1	Revision 1
2	
3	Multi-stage barite crystallization in partially melted UHP eclogite from the
4	Sulu belt, China
5	SONGJIE WANG ^{1, 2} , LU WANG ^{1, 2*} , MICHAEL BROWN ^{2, 3} AND PENG FENG ¹
6	¹ State Key Laboratory of Geological Processes and Mineral Resources, School of Earth
7	Sciences, China University of Geosciences, Wuhan, 430074, China
8	² Center for Global Tectonics, School of Earth Sciences, China University of Geosciences,
9	Wuhan, 430074, China
10	³ Laboratory for Crustal Petrology, Department of Geology, University of Maryland, College
11	Park, MD 20742, USA
12	ABSTRACT
13	Barite inclusions in rock-forming and accessory minerals and in multiphase solid inclusions
14	(MSI) in ultrahigh pressure (UHP) eclogites have been controversially interpreted to record the
15	presence of high-salinity oxidizing fluids ¹ close to the peak of metamorphism. A detailed
16	petrographic and microstructural study of barite in partially melted UHP eclogite from Yangkou,
17	in the central Sulu belt of China demonstrates that barite precipitation is a multi-stage process
18	and provides insight into the evolution of fluid systems as $P-T$ conditions evolved through the
	¹ In this article we use fluid as a general term for an aqueous fluid phase, a supercritical fluid
	phase and a melt phase. Where these phases are distinguished, we use the specific term as
	appropriate.

late prograde stage of subduction to the peak of UHP metamorphism and subsequently during 19 exhumation. Five microstructural types of barite are recognized in this study. Type I barite 20 21 (variable high to low Sr/Ba) occurs as equant primary inclusions with rutile in garnet and 22 omphacite within coesite-bearing eclogite. Zr-in-rutile thermometry on the primary inclusions of rutile yields T = 658-699 °C at P = 2.5-4.5 GPa. Thus, barite inclusions were likely precipitated 23 from an internally buffered fluid during the late prograde evolution. Type II barite (low Sr/Ba) 24 25 occurs in MSI located towards the rims of garnet and omphacite. Since peak pressure was above 26 the second critical endpoint for basaltic compositions, the MSI are inferred to represent aliquots 27 of silica-rich supercritical fluid trapped during the late prograde evolution close to the 28 metamorphic peak. Type III barite (low Sr/Ba) occurs in pseudomorphs after phengite inclusions in garnet. The replacement phase assemblage formed during exhumation, by *in situ* melting of 29 30 phengite. Type IV barite (low Sr/Ba) forms coarse-grained patches associated with sub-solidus 31 replacement of omphacite by hornblende and albite symplectites along grain boundaries. Type V barite (low Sr/Ba) occurs as grain-boundary veinlets, intergranular grains and closed rings 32 33 around pyrite that is partly replaced by hematite and goethite. We interpret the types IV and V barite to have precipitated from an internally generated grain-boundary aqueous fluid, which is 34 35 expected to be a response to H₂O exsolving from garnet and omphacite during low-pressure 36 amphibolite facies conditions. Therefore, barite precipitated during the late prograde subduction 37 and the retrograde exhumation of UHP eclogite yields information about the mobility of Ba, Sr 38 and S during the metamorphic evolution.

39

2

40	Keywords: barite, multiphase solid inclusions, supercritical fluid, partial melting, melt/fluid
41	immiscibility, UHP eclogite, Sulu belt
42	
43	INTRODUCTION
44	Ultrahigh pressure (UHP) metamorphic rocks record evidence of processes related to deep
45	subduction and exhumation of continental crust. During UHP metamorphism, fluid plays an
46	important role in facilitating mineral reactions, element mobility, crust-mantle interactions and
47	exhumation (e.g., Zhang et al. 2011; Zheng et al. 2011b; Sizova et al. 2012; Hermann et al. 2013;
48	Zheng and Hermann 2014; Frezzotti and Ferrando 2015). Various studies have investigated: (1)
49	HP-UHP metamorphic veins (e.g., Franz et al. 2001; Zheng et al. 2007; John et al. 2008; Zhang
50	et al. 2008); (2) hydrous minerals, such as epidote, lawsonite, amphibole and phengite (e.g., Guo
51	et al. 2012, 2014; Sheng et al. 2013; Brovarone et al. 2014a, b; Martin et al. 2014); (3) fluid
52	inclusions (e.g., Philippot and Selverstone 1991; Philippot et al. 1995; Scambelluri and Philippot
53	2001); (4) multiphase solid inclusions (e.g., Ferrando et al. 2005; Zheng et al. 2011b; Ferrero et
54	al. 2015); and, (5) the exsolution of hydroxyl and molecular water from nominally anhydrous
55	minerals (e.g., Xia et al. 2005; Chen et al. 2007, 2011; Sheng et al. 2007; Sakamaki and
56	Ogasawara 2014).
57	However, in many circumstances, the source, nature and behavior of the fluid remain
58	controversial due to its multi-generational character (Yardley et al. 2000; Spandler and Hermann
59	2006; Chen et al. 2007; Zheng 2009; Zong et al. 2010; Spandler et al. 2011; Zheng et al. 2011b;
60	Guo et al. 2014; Frezzotti and Ferrando 2015). This is especially so in circumstances where fluid

61	generation and evolution are related to decompression from UHP conditions, during which
62	process the $P-T$ path may cross into the suprasolidus field. Many previous studies of melting in
63	crustal rocks have focused on melt generation and transfer, and the timing and geological
64	significance of partial melting for tectonics (e.g., Wallis et al. 2005; Brown et al. 2011;
65	Labrousse et al. 2011, 2015; Sizova et al. 2012; Brown 2013; Yakymchuk et al. 2013; Wang et al.
66	2014; Yakymchuk and Brown 2014). By contrast, experimental studies of melt generation at
67	UHP conditions (Auzanneau et al. 2006; Liu et al. 2009), and consideration of the role of
68	supercritical fluid at pressures above the second critical endpoints (Manning 2004), which are
69	located around 2.5 GPa/700 °C and 3.4 GPa/770 °C for felsic and mafic rocks, respectively
70	(Hack et al. 2007; Mibe et al. 2011), and melt/aqueous fluid separation and evolution during
71	exhumation at lower pressures (Zheng et al. 2011b; Zheng and Hermann 2014; Frezzotti and
72	Ferrando 2015) have lagged behind.
73	

74 Barite in UHP metamorphism

On contemporary Earth, barite is found principally in deep-sea sedimentary environments, and in biogenic, hydrothermal and evaporite systems (Hanor 2000). By contrast, the principal geological occurrences of barite are in laminated sedimentary rocks and as a gangue mineral in hydrothermal metalliferous veins (Chang et al. 1996). Although barite is known from metamorphic rocks, it has received less attention in this setting, and the principal examples represent metamorphosed equivalents of black shale-hosted submarine exhalative deposits (e.g., Coats et al. 1980; Fortey et al. 1993; Kribek et al. 1996). However, during the past fifteen years

4

82	barite has been reported with increasing frequency as an accessory mineral in metamorphic rocks
83	associated with deep subduction, particularly from UHP localities in the Dabie–Sulu belt.
84	In the Dabie–Sulu belt, barite occurs most commonly as inclusions in garnet, omphacite or
85	zircon or in multiphase solid inclusions (MSI) in these minerals (Liu et al. 2000, 2001; Yang et al
86	2006, 2010; Zeng et al. 2007; Gao et al. 2012, 2014a; Chen et al. 2014; Wang et al. 2014). The
87	occurrence of barite as inclusions and in MSI is evidence of a high-salinity oxidizing fluid
88	contemporaneous with UHP metamorphism (Frezzoti and Ferrando 2015). Commonly barite
89	precipitation has been related to a single fluid event during the prograde, peak or retrograde
90	segment of the $P-T$ evolution.
91	Liu et al. (2000, 2001), who were the first to recognize barite as inclusions in zircon from
92	gneisses in the eastern Dabieshan, inferred the presence of a SO_4^{2-} -bearing fluid derived by
93	oxidation of sulfide minerals at the peak of UHP metamorphism. Subsequently, Ferrando et al.
94	(2005) identified barite in MSI in quartzite from Donghai in the southern Sulu belt. These
95	authors interpreted the MSI as remnants of a silica-rich supercritical fluid inferred to have been
96	in equilibrium with the peak metamorphic mineral assemblage at UHP conditions.
97	In the first of several studies of UHP eclogite from the Chinese Continental Scientific
98	Drilling (CCSD) main borehole southwest of Donghai, Yang et al. (2006, 2010) related Sr-rich
99	barite inclusions in garnet, barite with variable Sr in symplectites of clinopyroxene and albite,
100	and barite asociated with the oxidized rims of pyrite to the activity of a variably oxidized fluid.
101	Also in samples from the CCSD main borehole, Zeng et al. (2007) recognized isolated barite
102	grains within K-feldspar or quartz in K-feldspar-quartz intergrowths that pseudomorph

