spinel grains and in sample PM22 associated with Cr-spinel droplets as inclusions in kyanite. This omphacite contains as much as 5.3 wt% Cr₂O₃, equivalent to 14.8 mol% NaCrSi₂O₆ (kosmochlor) component (Table 3).

Large matrix kyanite crystals devoid of Cr-spinel inclusions are homogeneous and show a close-to-endmember composition. Kyanite with clusters of drop-like Cr-spinel inclusions from sample PM22 shows a strong and complex discontinuous Cr-zoning in the vicinity of Cr-spinel (Fig. 5) with highly variable Cr_2O_3 contents reaching 15.6 wt% which is equivalent to 17.6 mol% X_{Cr-Ky} (Table 4; Fig. 6). Fe₂O₃ contents of the Cr-rich zones reach 0.6 wt% and are positively correlated with Cr_2O_3 contents. Cr-rich kyanite in reaction coronas around Cr-spinels from sample PM26 does not display

any Cr-zoning and shows lower Cr_2O_3 contents not exceeding 8.2 wt%. In order to test the effect of Cr– Al exchange on the Raman spectra of kyanite, five compositionally homogeneous areas of sufficient size within zoned Cr-bearing kyanites containing 0.6, 2.1, 6.1, 8.9, and 10.7 wt% Cr_2O_3 were selected and Raman spectra recorded. Increasing Cr contents result in a systematic and linear shift of the major bands towards lower wave numbers accompanied by a broadening of the bands (Fig. 7a). For example the band at 487 cm⁻¹ in the spectrum of kyanite with 0.6 wt% Cr_2O_3 is shifted to 481 cm⁻¹ in the

spectrum of kyanite with 10.7 wt% Cr_2O_3 . The corresponding increase in band width at half height is from 4.4 to 12.2 cm⁻¹ (Fig. 7b).

Matrix corundum-I only shows very minor Al substitution by Cr and Fe³⁺ (Table 2) whereas corundum-II within symplectites around kyanite is pure Al₂O₃. By contrast, corundum-III is characterized by variable and in part extremely high Cr_2O_3 contents of up to 9.1 wt% which corresponds to an eskolaite component of up to 6.3 mol.% (Table 4).

Spinel from sample PM22 is Cr-Fe-dominated and contains minor Al, Mg and Zn (Table 4). In terms of endmembers, the observed range in composition is chromite₅₅₋₅₆magnesio-chromite₂₂. $_{24}$ magnetite₀₁₋₀₄hercynite₁₄₋₁₅gahnite₀₃₋₀₄. In sample PM26 spinel shows significantly lower Fe and Cr combined with higher Al and Mg contents. The observed range in composition is chromite₀₀. $_{05}$ magnesiochromite₅₁₋₅₆magnetite₀₁₋₀₂hercynite₁₄₋₁₅gahnite₀₁₋₀₂spinel₀₀₋₁₄. (Fig. 8).

Texturally primary amphibole is barroisite to magnesio-hornblende (Leake et al. 2004) (Fig. 9) which contains minor K, Ti and Cr (Tables 1, 2). The texturally secondary amphibole present in the Alrich spinel reaction coronas in sample PM26 is pargasite, alumino-pargasite or chromian pargasite (Table 3). Cr_2O_3 contents are highly variable with 0.1-3.9 wt% and decrease with increasing distance from Cr-spinel. The positive $Cr^{[IV]}Al$ and negative $Cr^{[VI]}Al$ correlations are consistent with a combined Tschermaks and ^[VI]Al=^[VI]Cr exchange.

257

Phengite from sample PM22 shows 3.25-3.35 Si a.p.f.u. along with minor paragonite solid-

258 solution [(Na/(K+Na+Ca)=0.04-0.07] (Table 1).

Matrix rutile contains 0.2-0.8 wt% Cr_2O_3 and 0.3-0.4 wt% Fe_2O_3 along with 302-403 ppm Zr and <65 ppm Nb (n=9). The rutile inclusions in kyanite associated with Cr-spinel-I show significantly higher Cr_2O_3 (1.5-1.9 wt%) and Nb (206-289 ppm) combined with lower Fe_2O_3 (0.05-0.13 wt%) and Zr (194-330 ppm) (Table 5).

- 263
- 264

PT CONDITIONS OF ECLOGITE FACIES METAMORPHISM

265 **Phase equilibrium calculations**

266 Estimates of PT conditions of eclogite-facies metamorphism in the Pohorje eclogites are 267 controversial. Janak et al. (2004) and Vrabec et al. (2012) reported conditions of ~820°C and 3 GPa 268 based on the garnet-omphacite-phengite thermobarometer from Krogh-Ravna and Terry (2004). 269 Results of Sassi et al. (2004), Miller et al. (2005a) and Miller and Konzett (2005) yield consistently 270 lower PT estimates of 650–720°C and 2.1–2.6 GPa. Sample PM22 contains the assemblage 271 garnet+omphacite+phengite which allows the application of various geothermobarometers. Using 272 different thermodynamic datasets and activity models but the same mineral compositions, PT 273 conditions in the range 640-810°C and 2.0–2.9 GPa were obtained using reactions (1) - (3) or reactions 274 (1) and (4) (Table 1, Fig. 10).

275

276	Prp + 2Grs + 3Cel = 3Ms + 6Di	(1)
-----	-------------------------------	-----

277	3Di + 2Ky = Prp + Grs + 2Qtz/Coe	(2)
-----	----------------------------------	-----

$$3Cel + 4Ky = Prp + 3Ms + 4Qtz/Coe$$
(3)

279
$$1/3 \operatorname{Prp} + \operatorname{Hed} = 1/3 \operatorname{Alm} + \operatorname{Di}$$
 (4)

280

281 The highest *PT* values of 780–810°C at 2.7-2.9 GPa were calculated using the net transfer reactions

282 (1)–(3) which are considered robust because they are independent of ferric/ferrous iron consideration 283 using the calibration of Krogh-Ravna and Terry (2004). Using the thermodynamic database from Holland 284 and Powell (1998)activities with AX 2 and calculating 285 (http://www.esc.cam.ac.uk/research/research-groups/research-projects/tim-hollands-software-pages/ax) reactions (1)–(3) yield significantly lower P conditions of 2.0–2.1 GPa at a similar T of 770-780°C. 286 287 The calibration of Brandelik and Massonne (2004) for reactions (1)-(3) yields 710-760°C at 2.4-2.5 288 GPa. The lowest temperatures of 640-680°C and intermediate pressures of 2.2-2.3 GPa are obtained using clinopyoxene-garnet Fe^{2+} -Mg exchange thermometry (reaction 4, Krogh, 2000) together with an 289 290 updated version of the Waters and Martin (1993) garnet-clinopyroxene-phengite barometer (reaction 291 1).

292 To provide additional constraints on temperatures of equilibration for the Cr-kyanite bearing 293 assemblages, Zr-in-rutile thermometry was applied to sample PM22 in which rutile is present as small 294 $(\leq 40x70 \ \mu m)$ inclusions in Cr-kyanite associated with Cr-spinel and also as larger $(\leq 350x450 \ \mu m)$ 295 grains scattered in the matrix. Although individual rutile grains are compositionally unzoned within the 296 analytical error of an individual analysis, there is some inter-grain variation (Table 5). Using a pressure 297 of 2.5 GPa, averaged temperatures derived from 14 rutile analyses are 721±25°C and 717±17°C based 298 on the calibrations devised by Zack et al. (2004) and Thomkins et al. (2007), respectively. Averaged 299 temperatures for rutile inclusions in Cr-kyanite and for matrix grains do not yield statistically different 300 values.

- 301
- 302

DISCUSSION

303 The formation of Cr-kyanite in the context of high-P metamorphism in the Pohorje Massif

In samples PM22 and PM26 Cr-kyanite occurs in two different textures, namely (1) as matrix

9/23

kyanite with ±irregularly shaped Cr-rich segments around Cr-spinel inclusions and (2) as part of
 reaction coronas around large Cr-spinel grains.

In case of PM22 it is obvious that Cr-spinel was consumed while matrix kyanite formed (Figs. 3,5). Because the Cr-rich kyanite portions are part of the large matrix kyanites we suggest that this reaction took place during prograde metamorphism. Omphacite and rutile inclusions are also found together with Cr-spinel in the Cr-rich kyanites. Possible simplified endmember reactions involving spinel as a reactant phase are:

312

$$Spl + Pl = Ky + Omp \pm Grt$$
(1)

$$Spl + Qtz = Ky + Grt$$
 (2)

315

Unlike in sample PM22, the large Cr-spinels in sample PM26 did not break down during a significant portion of the prograde metamorphic *PT* path. Textures clearly indicate that Cr-spinel reacts with omphacite and garnet to produce a spherical corona consisting of an inner portion that contains Cr-rich kyanite and an outer portion mainly consisting of chromian pargasite (Fig. 3b). Cr-rich corundum as well as omphacite occur in subordinate amounts mainly in the inner portions of the coronas. Based on the observed mineral assemblages in PM26, potential kyanite and corundum producing reactions are

323

$$324 Spl + Prp + Di + Jd = Prg + Ky (3)$$

$$325 Spl + Prp + Grs + Jd = Prg + Ky (4)$$

$$326 Spl + Grs + Jd + Ky = Prg + Crn (5)$$

327

328 Their location in PT space was calculated in NCMASH system using appropriate activity models (Fig.

11a). Following a decompression *PT* path, crystallization of Cr-rich kyanite occurs at significantly higher pressures than formation of Cr-rich corundum. However, a change in water activity may shift reactions to lower *T* and *P*. Nevertheless, textural evidence does not support this conclusion that these minerals formed at different stages along the retrograde path.

333 In general, corona textures indicate that a mineral reaction did not proceed to completion and 334 are a sign of disequilbrium. In case of samples PM22 and PM26, Cr-spinel is a magmatic relic inherited 335 from the eclogite precursor rock and started to react with the eclogite facies minerals garnet and 336 omphacite during progressive metamorphism. As evidenced by the presence of abundant pargasite 337 within the reaction coronas, hydrous fluids must have been involved in the corona formation. These 338 fluids are rarely pure H₂O but usually contain variable amounts of CO₂ along with various dissolved 339 species amongst which SiO_{2,aq} and NaCl_{aq} are often dominant (e.g. Hauzenberger et al., 2001; 340 Manning, 2004). An influx of hydrous fluid associated with a change in the chemical potential of SiO_2 341 and/or Na₂O at the interface between Cr-spinel and the matrix phases provides a potential explanation for corona formation as outlined in Fig. 11b which shows a SiO₂ versus Na₂O chemical potential 342 343 diagram for 800°C and 2.5 GPa that was calculated using the activity models as for Fig. 11a. Figure 344 11b shows that at pressures and temperatures close to the peak of Eoalpine eclogite-facies 345 metamorphism and in a chemical system characterized by $a_{SiO2} < 1$, an increase in μSiO_2 resulting from 346 an influx of fluid may trigger pargasite and/or kyanite-formation through the following reactions (Fig. 347 11b):

348

$$349 Sp + Di + Prp = Prg (6)$$

$$Grs + Sp = Prg + Ky$$
 (8)

352

355

356 The timing of Cr-kyanite formation

357 Green and Ringwood (1967) showed that phases with aluminium-rich compositions form 358 kyanite in eclogites with the breakdown of plagioclase occurring at approximately 1.5 GPa and 700°C. 359 Cr-spinel overgrown by and eventually enclosed in newly formed but still Cr-poor kyanite is thought to 360 represent the first step in the formation of Cr-kyanites in sample PM22 that took place at pressures 361 above approximately 1.5 GPa. In a second step rising P and T caused increasing Cr_2SiO_5 -solubility in kyanite resulting in an exchange reaction $Al_2SiO_5 + FeCr_2O_4 = Cr_2SiO_5 + FeAl_2O_4$ involving newly 362 363 formed kyanite and Cr-spinel inherited from the magmatic precursor (cf. Gil-Ibarguchi et al. 1991). 364 Thus, Cr-kyanite from sample PM22 predates the formation of Cr-rich corona kyanite from sample 365 PM26 whose formation requires the breakdown of eclogite-facies phases during the retrograde portion 366 of the *PT*-path.