103	inclusions of a precursor mineral in omphacite in UHP eclogite. The intergrowths were
104	interpreted as the product of a potassium-rich fluid interacting with coesite, but Zeng et al. (2007)
105	argued that barite was present as primary inclusions in the coesite. Thus, they interpret barite to
106	have been precipitated from an oxidizing fluid during prograde metamorphism.
107	Sun et al. (2007) studied apatite aggregates in quartz veins that cut quartz eclogites retrieved
108	from the CCSD main borehole. The apatite contains exsolved platy monazite, needle-like
109	hematite and strontian barite, and irregular magnetite/hematite intergrowths, implying that the
110	oxygen fugacity was above the sulfide-sulfur oxide buffer. Thus, the veins were deposited from
111	oxidizing SiO ₂ -rich aqueous fluids. Chemical dating of the monazite yielded an age of 202 ± 28
112	Ma, providing a minimum age for the vein-forming event, which was most likely post-peak, and
113	demonstrating that exsolution was related to exhumation.
114	Gao et al. (2012, 2014a), in UHP eclogite from Dabieshan, and Chen et al. (2014), in UHP
115	eclogite from Qinglongshan in the southern Sulu belt, report barite-bearing MSI in garnet and
116	omphacite. Gao et al. (2014a) presented evidence for the co-existence of silicate and carbonate
117	melts, and argued that the MSI with barite were crystallized from composite silicate-carbonate
118	melts. By contrast, Chen et al. (2014) argued that barite-free MSI were generated by
119	paragonite-breakdown melting, whereas they interpreted barite-bearing MSI to have formed by
120	melting of Ba-rich phengite and spatially-related barite-filled cracks to record interaction
121	between a consanguineous aqueous fluid and the host mineral.
122	These different interpretations of the timing and mechanism of barite precipitation suggest
123	there is still much to be learned about fluid-related processes during UHP metamorphism.

Moreover, multi-stage barite precipitation provides an opportunity to trace the evolution of the
fluid accompanying metamorphism during the late prograde and retrograde segments of the $P-T$
path. Here we present the results of a detailed petrographic, microstructural and chemical study
of barite from eclogite at Yangkou in the central part of the Sulu belt (Fig. 1), supported by
Zr-in-rutile thermometry, Ti-in-zircon thermometry and geochemistry. The UHP eclogite at
Yangkou is unique as the only example where intergranular coesite, in contrast to coesite as
inclusions in zircon and rock-forming minerals, is preserved from the metamorphic peak (Liou
and Zhang 1996; Ye et al. 1996). Furthermore, the peak mineral assemblage does not include
phengite (Wang et al. 2014). These observations suggest that at least locally the rock was
fluid-absent at the metamorphic peak and, further, that any post-peak fluid migration must have
been limited and heterogeneously distributed. In addition, the outcrops at Yangkou preserve
grain-scale evidence of partial melting, which Wang et al. (2014) argued occurred during
exhumation. Accordingly, the Yangkou locality is a suitable target to investigate potentially
closed-system fluid evolution related to processes associated with metamorphism during
continental subduction and exhumation.
GEOLOGICAL SETTING AND SAMPLES
The Dabie–Sulu orogen in east–central China was formed by northward subduction and
collision of the Yangtze block beneath the North China block during the Triassic, after which the

- 143 NNE-trending Sulu belt was displaced northward by approximately 500 km of sinistral offset
- along the Tan-Lu fault (Figs. 1a and 1b; Li et al. 1993; Ernst et al. 2007; Hacker et al. 2009; Ni et

7

145	al. 2013; Wu and Fu 2014). The Sulu UHP belt consists of mainly orthogneiss and paragneiss,
146	with minor coesite-bearing eclogite, garnet peridotite, quartzite and marble, all of which are
147	intruded by Mesozoic granites (Zhang et al. 1995; Liu et al. 2004; Xu et al. 2006; Li et al. 2014).
148	Coesite occurs widely in eclogite and as inclusions in zircon from associated gneisses, quartzite
149	and marble (Liu and Liou 2011, and references therein). SHRIMP U-Pb dating of
150	coesite-bearing domains in zircon from eclogite and gneiss yielded ages of 234 ± 4 to 225 ± 2
151	Ma (Liu and Liou 2011), indicating that all units record the Triassic UHP metamorphism.
152	This study is located in the central Sulu belt at Yangkou (Fig. 1b), where the coastal outcrop
153	is composed of metagabbro, partially retrogressed coesite-bearing eclogite, and serpentinized
154	garnet peridotite. The mafic-ultramafic rocks are surrounded by quartzo-feldspathic gneisses and
155	cut by lamprophyre and quartz porphyry dikes (Fig. 1c). The mafic rocks preserve partially
156	transitional relationships from protolith gabbro to UHP eclogite, as documented by detailed
157	petrological, geochronological and isotope studies (Wallis et al. 1997; Zhang and Liou 1997;
158	Chen et al. 2002; Liu and Liu 2009). Ye et al. (2000) recognized clinopyroxene, rutile and apatite
159	exsolution in garnet from eclogite blocks within surrounding UHP peridotites, implying
160	continental subduction to a depth possibly > 200 km.
161	The eleven samples chosen for this study are located in Fig. 1c. The samples include four
162	eclogites with intergranular coesite (YK24b, YK5-2a, YK137-8 and YK128-4-1), four quartz
163	eclogites (YK12-3a, YK128-11, YKN149-4 and YKN149-5) and three orthogneisses (YK137-1,
164	YK137-16 and YK137-17). The orthogneisses were included in the study to allow comparison
165	between them and the eclogites, as well as with the protolith metagabbros using data from the

8

literature to investigate elemental mobility during deep continental subduction and exhumation,particularly in relation to the large ion lithophile elements (LILEs).

168

169ANALYTICAL METHODS

170 Samples collected for geochemistry weighed 4–5 kg each and comprised suffic	ient fresh
---	------------

171 material to be considered representative for all whole-rock analytical methods used in this study.

172 The major element composition of minerals was determined using JEOL JXA-8800R and JEOL

- 173 JXA-8100 Electron Probe Micro Analyzers (EPMA) at the Institute of Mineral Resources,
- 174 Chinese Academy of Geological Sciences (IMR-CAGS) in Beijing and the State Key Laboratory

175 of Geological Processes and Mineral Resources (SKLGPMR), China University of Geosciences

176 (CUG), Wuhan, respectively. The analytical conditions in both cases were an acceleration

voltage of 15 kV, with a 20 nA beam current, a 1-5 μ m beam spot diameter and a count time of

178 15-20 s; matrix corrections were carried out using the ZAF correction routine supplied by the

179 manufacturer. Mineral standards (from SPI Supplies Inc.) used for calibration of the JEOL

180 JXA-8800R EPMA in IMR-CAGS were jadeite (Na, Si, Al), microcline (K), wollastonite (Ca),

181 hematite (Fe), barite (Ba), and celestine (Sr), whereas those used for the JEOL JXA-8810 EPMA

in SKLGPMR at CUG were sanidine (K), pyrope garnet (Al, Fe), diopside (Mg, Ca), jadeite (Na,

183 Si), rhodonite (Mn), barite (Ba, S) and celestine (Sr).

184 The grain size of the rutile inclusions is too small for analysis of Zr by LA-ICP-MS.

185 Therefore, the EPMA at the IMR-CAGS was also used to determine trace element concentrations

of rutile *in-situ* in polished thin sections. According to Gao C.G. et al. (2010), the precision of Zr