367 Retrogression of eclogite to amphibolite is widespread in the Saualpe, Koralpe and Pohorje area 368 of the Eastern Alpine basement and is attributed to a pervasive fluid influx during uplift. Based on the 369 fluid-influx model as outlined in Fig. 11b the formation of Cr-rich kyanites within the spinel coronas 370 from sample PM26 is not a prograde but a retrograde phenomenon associated with the earliest stage of 371 the exhumation path but under still high pressures. This is supported by small inclusions of Cr-rich 372 omphacite found within the coronas which are a clear indication for eclogite facies conditions. Hence, 373 mineral textures and phase equilibrium calculations would be consistent with the following scenario 374 (Fig. 12): during prograde metamorphism large magmatic Cr-spinel grains initially remained 375 unaffected by rising PT conditions due to sluggish reaction kinetics. Influx of a hydrous fluid during 376 the initial stage of decompression increased the chemical potential of SiO₂ and strongly accelerated

377	reaction kinetics, allowing various kyanite-, amphibole-, and corundum-forming reactions to proceed.
378	The spatial distribution of phases within the coronas is consistent with increasing chemical potential of
379	SiO ₂ and decreasing chemical potentials of Al ₂ O ₃ and Cr ₂ O ₃ from spinel towards the matrix (Fig. 12).
380	
381	IMPLICATIONS
382	Within the two investigated samples PM22 and PM26, Cr-spinel-bearing gabbroic cumulates
383	from the Pohorje Massif, blue Cr-kyanite formed in two different textural micro-environments. A first
384	type present in sample PM22 encloses clusters of small drop-like Cr-spinel inclusions and contains up
385	to 15.6 wt% Cr_2O_3 . The most intense blue color occurs in the immediate vicinity to the Cr-spinel. A
386	second type is present in sample PM26 as part of Al-rich reaction coronas developed around large red-
387	brownish Cr-spinel magmatic relics. Within these coronas Cr-kyanite appears as deep blue needle-like
388	crystals that contain up to 8.2 wt% Cr ₂ O ₃ and is associated with red-pink Cr-rich corundum containing
389	up to 9.1 wt% Cr ₂ O ₃ and Cr-Al-rich pargasite with up to 3.9 wt% Cr ₂ O ₃ . The blue color of kyanite and
390	the red-pink color of corundum are a result of Cr-Al substitution in octahedral sites during high
391	pressure/ultra-high pressure metamorphism. Whereas Cr-kyanite in sample PM22 formed under
392	increasing PT conditions during prograde metamorphism, Cr-kyanite and the associated Cr-rich
393	corona-assemblage in sample PM26 were generated during the earliest stage of retrogressive evolution
394	of these rocks still at eclogite-facies PT conditions of ~2.5 GPa and 750-800°C.

- 395
- 396

ACKNOWLEDGMENTS

We would like to thank Zmargo Zorg, Anton Gutschi and Walter Postl for their support during field work. We are particularly indebded to Zmargo Zorg who has been ranging the Pohorje Massif for eclogite occurrences for many years. Anton Pock, Juergen Neubauer, Karl Ettinger, and Reinhard Kaindl are thanked for thin section preparation, SEM support, performing EPMA analysis, and support

401	for Raman analysis, respectively. We thank Håkon Austrheim, Gerhard Franz and an unknown
402	reviewer for their comments and corrections.
403	
404	
405	REFERENCES CITED
406	
407	Altherr, R., Lugovic, B., Meyer, H.P., and Majer, V. (1995) Early Miocene post-collisional calc-
408	alkaline-magmatism along the easternmost segment of theperiadriatic fault system (Slovenia and
409	Croatia). Mineralogy and Petrology 54, 225-247.
410	Brandelik, A., and Massonne, H.J. (2004) PTGIBBS - an EXCEL TM Visual Basic program for
411	computing and visualizing thermodynamic functions and equilibria of rock-forming minerals.
412	Computers and Geosciences. 30, 909-923.
413	Chinner G.A., Smith J.V., and Knowles C.R. (1969) Transition metal contents of Al ₂ SiO ₅ polymorphs.
414	American Journal of Science, 267-A, 96-113.
415	Connolly, J.A.D. (1990) Multivariable phase-diagrams - an algorithm based on generalized
416	thermodynamics. American Journal of Science 290, 666-718.
417	Cooper, A.F. (1980) Retrograde alteration of chromian kyanite in metachert and amphibolite
418	whiteschist from the Southern Alps, New Zealand, with implications for uplift on the Alpine
419	Fault. Contributions to Mineralogy and Petrology 75, 153-164.
420	Dachs, E. (2004) PET: petrological elementary tools for Mathematica: an update. Computers and
421	Geosciences, 30, 173–182.
422	Delor, C.P., and Leyreloup, A.F. (1986) Chromium-rich kyanite in an eclogite from the Rouergue area,