9

187	analysis by EPMA is within 5 % of results determined by LA-ICP-MS. To achieve a lower
188	detection limit for trace element analysis, a strategy combining a higher acceleration voltage of
189	20 kV, a higher beam current of 100 nA, a beam diameter of 1 μ m and an extended counting time
190	of 300 s (Zr), 400 s (Nb) and 60 s (Fe), with optimization of the background peak positions was
191	adopted. For analysis of Zr, Nb and Fe, the crystals used were PETH, PETJ and LiFJ,
192	respectively; the detection limits were 20 ppm (Zr), 27 ppm (Nb) and 43 ppm (Fe). Calibration of
193	Zr using a ZrO ₂ standard was conducted before, during and after each analysis, and the resulting
194	analytical uncertainty for Zr was determined to be ~ 15 ppm.
195	All other analytical data were collected at the SKLGPMR, CUG, Wuhan. Back-scattered
196	electron (BSE) imaging, electron back-scattered diffraction (EBSD) for crystal orientation
197	mapping, and energy dispersive spectroscopy for mineral identification were undertaken using a
198	FEI Quanta 450 field emission gun scanning electron microscope (accelerating voltage 20 kV
199	and spot size 6.0 μ m with a working distance of ~12 mm).
200	Barite, iron oxide and sulfide were analyzed using a Renishaw RM 1000 Raman
201	spectrometer at room temperature with 3.4 mw of 514.5 nm Ar laser excitation over the spectral
202	range 1000–3800 cm ⁻¹ . We used a laser beam of ~1.5 μ m diameter, a spectrometer grating of
203	1800 gr/mm, an acquisition time of 30 s, and 1–3 cycles. Calibration was performed using
204	monocrystalline silicon. The estimated spectral resolution is 0.5 cm ⁻¹ .
205	Whole-rock trace element concentrations were acquired using an Agilent 7500a ICP-MS
206	(inductively coupled plasma mass spectrometer). Whole-rock samples were crushed in a
207	corundum jaw crusher to < 60 mesh. About 60 g was powdered in an agate ring mill to < 200

208	mesh. The powdered sample was digested in HF + HNO ₃ using Teflon bombs. The detailed
209	sample-digestion procedure for ICP-MS analysis and a discussion of analytical precision and
210	accuracy for trace element analysis are given by Liu et al. (2008).
211	Trace element concentrations in zircon were measured by LA-ICP-MS synchronously with
212	analysis for U-Pb geochronology. Operating conditions for the laser ablation system and the
213	ICP-MS instrument, and data reduction protocol are the same as those of Liu et al. (2008).
214	Samples were ablated using a GeoLas 2005 laser, which was connected to an Agilent 7500a
215	ICP-MS instrument to acquire ion-signal intensities using the Agilent Chemstation. Helium was
216	the carrier gas and argon was used as the make-up gas, which was mixed with the carrier gas via
217	a T-connector before entering the ICP. Nitrogen was added into the central gas flow of the Ar
218	plasma to decrease the detection limit and improve precision (cf. Hu et al. 2008). Each analysis
219	incorporated a background acquisition of approximately 20 s (gas blank) followed by 50 s data
220	acquisition from the sample. Off-line selection and integration of background and analyte signals,
221	and time-drift correction and quantitative calibration for trace element concentrations and U-Pb
222	analysis were performed using ICPMSDataCal (Liu et al. 2008).
223	
224	SUMMARY OF THE METAMORPHIC EVOLUTION AT YANGKOU
225	The mineral assemblages in the eclogites at Yangkou preserve a relatively complete history
226	of late prograde subduction, exhumation and amphibolite facies retrogression (Wang et al. 2014).
227	Mineral names are abbreviated according to the recommendations of Whitney and Evans (2010).

228	The late prograde to peak mineral assemblage in eclogite comprises Grt + Omp + Coe + Py
229	+ Zrn + Ap + Rt, with barite as inclusions in garnet and omphacite but without phengite, similar
230	to the diamond eclogite facies mineral assemblage recognized in the Kokchetav UHP
231	metamorphic terrane (Katayama et al. 2006). Although pressure could have been as high as 7
232	GPa for the peak mineral assemblage (Ye et al. 2000), Wang et al. (2014) calculated temperatures
233	of > 800 and < 1000 $^{\circ}$ C for the more conservative pressure of 3.5–6.0 GPa.
234	During the early stage of exhumation, phengite appears in the mineral assemblage as fluid is
235	exsolved from nominally anhydrous minerals; concomitantly, the amount of intergranular coesite
236	is reduced. For the mineral association Grt + Omp + Ph, Wang et al. (2014) calculated P of
237	3.7–3.3 GPa and <i>T</i> of 753–725 °C. With continued exhumation across the Coe \rightarrow Qz phase
238	change, phengite increases in the mode. The eclogite at this stage comprises $Grt + Omp + Qz + Qz + Qz$
239	Ph (~10–15 vol%) + Bt + Rt + Ap + Py/Hem. For a pressure of 2.5 GPa, just in the Qz stability
240	field, Wang et al. (2014) calculated T of 700–770 °C for this assemblage. The retrogressed
241	eclogite is characterized by an amphibolite facies mineral assemblage of Grt (+ relict Omp) + Hb
242	+ Qz + Ilm + Ap + Py/Hem + symplectite (Hb + Ab) associated with Brt; phengite is absent and
243	is inferred to have been eliminated during decompression partial melting (Wang et al. 2014).
244	
245	MICROSTRUCTURAL SETTING AND PETROGRAPHIC CHARACTERISTICS
246	OF BARITE IN UHP ECLOGITE
247	Barite is present in five distinct microstructural settings, as described below.
248	12

249 Barite inclusions in garnet and omphacite in the coesite and quartz eclogite

250	Type I barite occurs as equant inclusions within the central domains of garnet and omphacite
251	where it co-exists with fine-grained inclusions of rutile and, in garnet, rarely with clinopyroxene;
252	together with coesite, garnet and omphacite represent the peak UHP mineral assemblage (Figs.
253	2a–2f). The barite forms rounded, anhedral grains (5–45 μ m in diameter) without any sign of
254	microcracks in the immediately adjacent host mineral, excluding the possibility of a later stage
255	origin by fluid infiltration (cf. Rasmussen et al. 2011). Thus, we interpret these inclusions, as
256	well as the rutile inclusions, to be primary sensu Roedder (1984) and Touret (2001), meaning
257	they formed earlier than or synchronously with the growth of the host garnet and omphacite,
258	most likely in the coesite stability field.
259	
260	Barite in multiphase solid inclusions in the coesite and quartz eclogite
261	Type II barite occurs in rounded MSI in the outer parts of garnet and omphacite (Fig. 3a; and
262	Fig. 4d in Wang et al. 2014), or in the central parts of these minerals as partially collapsed pucker
263	structures associated with veinlets filled with epidote, biotite and K-feldspar that connect to
264	phengite inclusions that have rims of biotite and epidote (Fig. 3b). The MSI range from tens to
265	hundreds of microns across and mainly comprise the assemblage $Brt + Bt + Ep \pm Kfs \pm Ab \pm Zrn$
266	(Figs. 3a and 3b; and Fig. 4d from Wang et al. 2014). Barite is variable in the mode, from \sim 75
267	vol% to ~1 vol%. In addition to barite, MSI in garnet may contain both Ba-bearing K-feldspar
268	and Ba-poor K-feldspar, and albite, and connect to inclusions of mica via cuspate
269	K-feldspar-plagioclase veinlets (Fig. 4e in Wang et al. 2014). The MSI are also interpreted to be

primary inclusions, raising the possibility that the type I and type II barite could be partly

- 271 contemporaneous.
- 272

273 Barite in multi-mineral pseudomorphs in the coesite and quartz elcogite

274 Type III barite occurs in regularly shaped multi-mineral pseudomorphs in garnet in both 275 coesite and quartze clogite. The pseudomorphs comprise Kfs + Qz + Ab + Brt ± Bt (Figs. 3c–3f), 276 with a barite mode of <1 vol%. The shape and location of these pseudomorphs suggest 277 replacement of a precursor mineral such as phengite or coesite (c.f. Zeng et al. 2007). Based on 278 the morphology and mineralogy of the pseudomorphs, phengite is inferred to be the more likely 279 precursor mineral at Yangkou rather than coesite as suggested by Zeng et al. (2007) for surface samples from near the CCSD borehole. Thus, we interpret these multi-mineral pseudomorphs to 280 281 have been phengite relics from the prograde evolution that were preserved as inclusions in garnet, whereas phengite is absent from the peak phase assemblage (Wang et al. 2014). 282 283 284 Barite aggregations associated with hornblende and albite symplectite in the quartz 285 eclogite Type IV barite forms irregular patches associated with hornblende and albite symplectite that 286 287 partially replaced omphacite (Fig. 4). The edges of the barite against the symplectite are mutually embayed in a fashion that suggests replacement of one by the other, although the sequence is 288 289 ambiguous. This barite is typically coarser than the other types, with patches ranging from tens to 290 several hundreds of microns across that sometimes taper out along grain boundaries (yellow

298	Grain-boundary veinlets of barite in the quartz eclogite
297	
296	barite patches are composed of multiple sub-grains.
295	variable orientation of crystallographic domains within barite, suggesting that the individual
294	obtain crystallographic orientation contrast images. The insets in Figs. 4e and 4f show the
293	investigate this feature, several representative patches of barite were analyzed using EBSD to
292	The barite exhibits irregular or patchy extinction in crossed polarized light (Fig. 4b). To
291	arrows in Fig. 4c), suggesting these are pinched veinlets that formed along fluid-generated cracks

Type V barite extends along grain boundaries between garnet, omphacite and quartz (Fig. 5). 299 300 These grain-boundary veinlets are several microns in width and have no apparent interaction 301 with garnet, omphacite or quartz (Figs. 5a and 5b). In places, the barite in the grain-boundary 302 veinlets co-exists with small intergranular grains of barite (average diameter of ~35 µm; Figs. 5b and 5c). In addition, the barite veinlets form rings around concentrically zoned polymineralic 303 aggregates (Fig. 5c) in a manner suggesting reaction, as indicated by the partially replaced pyrite 304 305 in the core (Fig. 5d). From the innermost core to the outermost layer (Figs. 5c–5f), the mineralogy of these aggregates is pyrite, hematite, goethite and barite, respectively, as confirmed 306 by Raman spectroscopy (Fig. 6). The hematite is commonly cut by goethite veinlets (Figs. 5d 307 308 and 5f). Moreover, this mineral association is crosscut by K-feldspar veinlets (Figs. 5e and 5f). 309

310

BARITE CHEMISTRY

311	The SrO content for each type of barite (electronic Appendix I, Supplementary Table 1a; Fig.
312	7) is: type I, from below detection to 29.94 wt%; type II, 0.03–5.23 wt%; type III, 0.42–4.14
313	wt%; type IV, from below detection to 5.21 wt%, but predominantly < 2.5 wt%; and, type V,
314	from below detection to 2.85 wt%, but < 1.0 wt% except for 4 analyses. All show negative
315	correlations between BaO and SrO (Figs. 7a-7e), reflecting solid solution between barite and
316	celestine (Hanor 2000). Although the large dataset from Yangkou is dominated by barite with
317	concentrations of SrO < 5 wt%, the range of SrO concentrations is similar to those reported from
318	other locations within the Dabie–Sulu belt (Fig. 7f; data from Yang et al. 2006, 2010, and Zeng et
319	al. 2007; electronic Appendix I, Supplementary Table 1b). The type I barite compositions show a
320	negative correlation between BaO and SrO + CaO (Fig. 8a), and a marked increase in CaO
321	contents from < 2 wt% at SrO contents < 20 wt% to ~9 wt% at constant SrO of 17–25 wt% (Fig.
322	8b).
323	
324	WHOLE-ROCK TRACE ELEMENT CHEMISTRY
325	At Yangkou there are transitional sequences preserved between incipiently metamorphosed
326	gabbro with relict magmatic texture and primary clinopyroxene and orthopyroxene to completely
327	recrystallized coesite-bearing eclogite (Zhang and Liou 1997). Therefore, the Yangkou outcrops
328	present an opportunity to compare geochemical characteristics among protolith metagabbro,
329	intergranular coesite-bearing UHP eclogite and country rock orthogneisses. The comparison may

330 shed light on the mobility of trace elements during continental subduction, particularly in relation

to the LILE.

332	To address this issue, in Fig. 9 we compare new whole-rock trace element data (Table 1) for
333	two type I barite-bearing UHP eclogites (YK5-2a, YK24b) and three country rock orthogneisses
334	(YK137-1, 16, 17), with published data for the metagabbros from Yang et al. (2014). The data
335	are shown as primitive mantle normalized trace element and chondrite normalized rare earth
336	element (REE) patterns in Figs. 9a and 9b.
337	It is evident that there are similarities and differences in trace element patterns between the
338	barite-bearing eclogites and the metagabbros. When compared to the metagabbros, the
339	barite-bearing eclogites are depleted in the LILE (Figs. 9a and 9c; Table 1), but both rock types
340	exhibit similarly low high field strength element concentrations, such as Nb, Ta, Zr and Hf (Fig.
341	9d). Both rock types have flat chondrite normalized heavy rare earth element (HREE) patterns
342	$((Gd/Yb)_{cn} = 1.85-2.38)$, and negligible Eu anomalies $((Eu/Eu^*)_{cn} = 0.96-1.07)$. However, the
343	chondrite normalized light rare earth element (LREE) patterns for the eclogites are depleted with
344	respect to the metagabbros and have shallower slopes (Figs. 9a and 9b; Table 1). The REE
345	patterns are similar to those of metagabbros and eclogites reported by Chen et al. (2002) from
346	Yangkou.
347	The trace element features of the country rock orthogneisses are similar to those of other
348	granite gneisses in the Sulu belt (e.g., Zong et al. 2010; Xu et al. 2013). In the primitive mantle
349	normalized trace element diagram (Fig. 9a), the orthogneisses are seen to be depleted in Ba, Nb,
350	Ta and Sr, and enriched in Th, U, Pb, Zr and Hf. Orthogneisses have relatively flat chondrite
351	normalized REE patterns ((La/Sm) _{cn} = $2.45-3.30$ and (Gd/Yb) _{cn} = $0.71-1.23$), with LREE
352	concentrations lower than and HREE concentrations higher than the metagabbros, and

17

353	moderately negative Eu anomalies ($(Eu/Eu^*)_{cn} = 0.39-0.42$; Fig. 9b). Concentrations of Ba and
354	Sr in the orthogneisses are similar to those of the barite-bearing eclogites, but are much lower
355	than concentrations in the metagabbros (Fig. 9c).
356	
357	Zr-IN-RUTILE THERMOMETRY
358	The solubility of Zr in rutile is strongly temperature dependent. This feature may be used for
359	thermometry where the rutile co-exists with the appropriate buffer assemblage of zircon and a
360	SiO ₂ polymorph (Zack et al. 2004; Watson et al. 2006; Ferry and Watson 2007; Tomkins et al.
361	2007). Zr-in-rutile thermometry has been applied previously to eclogites from the Dabie-Sulu
362	orogen (Gao C.G. et al. 2010; Zheng et al. 2011a; Gao X.Y. et al. 2014b).
363	In the UHP eclogite at Yangkou rutile occurs as either intergranular grains or as inclusions in
364	garnet and omphacite, ranging in size from several microns to tens of microns in diameter. The
365	rutiles do not show any visible alteration. Other inclusions in garnet and omphacite include type I
366	barite, sometimes in direct contact with rutile and, in garnet, clinopyroxene (Figs. 2e and 2f),
367	indicating synchronous crystallization and capture as primary inclusions. We note that rutile
368	inclusions in garnet from studies in other metamorphic belts are thought to preserve their primary
369	compositions (Zack et al. 2004). A SiO_2 polymorph is assumed present, based on the occurrence
370	of Coe/Qz in the samples, and zircon may occur as inclusions in the same grains with barite. In
371	the absence of zircon, Zr-in-rutile thermometry gives minimum temperatures (Zack et al. 2004).
372	The Zr concentration in the rutile inclusions varies from 40 to 324 ppm (see electronic
373	Appendix II, Supplementary Table 2). We consider analyses to be reliable if the concentration is

374	at and above a value equal to 3 times the detection limit, which was determined to be 20 ppm
375	(above). On this basis, 8 data have been excluded from the dataset used for the estimation of
376	temperature, which is based on 56 reliable analyses of Zr.
377	Zirconium-in-rutile temperatures were calculated using the pressure-dependent calibration of
378	Tomkins et al. (2007, their equation (10) for coesite stability), and assuming equilibrium is
379	maintained with co-existing zircon and coesite. As a representative example, the
380	zirconium-in-rutile temperatures are shown as a box plot at 3.5 GPa in Fig. 10a. We take the
381	upper edge of the box-plot box as a conservative estimate of temperature (e.g., $T = 679$ °C in Fig.
382	10a; Tomkins et al. 2007, p. 711), which yields a range from $T = 658 \pm 30$ °C at $P = 2.5$ GPa to T
383	$\approx 699 \pm 30$ °C at <i>P</i> = 4.5 GPa (additional box plots not shown; the range of temperatures is
384	shown as box 1 in Fig. 11a), where the \pm 30 °C uncertainty follows the recommendation of
385	Tomkins et al. (2007, p. 711).
386	
387	Ti-IN-ZIRCON THERMOMETRY
388	The solubility of Ti in zircon is strongly temperature dependent. This feature may be used
389	for thermometry where the zircon co-exists with the appropriate buffer assemblage of a Ti-rich
390	mineral (rutile, titanite, ilmenite) and quartz (Watson and Harrison 2005; Watson et al. 2006;
391	Ferry and Watson 2007). Ti-in-zircon thermometry has been applied previously to eclogites from
392	the Dabie–Sulu orogen (Gao et al. 2011; Chen et al. 2012; Liu et al. 2012; Xu et al. 2012, 2013).
393	Zircon, as a main accessory mineral, is well developed in the eclogites at Yangkou. In one
394	amphibolite facies retrogressed eclogite analyzed by Wang et al. (2014) from General's Hill, a