9/23

423 French Massif Central. Mineralogical Magazine 50, 535-537.

- 424 Exner, U., Fusseis, F., Grasemann, B., Habler, G., Linner, M., Sölva, H., Thiede, R., Thöni, M., (2001)
- 425 Cretaceous Eclogite-Facies Metamorphism in the Eastern Alps: new insights, data and 426 correlations from an interdisciplinary study. Journal of Conference Abstracts (Abstract volume 427 EUG XI) 6, 387.
- Ferry, J.M. and Watson, E.B. (2007) New thermodynamic models and revised calibrations fort he Ti in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology 154, 429-437
- Fodor, L.I., Balogh, K., and Dunkl, I. (2003) Structural evolution and exhumation of the PohorjeKozjak Mts., Slovenia. Ann. Univ. Scient. Budapest. Sect. Geol. 35, 118-119.
- Fodor, L.I., Gerdes, A., Dunkl, I., and Koroknai, B. (2008) Miocene emplacement and rapid cooling of
 the Pohorje pluton at the Alpine-Pannonian-Dinaridic junction, Slovenia. Swiss Journal of
 Geosciences, doi:1007/s00015-008-1286-9.
- Gil-Ibarguchi, J.I., Mendia, M., and Girardeau, J. (1991) Cr-rich staurolite and Cr-rich kyanite in highpressure ultrabasic rocks (Cabo Ortegal, northwestern Spain) American Mineralogist 76, 501511.
- Grambling, J.A., and Williams, M.L. (1984). The Effects of Fe³⁺ and Mn³⁺ on Aluminum Silicate
 Phase Relations in North-Central New Mexico, U.S.A. Journal of Petrology, 26, 324-354.
- Green, D.H., and Ringwood, A.E. (1967) An experimental investigation of the gabbro to eclogite
 transformation and its petrological applications. Geochimica et Cosmochimica Acta, 31, 767-833.
- 442 Hauzenberger, C.A., Baumgartner, L.P., and Pak T.M. (2001). Experimental Study on the Solubility of
- the "Model"-Pelite Mineral Assemblage Albite + K-Feldspar + Andalusite + Quartz in
 Supercritical Chloride Rich Aqueous Solutions at 0.2 GPa and 600°C, Geochimica et

445 Cosmochimica Acta, 65, 4493-4507.

- 446 Hinterlechner-Ravnik, A., and Moine, B. (1977) Geochemical characteristics of the metamorphic rocks
 447 of the Pohorje Mountains. Geologija, 20, 107-140.
- 448 Hinterlechner-Ravnik, A., Sassi, F.P., and Visona, D., (1991a) The Austridic eclogites, metabasites and
- 449 metaultrabasites from the Pohorje area (Eastern Alps, Yugoslavia): 1. The eclogites and related
- 450 rocks. Rend.Fis.Accad.Lincei, 2, 157-173.
- Hinterlechner-Ravnik, A., Sassi, F.P., and Visona, D. (1991b) The Austridic eclogites, metabasites and
 metaultrabasites from the Pohorje area (EasternAlps, Yugoslavia): 2. The metabasites and
 metaultrabasites, and concluding considerations. Rend.Fis.Accad.Lincei, 2, 175-190.
- Hoinkes, G., Kostner, A., and Thöni, M. (1991) Petrologic constraints for the Eo-alpine eclogite facies
 metamorphism in the Austro-Alpine basement. Mineralogy and Petrology, 43, 237-354.
- Holland, T.J.B., and Powell, R. (1998) An internally consistent thermodynamic data set for phases of
 petrological interest. Journal of Metamorphic Geology, 16, 309–343.
- Holland, T.J.B., 1990. Activities of components in omphacitic solid solutions. An application of
 Landau theory to mixtures. Contributions to Mineralogy and Petrology, 105, 446-453.
- 460
- 461 Ippen, J.A. 1892 Zur Kenntnis der Eklogite und Amphibolite des Bachergebirges. Mitteilungen des
 462 Naturwissenschaftlichen Vereins für Steiermark, 328-369.
- Janák, M., Froitzheim, N., Lupták, B., Vrabec, M., and Krogh Ravna, E.J. (2004) First evidence for
 ultrahigh-pressure metamorphism of eclogites in Pohorje, Slovenia: Tracing deep continental
 subduction in the Eastern Alps. Tectonics, 23, TC5014, doi:10.1029/2004TC001641.

- Janák, M., Froitzheim, N., Vrabec, M., Krogh Ravna, E.J., and de Hoog, J.C.M. (2006)
 Ultrahighpressure metamorphism and exhumation of garnet peridotite in Pohorje, Eastern Alps.
 Journal of Metamorphic Geology, 24/1, 19-31.
- 469 Janák, M., Cornell, D., Froitzheim, N., De Hoog, J.C.M., Broska, I., and Vrabec, M. (2009) Eclogite-
- 470 hosting metapelites from the Pohorje Mountains (Eastern Alps): P-T evolution, zircon
 471 geochronology and tectonic implications. European Journal of Mineralogy, 21, 1191-1212.
- Konzett, J., Krenn, K., Hauzenberger, Ch., Whitehouse, M., and Hoinkes, G. (2011). High-pressure
 tourmaline formation and fluid activity in Fe–Ti-rich eclogites from the Kreuzeck Mountains,
 Eastern Alps, Austria. Journal of Petrology, doi: 10.1093/petrology/egr057.
- Krogh, E.J. (2000) The garnet-clinopyroxene Fe²⁺-Mg geothermometer: an updated calibration. Journal
 of Metamorphic Geology, 18, 211-219.
- Krogh-Ravna, E.J., and Terry, P. (2004) Geothermobarometry of UHP and HP eclogites and schists an evaluation of equilibria among garnet-clinopyroxene-kyanite-phengite-coesite/quartz. Journal
 of Metamorphic Geology, 22:579-592.
- 480 Langer, K., and Seifert, F. (1974) High pressure-high temperature synthesis and properties of chromian
 481 kyanite, (Al,Cr)₂SiO₅. Zeitschrift für anorganische und allgemeine Chemie, 383, 29-39.
- 482 Manning, C.E. (2004) The chemistry of subduction-zone fluids. Earth and Planetary Science Letters,
 483 223, 1–16.
- 484 Miller, C. (1990) Petrology of the type locality eclogites from the Koralpe and Saualpe (Eastern Alps),
- 485 Austria. Schweizerische Mineralogische und Petrographische Mitteilungen, 70, 287-300.
- 486 Miller, C., Stosch, H.G., and Hoernes, S. (1988) Geochemistry and origin of eclogites from the type
- 487 locality Koralpe and Saualpe, Eastern Alps, Austria. Chemical Geology, 67, 103-118.