395	few kilometers to the south of the Yangkou locality, zircon shows euhedral and prismatic shape
396	with distinct core-rim structure in cathodoluminescence (CL). The zircon rims yielded a
397	206 Pb/ 238 U age of 224 ± 1.5 Ma (Supplementary Fig. 1a), which post-dates the peak of
398	metamorphism of ca. 230 Ma (e.g., Liu and Liou 2011). Based on CL images (Fig. 7b from
399	Wang et al. 2014), ²⁰⁶ Pb/ ²³⁸ U ages and REE patterns (Supplementary Figs. 1a and 1b), the zircon
400	rims are metamorphic and are interpreted to record temperatures related to exhumation and
401	retrogression (Rubatto 2002).

402 The Ti concentration in the zircon rims varies from 3 to 18 ppm (see in electronic Appendix III, Supplementary Table 3). Temperatures were calculated from these data using the calibration 403 404 of Ferry and Watson (2007), which is calibrated at 1 GPa, assuming equilibrium is maintained with co-existing quartz and ilmenite (retrograde from rutile). Although quartz is a major mineral 405 in the amphibolitic eclogite and a_{SiO2} is considered to have been 1, rutile has been retrograded to 406 ilmenite and a_{TiO2} is taken to be 0.5 (Watson et al. 2006; Xu et al. 2012, 2013). The 407 titanium-in-zircon temperatures are shown as a box plot in Fig. 10b (original data are in 408 409 electronic Appendix III, Supplementary Table 3). As a conservative estimate of temperature we take the upper edge of the box-plot box, which yields $T = 851 \pm 20$ °C (Fig. 10b). The ± 20 °C 410 411 uncertainty follows the estimate of Ferry and Watson (2007, p. 434) that uncertainty on the 412 calibration is up to ± 16 °C according to temperature and our estimate that the analytical 413 uncertainty on Ti measurements is unlikely to be more than ± 15 %. The calibration has a pressure dependence of approximately 50 °C/GPa (Ferry and Watson 2007, p. 711), so that at 2 414 415 GPa, $T \approx 900 \pm 20$ °C. In Fig. 11a the range of temperatures during decompression from 2 to 1 20 416 GPa is shown as box 5.

4	1	7

4	1	8	

DISCUSSION

419 Although barite has been reported previously in UHP eclogite from the Sulu belt, the timing of crystallization and source of the fluid from which it precipitated remain uncertain. Arguments 420 have been put forth for a prograde origin (Zeng et al. 2007; Yang et al. 2010), or a relationship to 421 the peak UHP metamorphic stage (Ferrando et al. 2005), or an association with partial melting 422 during decompression (Gao et al. 2012; Chen et al. 2014) or a link to fluid flow during 423 exhumation (Sun et al. 2007; Yang et al. 2010). Because the occurrence of barite implies the 424 425 presence of a high-salinity oxidizing fluid, melt, or supercritical fluid (Zhang et al. 2008; Frezzotti and Ferrando 2015; Tumiati et al. 2015), it is important to establish both the timing and 426 origin of the barite found in UHP metamorphic rocks. This information is critical to the 427 identification of fluid sources, particularly whether the fluid was internally buffered or not, 428 determining the evolution of the fluid composition with changing P-T conditions, and assessing 429 430 the geochemical behavior of Ba, Sr and S during continental subduction and exhumation. In this study, we have identified five types of barite in the eclogite at Yangkou based on 431 different microstructural settings. These are linked to: (1) the late prograde-to-peak metamorphic 432 433 evolution (types I and II); (2) in situ melting of phengite during a high-pressure decompression stage (type III); and, (3) low-pressure amphibolite facies conditions, where barite patches (type 434 IV) and veins (type V) in two distinct microstructural settings represent precipitation from an 435 436 internally buffered aqueous fluid.

21

437	Barite inclusions in the cores of garnet and omphacite are associated with inclusions of rutile
438	that yield temperatures of 658–699 °C at pressures of 2.5–4.5 GPa. This range of temperatures is
439	significantly lower than the peak temperatures of > 800 to < 1000 °C calculated for the pressure
440	range of 3.5–6.0 GPa (Wang et al. 2014). Therefore, we interpret the Zr-in-rutile temperatures to
441	record part of the prograde evolution. We note that a similar interpretation was made by Zhang et
442	al. (2009) for rutile inclusions in garnet and omphacite from core samples from the CCSD in the
443	southern Sulu belt. Since rutile and type I barite are interpreted as primary inclusions and occur
444	together, by implication the barite is coeval with rutile, and both were incorporated in garnet and
445	omphacite during prograde growth (Fig. 11b). The presence of barite indicates that a
446	high-salinity oxidizing fluid was available during the late prograde stage of the metamorphic
447	evolution, most likely due to dehydration during subduction (Frezzotti and Ferrando 2015).
448	Ultimately the garnet and omphacite equilibrated at the peak $P-T$ conditions, which implies that
449	barite can survive metamorphism at pressures that may have reached 7 GPa at temperatures up to
450	1000 °C (Ye et al. 2000; Wang et al. 2014). This confirms the remarkable stability of barite
451	during metamorphism, as noted by Hanor (2000).
452	Although solid solution between barite and anhydrite has been experimentally confirmed as
453	discontinuous and restricted, barite may accommodate minor amounts of Ca ²⁺ (Hanor 2000 and
454	references therein). In this study, higher Sr in the type I barite tends to be accompanied by higher
455	Ca^{2+} (Fig. 8), suggesting that it is easier for Ca^{2+} to substitute for Sr^{2+} than Ba^{2+} because of their
456	closer ionic radii. The wide range of SrO contents among the type I barite suggests that originally
457	high SrO barite has been modified, perhaps by dehydration during progressive subduction

458	approaching the metamorphic peak and by H_2O exsolution from garnet and omphacite during
459	subsequent exhumation (Sheng et al. 2007). This interpretation is consistent with the occurrence
460	of variable high to low SrO barite in eclogites from further south in the Sulu belt in the vicinity
461	of the CCSD borehole, in which barite in pseudomorphs after coesite was interpreted to be relict
462	from the prograde stage (Zeng et al. 2007). In particular, we note the range of barite
463	compositions determined in the study by Zeng et al. (2007), where SrO varies from 34.65 wt% to
464	below detection, although only 4 of 21 analyses have $SrO > 10$ wt%. Zeng et al. (2007) attributed
465	this range in compositions to partial dissolution of barite by aqueous fluid and loss of Sr.
466	Preservation of the primary mineralogy in the metagabbros demonstrates either that
467	large-scale fluid migration did not occur or more likely that fluid flow was channelized, which
468	may indicate that the compositions of the metagabbros could be relatively unchanged from their
469	magmatic protoliths. These observations suggest to us that the attendant fluid during prograde
470	metamorphism was limited in quantity and probably internally buffered, consistent with
471	expectations both for the amount of aqueous fluid generated and lost during subduction, and the
472	expected source of these fluids in the crustal part of the subducting slab (van Keken et al. 2011;
473	Frezzotti and Ferrando 2015).
474	The Ba and Sr concentrations of eclogites and country rock orthogneisses are much lower
475	than concentrations of these elements in the metagabbros (Fig. 9c), which points to removal of
476	Ba and Sr. We postulate that the Ba and Sr were most likely removed by prograde dehydration
477	during subduction, via either an aqueous fluid or supercritical fluid (Zheng and Hermann 2014;
478	Frezzotti and Ferrando 2015). This interpretation is consistent with the inferred peak assemblage

479	in the UHP eclogite at Yangkou, which is essentially anhydrous, except for H_2O in nominally
480	anhydrous minerals, and the expectation that subducting continental crust will lose most of its
481	H ₂ O during prograde breakdown of hydrous minerals during subduction (van Keken et al. 2011).
482	Furthermore, the experiments of Blount (1977) showed increased solubility of Ba and SO_4^{2-} in
483	aqueous fluid with increasing pressure and salinity, which is consistent with prograde loss of
484	LILEs. By contrast, removal of Ba and Sr during decompression and retrogression seems less
485	prominent, given the evidence for only localized grain boundary fluid migration.
486	Type II barite occurs in the MSI, which are generally located towards the rims of the peak
487	rock-forming minerals garnet and omphacite. We interpret these MSI to be primary inclusions of
488	supercritical fluid trapped close to the metamorphic peak during growth of the host minerals (Fig.
489	11b; Roedder 1984; Touret 2001). A supercritical fluid exhibiting complete miscibility between
490	aqueous fluid and hydrous melt is anticipated during the late prograde to peak evolution, since
491	pressures exceeded the second critical endpoints for both felsic and mafic rock compositions
492	(Manning 2004; Hermann et al. 2006; Hack et al. 2007). This is consistent with earlier studies on
493	Ky quartzites and Ky-Ph-Ep eclogites (Ferrando et al. 2005) and metamorphic veins hosted in
494	the UHP eclogites (Zhang et al. 2008) from the Donghai area in the southern Sulu belt that
495	demonstrated the existence of an oxidizing supercritical fluid during peak metamorphism.
496	The parent supercritical fluid had a composition dominated by SiO ₂ , Al ₂ O ₃ , K ₂ O, Na ₂ O, CaO,
497	FeO, MgO, SO_4^{2-} , BaO, SrO and ZrO ₂ and is interpreted to be locally derived and in equilibrium
498	with the host eclogite. The MSI vary from those with Ba-rich K-feldspar together with
499	K-feldspar and albite, but without barite (Fig. 4e in Wang et al. 2014), to MSI with barite-bearing

500	mineral assemblages (Figs. 3a and 3b). In addition, type II barite shows a range of SrO
501	compositions (Fig. 7b). These features suggest a gradual concentration of Ba in the supercritical
502	fluid with entrapment occurring over a range of $P-T$ conditions approaching the metamorphic
503	peak (Fig. 11b). The supercritical fluid may have separated into immiscible hydrous silicate melt
504	and aqueous fluid during decompression (Hermann et al. 2006; Hack et al. 2007; Zheng et al.
505	2011b), as suggested by the formation of pucker structures (Fig. 3b) and the occurrence of
506	amphibolite facies hydrous minerals at the margins of the MSI and lining the cracks that radiate
507	from these structures. Thus, we interpret the pucker structure and amphibolite facies hydrous
508	minerals to be formed by decrepitation and crystallization at lower pressure during exhumation.
509	Based on petrographic analysis, Wang et al. (2014) argued that phengite was absent from the
510	peak phase assemblage, forming as a matrix mineral during the early stage of decompression.
511	The preservation of intragranular coesite in UHP eclogite at Yangkou and the absence of
512	phengite at the metamorphic peak indicate that these rocks were locally fluid absent at the start
513	of exhumation. The introduction of phengite into the metamorphic phase assemblage during the
514	initial decompression is inferred to reflect exsolution of H ₂ O from the nominally anhydrous
515	minerals, which may reach 2,500 ppm and 3,500 ppm in garnet and omphacite, respectively at
516	UHP conditions (Katayama and Nakashima 2003; Xia et al. 2005; Katayama et al. 2006; Sheng
517	et al. 2007; Chen et al. 2011; Gong et al. 2013).
518	Type III barite occurs in elongate multi-mineral pseudomorphs included in garnet that we
519	interpret to be former prograde phengite, based on the lamellar habit and mineralogy (Figs. 3c
520	and 3d). We interpret the replacement mineral assemblage in the pseudomorphs to have formed

25

521	during <i>in situ</i> melting of phengite (Fig. 11b). The cracks radiating from the pseudomorphs (Figs.
522	3c–3f) probably formed at this time. This interpretation is consistent with the inference from
523	multiple studies in the Dabie–Sulu ogogen that melting induced by breakdown of phengite has
524	occurred in the eclogites (e.g., Gao et al. 2012; Liu et al. 2013; Chen et al. 2014; Wang et al.
525	2014). In the absence of SrO contents in barite much above 5 wt% it is impossible to say whether
526	any barite was relict as inclusions in the former phengite (cf. the study by Zeng et al. 2007).
527	However, since phengite is the major carrier of LILEs in eclogite, the breakdown of phengite
528	will liberate Ba and Sr to the melt (Zack et al. 2001; Hermann 2002; Hermann and Rubatto 2009).
529	Therefore, we interpret the precipitation of the type III barite to record crossing the solidus at
530	low pressure during cooling.
531	Type IV barite is preserved as aggregates of sub-grains associated with hornblende and
532	albite symplectite. The sub-grain structure of this barite indicates precipitation from fluid and
533	grain aggregation. During this process the eclogite was retrogressed with omphacite becoming
534	partially replaced by hornblende and albite symplectites (Fig. 11b).
535	The aqueous fluid associated with type IV barite precipitation is likely to have been
536	internally buffered, based on the following petrographic and geochemical evidence. (1) The
537	retrogressed eclogite is associated with largely unretrogressed UHP eclogite that preserves
538	abundant intergranular coesite, demonstrating that pervasive infiltration of an external fluid is
539	unlikely to have occurred. (2) The retrograde symplectites of hornblende and albite after
540	omphacite (and garnet) are not well developed and are limited to pinched veinlets that formed
541	along fluid-generated cracks. (3) Earlier O and H isotope studies on UHP eclogite indicate that

26

the fluid in equilibrium with the UHP eclogite was internally buffered and showed no evidence
of infiltration from the country rock gneisses (Zhang et al. 2003; Zheng et al. 2003; Chen et al.
2007).

Type V barite occurs as thin veinlets that co-exist with intergranular grains of barite; these 545 veinlets are associated with a distinctive ring structure and replacement of pyrite by hematite and 546 goethite with barite at the edge. This microstructure is described for the first time from UHP 547 548 eclogite. Since both hematite and goethite indicate an oxidizing environment, and the microstructure suggests the presence of a grain boundary fluid, we infer that pyrite has reacted 549 locally with a highly oxidizing fluid to transform into hematite and goethite. Inferred model 550 reactions are $4\text{FeS}_2 + 15\text{O}_2 + 8\text{H}_2\text{O} \rightarrow 4\text{Fe}_2\text{O}_3 + 8\text{SO}_4^{2-} + 16\text{H}^+$ (Fleming 2009) and $4\text{FeS}_2 + 16\text{H}^+$ 551 $15O_2 + 10H_2O \rightarrow 4FeO(OH) + 8SO_4^{2-} + 16H^+$ (Murad and Rojik 2005), which could also 552 553 include the reaction from hematite to goethite $Fe_2O_3 + H_2O \rightarrow 2FeO(OH)$ (Gualtieri and Venturelli 1999). These oxidation reactions are inferred to supply enough SO_4^{2-} for growth of the 554 type V barite. The oxidizing fluid is likely locally derived aqueous fluid at amphibolite facies 555 556 conditions (Fig. 11b). The type V barite is inferred to have precipitated from an internally generated fluid similar to 557

the type V barite is inferred to have precipitated from an internally generated fluid similar to the type IV barite, based on the following observations. (1) Both types of barite occur in the same samples, suggesting a close genetic relationship. (2) Both types of barite tend to occur along grain boundaries (Figs. 4c and 6a–6c). (3) For both types, the SrO concentrations of barite are dominated by low values, generally < 2.5 wt% (Figs. 7d and 7e). The solubility of Ba²⁺ and SO₄²⁻ in the fluid will decrease with decreasing pressure and temperature (Blount 1977).