- 488 Miller, C., and Thöni, M. (1997) Eo-Alpine eclogitisation of Permian MORB-type gabbros in the
 489 Koralpe (Austria): new petrological, geochemical and geochronological data. Chemical Geology,
 490 137, 283-310.
- Miller, C., and Konzett, J. (2005a) Comment on First evidence for Ultrahigh pressure metamorphism of
 eclogites in Pohorje, Slovenia: tracing deep continental subduction in the eastern Alps by Janák et
 al. (2004). Tectonics 24:TC6010. doi:10.1029/2004TC001765.
- Miller, C., Mundil, R., Thöni, M., and Konzett, J. (2005b) Refining the timing of eclogite
 metamorphism: a geochemical, petrological, Sm-Nd and U-Pb case study from the Pohorje
 Mountains, Slovenia (Eastern Alps). Contributions to Mineralogy and Petrology, 150, 70-84.
- Miller, C., Thöni, M., Konzett, J., Kurz, W., and Schuster, R. (2005) Eclogites from the Koralpe and
 Saualpe type-localities, Eastern Alps, Austria. Mitteilungen Österreichische Mineralogische
 Gesellschaft, 150, 227-263.
- Miller, C., Zanetti, A., Thöni, M., and Konzett, J. (2007) Eclogitisation of gabbroic rocks:
 redistribution of trace elements and Zr in rutile thermometry in an Eo-alpine subduction zone
 (Eastern Alps). Chemical Geology, 239:96-123.
- 503 Mioč, P., and Žnidarčič, M. (1977) Geological Map of SFRJ. Geological Survey, Ljubljana, Slovenia.
- Negulescu, E., and Sabau, G. (2012) Chromium-rich lawsonite in high-Cr eclogites from the Fagaras
 Massif (South Carpathians). American Geophysical Union Fall Meeting poster V23D-2862
 available under http://www.igr.ro/proiecte/archimedes/docs/12SF2012.pdf.
- 507 Pearce, J. A. (1983) A "user's guide" to basalt discrimination diagrams. The Open University Report
 508 (unpublished).
- 509 Pivin, M., Berger, J., and Demaiffe, D. (2011) Nature and origin of an exceptionally Cr-rich kyanite-

- bearing xenolith from Mbuji-Mayi kimberlite (DRC) European Journal of Mineralogy 23, 257268.
- 512 Rost, F. and Simon, E. (1972) Zur Geochemie und Färbung des Cyanits. Neues Jahrbuch für
 513 Mineralogie Monatshefte 9, 383-395.
- 514 Sassi, R., Mazzoli, C., Miller, C., and Konzett, J. (2004) Geochemistry and metamorphic evolution of
- the Pohorje Mountain eclogites from the easternmost Austroalpine basement of the Eastern Alps
 (Northern Slovenia). Lithos, 78, 235-261.
- Sobolev, N.V., Kusnetsova, I.K., and Zyuzin, N.I. (1968) The petrology of grospydite xenoliths from
 the Zagadochnaya pipe in Yakutia. Journal of Petrology 9, 253-280.
- Sölva, H., Grasemann, B., Thöni, M., Thiede, R.C., and Habler, G., (2005a) The Schneeberg Normal
 Fault Zone: Normal faulting associated with Cretaceous SE-directed extrusion in the Eastern
 Alps (Italy/Austria). Tectonophysics, 401, 143-166.
- 522 Sölva, H., Grasemann, B., Thöni, M., and Habler, G., (2005b) The eo-Alpine high-pressure belt in the 523 Eastern Alps: a kinematic exhumation model and its tectonic implications. Mitteilungen
- 524 Österreichische Mineralogische Gesellschaft, 150-147.
- Thomkins, H.S., Powell, R. and Ellis, D.J. (2007) The pressure dependence of the zirconium-in-rutile
 thermometer. Journal of Metamorphic Geology 25, 703-713.
- 527 Thöni, M., and Jagoutz, E. (1993) Isotopic constraints for Eo-Alpine high-P metamorphism in the
 528 Austroalpine nappes of the Eastern Alps: bearing on Alpine orogenesis. Schweizerische
 529 Mineralogische und Petrographische Mitteilungen, 73, 177-189.
- Thöni, M. (1999) A review of geochronological data from the Eastern Alps. Schweizer Mineral ogisch
 Petrographische Mitteilungen, 79, 209–230.

- Thöni, M. (2006) Dating eclogite facies metamorphism in the Eastern Alps-approaches, results,
 interpretations: a review. Mineralogy and Petrology, 88, 123-148.
- Vrabec, M., Janák, M., Froitzheim, N., and De Hoog, C.-J. (2012) Phase relations during peak
 metamorphism and decompression of the UHP kyanite eclogites, Pohorje Mountains (Eastern
 Alps, Slovenia). Lithos, 144–145, 40-55, 10.1016/j.lithos.2012.04.004.
- Waters, D.J., and Martin, H.N. (1993) Geobarometry in phengite-bearing eclogites. Terra Abstracts,
 538 5:410-411.
- White, E.W. and White, W.B. (1967) Electron microprobe and optical absorption study of colored
 kyanites. Science 158, 915-922.
- 541 Zack, T., Moraes, R. and kronz, A. (2004) Temperature dependence of Zr in rutile: an empirical
 542 calibration of a rutile thermometer. Contributions to Mineralogy and Petrology 148, 471-488

543

LIST OF FIGURE CAPTIONS

544

Figure 1. (a) Schematic map of the Saualpe-Koralpe-Pohorje domain (modified from Miller et al., 2007) showing the distribution of regions overprinted by greenschist, amphiboite and eclogite facies metamorphic conditions; major eclogite bodies are displayed by filled ellipses; (b) Simplified geological map of the Pohorje Mountains and adjacent areas (modified after Mioč and Žnidarčič, 1977 and Janák et al., 2004); the sampling area is indicated by the dashed rectangle in the southeastern part of the Pohorje Massif. Major fault systems are represented by bold lines.