27

563	Therefore, we posit that the ongoing release of H ₂ O from garnet and omphacite, coupled with the
564	continued breakdown of phengite and the decreasing solubility of Ba^{2+} and SO_4^{2-} during
565	retrogression to the amphibolite facies promoted the sporadic precipitation of barite continuously
566	from type IV to V (Fig. 11b).
567	
568	IMPLICATIONS
569	Although the evolution of the fluid phase accompanying metamorphism in continental
570	subduction zones is known to be important, our understanding of the origin, nature and behavior
571	of the fluid during subduction and subsequent exhumation has recently taken on a new focus in
572	relation to the exsolution of H ₂ O from nominally anhydrous minerals and the possibility of
573	melting during decompression (e.g., Hermann et al. 2006; Hack et al. 2007; Zheng 2009; Zhang
574	et al. 2011; Zheng et al. 2011b; Hermann and Rubatto 2014; Zheng and Hermann 2014; Frezotti
575	and Ferrando 2015). Our study of the microstructural setting and chemistry of barite in the UHP
576	eclogite at Yangkou in the central Sulu belt has further advanced our understanding of local fluid
577	generation and migration.
578	In this study, we have argued that fluid-assisted precipitation of barite occurred during both
579	the late prograde stage of subduction as well as during the subsequent exhumation of the crust
580	from mantle depths back to normal depths, and we have interpreted successive episodes of barite
581	precipitation to record fluid generation and migration at the grain scale. These processes result in
582	the local redistribution of Ba, Sr and S during continental subduction and exhumation.
583	Throughout the metamorphic evolution the attendant fluid phase was internally buffered and 28

584	highly oxidizing. Furthermore, we have explained the low Ba and Sr concentrations of the UHP
585	eclogite and associated country rock orthogneisses as a consequence of prograde fluid loss rather
586	than as a feature related to either decompression or late retrogression to amphibolite facies
587	mineralogy along grain boundaries in some eclogites.
588	In detail, we have shown that aqueous and supercritical fluids were available successively
589	during the prograde growth of garnet and omphacite, as recorded by inclusions of barite and MSI
590	in these minerals. We have proposed that after the metamorphic peak, during the early stage of
591	decompression, H ₂ O exsolved from garnet and omphacite migrated to and along grain
592	boundaries to promote growth of phengite. We explained the formation of multi-mineral
593	pseudomorphs containing barite by in situ melting of phengite inclusions in garnet during
594	decompression and subsequent crystallization on crossing the solidus at lower pressure. Finally,
595	we interpreted the occurrences of barite as irregular patches associated with hornblende and
596	albite symplectite and as veinlets associated with partial replacement of pyrite as due to
597	continued exsolution of H ₂ O from garnet and omphacite during ongoing decompression to
598	amphibolite facies. Thus, these features record fluid migration at the end of the decompression
599	stage of the exhumation.
600	The increase in modal barite from the late prograde stage to the retrograde amphibolite
601	facies stage may indicate an increase in the availability of local internally buffered fluid during
602	exhumation. We interpret the high Sr/Ba of some type I barite to be primary, but these
603	compositions have been partially modified subsequently to lower Sr/Ba during progressive
604	subduction and exhumation. By contrast, the later generations of barite consistently record low 29

605	Sr/Ba. We interpret this change to indicate that high Sr/Ba characterized the attendant fluid
606	during late prograde metamorphism, whereas the metamorphic fluids generated approaching
607	metamorphic peak and post-peak during decompression and exhumation were characterized by
608	low Sr/Ba.
609	
610	ACKNOWLEDGEMENTS
611	This study was financially supported by the National Natural Science Foundation (Nos.
612	41272225) and the Fundamental Research Funds for the Central Universities, China University
613	of Geosciences (Wuhan) (No. CUG-G1323511572). We thank Haihong Chen for help with
614	whole-rock trace element analysis, Mouchun He for help with Raman spectroscopy and Zhenyu
615	Chen and Shuiyuan Yang for help with EPMA analysis. We acknowledge constructive reviews
616	from Anonymous and Simona Ferrando, and editorial advice from Daniela Rubatto.
617	
618	REFERENCES CITED
619	Auzanneau, E., Vielzeuf, D., and Schmidt, M.W. (2006) Experimental evidence of
620	decompression melting during exhumation of subducted continental crust. Contributions to
621	Mineralogy and Petrology, 152, 125–148.
622	Blount, C.W. (1977) Barite solubilities and thermodynamic quantities to 300 °C and 1400 kbars.
623	American Mineralogist, 62, 942–957.
624	Brown, M. (2013) Granite: from genesis to emplacement. Geological Society of America
625	Bulletin, 125, $1079-1113$.
626 627	Brown, M., Kornonen, F.J., and Siddoway, C.S. (2011) Organizing melt flow through the crust. Elements $7(4)$ 261–266
628	Chang LLY Howie R A and Zussman I (1996) Rock-forming minerals Volume 5R Second
629	Edition. Non-silicates: Sulphates. Carbonates Phosphates Halides Longman Group Limited
630	383 pp.

631	Chen, B., Ye, K., and Liu, J.B. (2002) Cogenetic relationship of the Yangkou gabbro-to-granite
632	unit, Su-Lu terrane, eastern China, and implications for UHP metamorphism. Journal of the
633	Geological Society, 159(4), 457–467.
634	Chen, R.X., Zheng, Y.F., Gong, B., Zhao, Z.F., Gao, T.S., Chen, B., and Wu, Y.B. (2007) Origin
635	of retrograde fluid in ultrahigh-pressure metamorphic rocks: constraints from mineral
636	hydrogen isotope and water content changes in eclogite–gneiss transitions in the Sulu orogen.
637	Geochimica et Cosmochimica Acta, 71(9), 2299–2325.
638	Chen, R.X., Zheng, Y.F., and Gong, B. (2011) Mineral hydrogen isotopes and water contents in
639	ultrahigh-pressure metabasite and metagranite: constraints on fluid flow during continental
640	subduction-zone metamorphism. Chemical Geology, 281, 103–124.
641	Chen, R.X., Zheng, Y.F., and Hu, Z.C. (2012) Episodic fluid action during exhumation of deeply
642	subducted continental crust: Geochemical constraints from zoisite-quartz vein and host
643	metabasite in the Dabie orogen. Lithos, 155, 146–166.
644	Chen, Y.X., Zheng, Y.F., Gao, X.Y., and Hu, Z.C. (2014) Multiphase solid inclusions in
645	zoisite-bearing eclogite: evidence for partial melting of ultrahigh-pressure metamorphic
646	rocks during continental collision. Lithos, 200, 1–21.
647	Coats, J.S., Smith, C.G., Fortey, N.J., Gallagher, M.J., May, F., and McCourt, W.J. (1980)
648	Strata-bound barium-zinc mineralization in Dalradian schist near Aberfeldy, Scotland.
649	Transactions of the Institution of Mining and Metallurgy Section B – Applied Earth Science,
650	89, B110–B122.
651	Ernst, W., Tsujimori, T., Zhang, R., and Liou, J.G. (2007) Permo-Triassic collision,
652	subduction-zone metamorphism, and tectonic exhumation along the East Asian continental
653	margin. Annual Review of Earth and Planet Sciences, 35, 73–110.
654	Ferrando, S., Frezzotti, M.L., Dallai, L., and Compagnoni, R. (2005) Multiphase solid inclusions
655	in UHP rocks (Su-Lu, China): Remnants of supercritical silicate-rich aqueous fluids released
656	during continental subduction. Chemical Geology, 223, 68–81.
657	Ferrero, S., Wunder, B., Walczak, K., O'Brien, P.J., and Ziemann, M.A. (2015) Preserved near
658	ultraghihpressure melt from continental crust subducted to mantle depths. Geology,
659	http://dx.doi.org/10.1130/G36534.1.
660	Ferry, J.M., and Watson, E.B. (2007) New thermodynamic models and revised calibrations for
661	the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology,
662	154(4), 429–437.
663	Fleming, C.A. (2009) Basic iron sulphate—a potential killer for pressure oxidation processing of
664	refractory gold concentrates if not handled appropriately. Technical Bulletin, 6.
665	Fortey, N.J., Coats, J.S., Gallagher, M.J., Smith, C.G., and Greenwood, P.G. (1993) New
666	strata-bound barite and base metals in Middle Dalradian Rocks near Braemar, Northeast
667	Scotland. Transactions of the Institution of Mining and Metallurgy Section B – Applied
668	Earth Science, 102, B55–B64.
669	Franz, L., Romer, R.L., Klemd, R., Schmid, R., Oberhansli, R., Wagner, T., and Dong, S.W.
670	(2001) Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China):
671	pressure-temperature-time-deformation path, compostion of the fluid phase and fluid flow