551

Figure 2. (a)-(e) Correlation plots of selected major and trace elements for Cr-spinel-bearing (PM22: black star; PM26: open star) and Cr-spinel-free (black dots) eclogites from the Slovenska Bistrica area compared to Mg-rich and Mg-poor eclogite bulk compositions from the Koralpe, Saualpe and Pohorje Mountains reported by Miller et al. (2007) (M07) and Sassi et al. (2004) (S04); field boundaries in (a) according to Pearce (1983); Mg# = $[100*Mg/(Mg+Fe_{tot}^{2+})]$

557

Figure 3. Optical photomicrographs of Cr-rich assemblages; (a) cluster of turquoise-colored Cr-bearing kyanites enclosing vermicular Cr-spinel grains from sample PM22; note the zonal coloring which is most intense in the immediate vicinity of the Cr-spinel inclusions where Cr contents of kyanite are highest; (b) turquoise-colored Cr-bearing kyanites and pink Cr-bearing corundum forming the inner portion of a reaction corona around a large Cr-spinel grain from sample PM26; the outer portion of the corona consists of pale-geen Cr-pargasite which may contain relics of omphacite and garnet indicating a reaction Cr-spinel + omphacite + garnet + H_2O = kyanite + corundum + pargasite.

565

566 Figure 4. back-scattered electron (BSE) images showing selected microtextures of eclogite-facies

567 assemblages affected by subsequent retrograde overprint; (a) weakly retrogressed domain of Cr-568 kyanite-bearing sample PM22 with omphacite and garnet mantled by narrow symplectitic rims of 569 Amp+Di+Plag (symp I) and of Amp+Plag (symp II), respectively. Symplectites around kyanite consist 570 of Crn+Spl+Pl (symp III). (b) High-Mg coronitic eclogite PM26 containing abundant garnet with 571 kyanite and omphacite inclusions. Incipient retrogressive breakdown of omphacite to form symp I 572 assemblages can be observed in the upper center. (c) complex symplectite corona around kyanite: 1) 573 the main part contains $Crn+An_{90}$, $Spr+An_{90}$ and $Spl+An_{90}$ symplectites which are surrounded by a thin 574 An₅₀ rim. (d) texturally primary amphibole from sample PM22 with a thin symplectitic reaction rim 575 towards coexising omphacite (symp V); (e) Phengite surrounded by a symplectite Pl+Bt rim (symp 576 IV); (f) two textural types of corundum from sample PM26; Crn-I forms lath-shaped poikilitic matrix 577 grains up to 300 µm in size whereas Crn-III is found as part of reaction coronas around Cr-spinel grains 578 associated with Cr-rich kyanite and Cr-rich pargasite; a third textural type of Crn (Crn-II) forms tiny 579 needles which are part of symplectite rims around kyanite (see Fig. 3c).

580

Figure 5. BSE image and Al, Cr, and Fe X-ray maps of Cr-rich kyanite from samples PM22. Droplets of Cr-spinels are enclosed in kyanite, which is surrounded by a plagioclase–corundum–Mg-Al-spinel symplectite (symp III). The higher Cr content in kyanite is seen as lighter gray areas around the white spinels in the BSE image and as light bluish to greenish colour in the Cr X-ray map. Dark color (black– blue) indicate low concentrations while green–yellow–red colors indicate higher concentrations.

586

587 Figure 6. Range of Cr–Al substitution in kyanite from this study compared to data for Cr-rich kyanites588 from the literature.

589

590 Figure 7. (a) Raman spectra for kyanites with 0.6 and 10.7 wt%. With increasing Cr content the bands

591	show both a broadening and a systematic shift towards lower wave numbers; (b) band shift and
592	broadening of three Raman bands as a function of Cr content for kyanites with 0.6, 2.1, 8.9, and 10.7
593	wt% Cr_2O_3 .
594	
595	Figure 8. Compositional variation of spinel from samples PM22 and PM26 in terms of molar Al-Mg-
596	Fe ³⁺

597

Figure 9. Compositional variation of textrually primary and secondary calcic amphiboles from samples PM22 and PM26; primary amphiboles contain low and constant Cr_2O_3 contents in the range 0.10-0.15 wt% without any significant Al–Cr variation.

601

Figure 10. Peak metamorphic *PT* conditions of kyanite eclogite sample PM22 using various mineral equilibria or calibrations (Krogh-Ravna and Terry 2004; Holland and Powell 1998; Brandelik and Massonne 2004; Waters and Martin 1993 in combination with Cpx–Grt exchange thermometer after Krogh 2000). The numbers on reaction curves correspond to reaction number in the text.

606

607 Figure 11. Calculated Cr-kyanite and Cr-corundum-forming reactions for sample PM26 expressed in 608 terms of endmembers using Perple X (Connolly, 1990) with the thermodynamic dataset of Holland and 609 Powell (1998 and updates). Endmember activity corrections were performed using the program AX 2 610 provided by Tim Holland (a_{Sp} : 0.13; a_{Ky} : 0.83; a_{Grs} : 0.08; a_{Prp} : 0.35; a_{Cor} : 0.9; a_{Prg} : 0.30; a_{Jd} : 0.32). (a) 611 PT diagram with Cr-kyanite and Cr-corundum-forming reactions. Reactions 2 and 4 produce kyanite 612 and pargasite at or close to peak PT conditions. Along an assumed exhumation path corundum forms at 613 lower PT conditions. Stippled lines are calculated with lower X_{H2O} . (b) Simplified isothermal and 614 isobaric μ SiO₂ – μ Na₂O diagram reproducing the observed formation of Ky, Prg, and Cor. Locally

- 615 reduced SiO₂ activity was responsible for Cor formation (Ky = Cor).
- 616
- 617 Figure 12. Sketch explaining the formation of observed spherical coronas around Cr-spinel: (a)
- 618 Crystallization of eclogite facies assemblage where Cr-spinel remained as magmatic cummulate phase
- 619 unaffected. (b) Infiltration of H₂O-rich fluids (+SiO_{2,aq}, +NaCl_{aq}) during onset of exhumation
- 620 increasing chemical potential of SiO₂ which facilitates the breakdown of Cr-spinel. (c) Observed
- 621 corona in sample PM26 (Fig. 3).

500 µm

- this study
- O Pivin et al. (2011)
- ∑ Delor & Leyreloup (1985)
- \triangle Gil-Ibarguchi et al. (1991)
- Sobolev et al. (1968)
- 🗱 Negulescu & Sabau (2012)

Table 1. Rep	presantat	ive analyses o	of minerals s	table at	peak metamo	rphic conditions	from sample P	M22					
		Ompl	hacite			Gai	rnet		_	Amphibole		Kyanite	Phengite
	-				Grt core	Grt rim	Grt core	Grt rim					
		PM22o3	PM22o4		PM22g94	PM22g180	PM22G109	PM22g14		PM22a7	PM22a10	PM22ky20	PM22ph20
SiO ₂		55.00	55.79		39.63	39.90	40.77	39.77		51.40	51.18	38.12	52.04
TiO ₂		0.14	0.14		<0.1	<0.1	<0.1	<0.1		0.37	0.35	<0.02	0.72
AI_2O_3		9.24	9.41		22.76	22.69	23.19	22.94		11.62	11.60	61.19	29.78
Cr2O ₃		<0.1	<0.1		<0.1	<0.1	<0.1	<0.1		0.10	0.11	0.03	0.37
FeO ^{tot}		2.51	2.61		15.66	15.91	14.87	16.07		4.19	4.22	0.37	0.58
MnO		<0.1	<0.1		0.68	0.44	0.53	0.47		<0.01	<0.01	<0.01	<0.1
MgO		11.74	12.25		13.26	13.47	14.06	13.20		16.95	16.94	-	4.04
CaO		16.27	16.11		7.41	7.30	7.31	7.32		9.75	9.76	-	0.11
К2О		<0.1	<0.1		-	-	-	-		0.60	0.61	-	9.21
Na2O		4.74	4.79		-	-	-	-		2.73	2.86	-	0.29
Sum		99.64	101.10		99.40	99.71	100.73	99.77		97.71	97.63	99.71	97.14
Si		1.960	1.958		2.940	2.949	2.971	2.942		7.074	7.060	1.035	3.347
Ti		0.004	0.004		-	-	-	-		0.038	0.036	-	0.035
Al		0.388	0.389		1.990	1.977	1.992	2.000		1.885	1.886	1.957	2.257
Cr		-	-		-	-	-	-		0.011	0.012	0.001	0.019
Fe ³⁺		0.011	0.013		0.130	0.124	0.066	0.117		0.237	0.226	0.008	-
Fe ²⁺		0.064	0.063		0.842	0.859	0.840	0.877		0.245	0.261	-	0.031
Mn		-	-		0.043	0.028	0.033	0.029		-	-	-	-
Mg		0.624	0.641		1.466	1.484	1.527	1.455		3.477	3.483	-	0.387
Ca		0.621	0.606		0.589	0.578	0.571	0.580		1.438	1.442	-	0.008
К		-	-		-	-	-	-		0.105	0.107	-	0.756
Na		0.328	0.326		-	-	-	-		0.728	0.765	-	0.036
Sum		4.000	4.000		8.000	7.999	8.000	8.000		15.238	15.278	3.001	6.876
	X _{Jd}	0.346	0.350	X _{Prp}	0.499	0.503	0.514	0.495	X _{Mg}	0.934	0.930		
	X _{Mg}	0.907	0.911	X _{Grs}	0.200	0.196	0.192	0.197					
				X _{Alm}	0.286	0.291	0.283	0.298					
				X _{Sps}	0.015	0.009	0.011	0.010					
				X _{Mg}	0.635	0.633	0.645	0.624					

Tabelle	e1
---------	----

Table 2. R	epresan	tative analys	ses of miner	als stab	le at peak m	netamorphic co	nditions from	sample PM	26					
	_	Omp	hacite	_		Gari	net			Amphibole	Kyanite	Corundum	_	Zoisite
	-				Grt rim	Grt rim	Grt core	Grt core	_					
		PM26o3	PM26o14		PM26g7	PM26g142	PM26g7	PM26g14		PM26a1	PM26_ky32	PM26k23		PM26zo1
SiO ₂		54.59	54.59		42.07	42.14	42.10	41.78		45.73	38.17	-		41.39
TiO ₂		<0.1	<0.1		<0.1	<0.1	<0.1	<0.1		0.13	<0.01	<0.05		<0.1
AI_2O_3		9.46	10.40		23.66	23.92	23.32	23.59		17.33	61.42	99.64		31.82
Cr2O ₃		0.11	0.11		<0.1	<0.1	<0.1	0.16		0.30	0.28	0.34		<0.1
FeO ^{tot}		1.02	1.01		7.10	6.97	7.12	6.72		2.42	0.10	<0.05		0.71
MnO		<0.1	<0.1		0.19	0.07	0.17	0.13		<0.01	<0.05	<0.05		<0.2
MgO		12.28	12.68		17.83	18.04	17.21	18.68		16.99	-			0.10
CaO		17.84	17.06		9.04	9.06	9.78	8.45		11.18	-			24.70
Na ₂ O		4.13	4.19		-	-	-	-		3.44	-			-
K ₂ O		<0.2	<0.2		-	-	-	-		0.06	-			-
Sum		99.43	100.03		99.89	100.20	99.70	99.51		97.56	99.87	99.98		98.01
Si		1.946	1.929		2.997	2.988	3.012	2.975		6.342	1.033	-		3.108
Ti		-	-		-	-	-	-		0.014	-	-		-
AI		0.397	0.433		1.986	1.999	1.966	1.980		2.832	1.959	2.993		2.816
Cr		0.003	0.003		-	-	-	0.009		0.033	0.006	0.007		-
Fe ³⁺		-	-		0.021	0.024	0.009	0.060		0.140	0.002	-		0.040
Fe ²⁺		0.030	0.030		0.402	0.389	0.417	0.340		0.141	-	-		-
Mn		-	-		0.011	0.004	0.010	0.008		-	-	-		-
Mg		0.653	0.668		1.893	1.907	1.835	1.983		3.512	-	-		0.011
Са		0.681	0.646		0.690	0.688	0.750	0.645		1.661	-	-		1.987
Na		0.285	0.287		-	-	-	-		0.925	-	-		-
К		-	-		-	-	-	-		0.011	-	-		-
Sum		3.995	3.996		8.000	7.999	7.999	8.000		15.611	3.000	3.000		7.962
	X_{Jd}	0.295	0.308	X _{Prp}	0.632	0.638	0.609	0.666	X_{Mg}	0.962			X_{Fe}	0.014
	X _{Mg}	0.956	0.957	X _{Grs}	0.230	0.230	0.249	0.217	5					
				X _{Alm}	0.134	0.130	0.138	0.114						
				X _{Sps}	0.004	0.001	0.003	0.003						
				X _{Ma}	0.825	0.831	0.815	0.854						

	amphibole	trom sample	s PM22 and	PM26
	Ompl	hacite	Pargasite	Aluminopargasite
	PM22om1	PM26om1	PM26a1	PM26AM8
SiO ₂	54.04	54.39	44.07	45.82
TiO ₂	0.09	<0.05	0.16	0.09
AI_2O_3	7.75	9.37	16.15	16.83
Cr_2O_3	5.24	3.65	3.94	1.50
FeO ^{tot}	2.21	0.77	2.07	2.48
MnO	<0.05	<0.05	0.02	0.02
MgO	10.42	11.06	16.50	16.80
CaO	15.48	16.03	10.65	10.51
Na ₂ O	5.33	5.43	3.54	3.47
K ₂ O	<0.05	<0.05	0.09	0.08
Sum	100.56	100.70	97.19	97.62
Si	1.936	1.923	6.208	6.382
Ті	0.002	-	0.017	0.010
AI	0.327	0.390	2.681	2.762
Cr	0.148	0.102	0.439	0.166
Fe ³⁺	0.019	-	0.000	0.000
Fe ²⁺	0.047	0.023	0.244	0.289
Mn	-	-	0.002	0.002
Mg	0.557	0.583	3.465	3.488
Са	0.594	0.607	1.607	1.569
Na	0.370	0.372	0.967	0.938
К	-	-	0.016	0.014
Sum	4.000	4.000	15.646	15.620
X _{Ma}	0.922	0.962	0.934	0.923
X _{Na}	0.384	0.380		
X _{Kos}	0.148	0.102		
X _{Jd}	0.203	0.270		
X _{Acm}	0.019	0.000		
X _{Ca-Ts}	0.062	0.060		
X _{Di}	0.532	0.547		
X_{Hd}	0.047	0.023		

TABLE 3. Chemical composition of Cr-rich omphacite and amphibole from samples PM22 and PM26

	Cr-kyanite						Corundum			Cr-spinel			
	PM22ck1	PM22ck2	Pm22ky2/1	PM26ky1	PM26ky2		PM26k3	PM26k8	_	PM22sp11	PM22sp12	PM26sp15	PM26sp22
SiO ₂	35.63	35.41	35.13	36.16	36.52		-	-		-	-	-	-
TiO ₂	0.00	0.10	0.00	0.00	0.00		<0.05	<0.05		<0.05	<0.05	<0.05	<0.05
AI_2O_3	49.90	50.29	49.01	55.33	55.10		90.65	91.06		8.86	9.09	26.89	20.45
Cr_2O_3	14.37	13.99	15.60	7.82	8.18		9.07	9.06		57.14	56.60	43.37	49.46
Fe_2O_3	0.50	0.36	0.43	0.27	0.20		<0.05	<0.05		-	-	-	-
FeO ^{tot}	-	-	-	-	-		-	-		27.67	27.44	14.90	17.19
MnO	<0.05	<0.05	<0.05	<0.05	<0.05		-	-		0.14	0.34	0.03	0.09
MgO	-	-	-	-	-		-	-		5.08	4.90	14.56	12.12
ZnO	-	-	-	-	-		-	-	_	1.40	1.45	0.43	0.43
Sum	100.40	100.15	100.17	99.58	100.00		99.72	100.12		100.28285	99.8199	100.1781	99.7326
Si	1.006	1.001	0.999	1.006	1.012		-	-					
Ti	-	-	-	-	-		-	-					
AI	1.661	1.676	1.642	1.814	1.800		1.874	1.875		0.358	0.369	0.946	0.753
Cr	0.321	0.313	0.351	0.172	0.179		0.126	0.125		1.549	1.542	1.024	1.222
Fe ³⁺	0.011	0.008	0.009	0.006	0.004		-	-		0.093	0.089	0.030	0.025
Fe ²⁺	-	-	-	-	-		-	-		0.701	0.702	0.342	0.424
Mn	-	-	-	-	-		-	-		0.004	0.010	0.001	0.002
Mg	-	-	-	-	-		-	-		0.260	0.251	0.648	0.564
Zn	-	-	-	-	-		-	-	_	0.035	0.037	0.009	0.010
Sum	2.999	2.998	3.001	2.998	2.995		2.000	2.000		3.000	3.000	3.000	3.000
X _{Cr-Ky}	0.161	0.157	0.175	0.086	0.090	X_{Esk}	0.063		X_{Cr}	0.775	0.771	0.512	0.611
						X _{Cor}	0.937		X_{Mg}	0.271	0.263	0.655	0.571

TABLE 4. Chemical composition of Cr-rich kyanite, corundum, and spinel from samples PM22 and PM26

	Inclusion in kyanite					Matrix					
	ru-1	ru-2	ru-9	ru-10		ru-6/1	ru-6/2	ru-7/1	ru-7/2		
TiO2	97.71	97.06	97.42	97.77		99.54	99.13	98.39	98.16		
Cr2O3	1.62	1.90	1.51	1.46		0.18	0.17	0.25	0.28		
Fe2O3	0.08	0.04	0.06	0.05		0.31	0.32	0.37	0.38		
Sum	99.41	99.00	98.99	99.28		100.03	99.62	99.01	98.82		
Ti	0.986	0.984	0.987	0.988		0.996	0.996	0.995	0.995		
Cr	0.017	0.020	0.016	0.016		0.002	0.002	0.003	0.003		
Fe3+	0.001	0.000	0.001	0.001		0.003	0.003	0.004	0.004		
Sum	1.005	1.005	1.004	1.005		1.001	1.001	1.002	1.002		
Zr [ppm]	194±34	275±34	236±35	330±34		347±28	403±28	347±28	302±28		
Nb [ppm]	289±96	267±96	249±95	206±95		<65	<65	<55	<65		

TABLE 5. Chemical composition of rutile inclusions in kyanite and matrix rutile grains (PM22)