672	during exhumation of high-pressure rocks. Contributions to Mineralogy and Petrology,
673	141(3), 322–346.
674	Frezzotti, M.L., and Ferrando, S. (2015) The chemical behavior of fluids released during deep
675	subduction based on fluid inclusions. American Mineralogist, 100, 352–377.
676	Gao, C.G., Liu, Y.S., Zong, K.Q., Hu, Z.C., and Gao, S. (2010) Microgeochemistry of rutile and
677	zircon in eclogites from the CCSD main hole: Implications for the fluid activity and
678	thermo-history of the UHP metamorphism. Lithos, 115(1), 51–64.
679	Gao, X.Y., Zheng, Y.F., and Chen, Y.X. (2011) U–Pb ages and trace elements in metamorphic
680	zircon and titanite from UHP eclogite in the Dabie orogen: constraints on $P-T-t$ path.
681	Journal of Metamorphic Geology, 29, 721–740.
682	Gao, X.Y., Zheng, Y.F., and Chen, Y.X. (2012) Dehydration melting of ultrahigh-pressure
683	eclogite in the Dabie orogen: evidence from multiphase solid inclusions in garnet. Journal of
684	Metamorphic Geology, 30, 193–212.
685	Gao, X.Y., Zheng, Y.F., Chen, Y.X., and Hu, Z. (2014a) Composite carbonate and silicate
686	multiphase solid inclusions in metamorphic garnet from ultrahigh-P eclogite in the Dabie
687	orogen. Journal of Metamorphic Geology, 32, 961–980.
688	Gao, X.Y., Zheng, Y.F., Xia, X.P., and Chen, Y.X. (2014b) U-Pb ages and trace elements of
689	metamorphic rutile from ultrahigh-pressure quartzite in the Sulu orogen. Geochimica et
690	Cosmochimica Acta, 143, 87–114.
691	Gong, B., Chen, R.X., Zheng, Y.F. (2013) Water contents and hydrogen isotopes in nominally
692	anhydrous minerals from UHP metamorphic rocks in the Dabie–Sulu orogenic belt. Chinese
693	Science Bulletin, 58, 4384–4389.
694	Gualtieri, A.F., and Venturelli, P. (1999) In situ study of the goethite-hematite phase
695	transformation by real time synchrotron powder diffraction. American Mineralogist, 84,
696	895–904.
697	Guo, S., Ye, K., Chen, Y., Liu, J.B, Mao, Q., and Ma, Y.G. (2012) Fluid-rock interaction and
698	element mobilization in UHP metabasalt: constraints from an omphacite-epidote vein and
699	host eclogites in the Dabie orogen. Lithos, 136, 145–167.
700	Guo, S., Ye, K., Yang, Y.H., Chen, Y., Zhang, L.M., Liu, J.B., Mao, Q., and Ma, Y.G. (2014) In
701	situ Sr isotopic analyses of epidote: tracing the sources of multi-stage fluids in
702	ultrahigh-pressure eclogite (Ganghe, Dabie terrane). Contributions to Mineralogy and
703	Petrology, 167(2), 1–23.
704	Hack, A.C., Thompson, A.B., and Aerts, M. (2007) Phase relations involving hydrous
705	silicatemelts, aqueous fluids, and minerals. Reviews in Mineralogy and Geochemistry, 65,
706	129–185.
707	Hacker, B.R., Wallis, S.R., McWilliams, M.O., and Gans, P.B. (2009) ⁴⁰ Ar/ ³⁹ Ar Constraints on
708	the tectonic history and architecture of the ultrahigh-pressure Sulu orogen. Journal of
709	Metamorphic Geology, 27, 827–844.
710	Hanor, J.S. (2000) Barite-celestine geochemistry and environments of formation. Reviews in
711	Mineralogy and Geochemistry, 40(1), 193–275.

712	Hermann, J. (2002) Allanite: thorium and light rare earth element carrier in subducted crust.
713	Chemical Geology, 192(3–4), 289–306.
714	Hermann, J., and Rubatto, D. (2009) Accessory phase control on the trace element signature of
715	sediment melts in subduction zones. Chemical Geology, 265(3), 512–526.
716	Hermann, J., and Rubatto, D. (2014) Subduction of continental crust to mantle depth:
717	geochemistry of ultrahigh-pressure rocks. Treatise Geochem, 4, 309–340.
718	Hermann, J., Spandler, C., Hack, A., and Korsakov, A.V. (2006) Aqueous fluids and hydrous
719	melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in
720	subduction zones. Lithos, 92, 399–417.
721	Hermann, J., Zheng, Y.F., and Rubatto, D. (2013) Deep Fluids in Subducted Continental Crust.
722	Elements, 9, 281–287.
723	Hu, Z.C., Gao, S., Liu, Y.S., Hu, S.H., Chen, H.H., and Yuan, H.L. (2008) Signal enhancement in
724	laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of
725	Analytical Atomic Spectrometry, 23, 1093–1101.
726	John, T., Klemd, R., Gao, J., and Garbe-Schonberg, C.D. (2008) Trace-element mobilization in
727	slabs due to non steady-state fluid-rock interation: constraints from an eclogite-facies
728	transport vein in blueschist (Tianshan, China). Lithos, 103, 1–24.
729	Katayama, I., Nakashima, S. (2003) Hydroxyl in clinopyroxene from the deep subducted crust:
730	Evidence for H ₂ O transport into the mantle. American Mineralogist, 88, 229–234.
731	Katayama, I., Nakashima, S., and Yurimoto, H. (2006) Water content in natural eclogite and
732	implication for water transport into the deep upper mantle. Lithos, 86, 245–259.
733	Kribek, B., Hladikova, J., Zak, K., Bendl, J., Pudilova, M., and Uhlik, Z. (1996)
734	Barite-hylophane sulfide ores at Rozna, Bohemian Massif, Czech Republic: Metamorphosed
735	black shale-hosted submarine exhaltive mineralization. Economic Geology, 91, 14-35.
736	Labrousse, L., Prouteau, G., and Ganzhorn, A.C. (2011) Continental exhumation triggered by
737	partial melting at ultrahigh pressure. Geology, 39, 1171–1174.
738	Labrousse, L., Duretz, T., and Gerya, T. (2015) H ₂ O-fluid-saturated melting of subducted
739	continental crust facilitates exhumation of ultrahigh-pressure rocks in continental subduction
740	zones. Earth and Planetary Science Letters, 428, 151–161.
741	Li, S.G., Xiao, Y.L., Liou, D.L., Chen, Y.Z., Ge, N.J., Zhang, Z.Q., Sun, S.S., Cong, B.L., Zhang,
742	R.Y., Hart, S.R., and Wang, S.S. (1993) Collision of the North China and Yangtse Blocks
743	and formation of coesite-bearing eclogites: Timing and processes. Chemical Geology, 109,
744	89–111.
745	Li, X.P., Yan, J.Y., Schertl, H.P., Kong, F.M., and Xu, H. (2014) Eclogite from the Qianliyan
746	Island in the Yellow Sea: a missing link between the mainland of China and the Korean
747	peninsula. European Journal of Mineralogy, 2403.
748	Liou, J.G., and Zhang, R.Y. (1996) Occurrences of intergranular coesite in ultrahigh-P rocks from
749	the Sulu region, eastern China: implications for lack of fluid during exhumation. American
750	Mineralogist, 81, 1217–1221.

751	Liu, F.L., and Liu, P.H. (2009) U-Pb dating, trace element and Hf isotopic characteristics of
752	zircons from meta-gabbro in Yangkou area, north Sulu UHP terrane. Acta Petrologica Sinica,
753	25(9), 2113–2131 (in Chinese with English abstract).
754	Liu, F.L., and Liou, J.G. (2011) Zircon as the best mineral for <i>P</i> – <i>T</i> –time history of UHP
755	metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the
756	Dabie–Sulu UHP rocks. Journal of Asian Earth Sciences, 40, 1–39.
757	Liu, F.L., Robinson, P.T., and Liu, P.H. (2012) Multiple partial melting events in the Sulu UHP
758	terrane: zircon U-Pb dating of granitic leucosomes within amphibolite and gneiss. Journal of
759	Metamorphic Geology, 30, 887–906.
760	Liu, F.L., Xu, Z.Q., and Liou, J.G. (2004) Tracing the boundary between UHP and HP
761	metamorphic belts in the southwestern Sulu terrane, eastern China: evidence from mineral
762	inclusions in zircons from metamorphic rocks. International Geology Review, 46(5),
763	409–425.
764	Liu, J.B., Ye, K., Cong, B.L., and Fan, H.R. (2000) The barite and anhydrite inclusions in zircon
765	of gneisses from ultrahigh pressure metamorphic zone of the Dabie Mountains and their
766	implications. Acta Petrologica Sinica, 16(4), 482–484 (in Chinese with English abstract).
767	Liu, J.B., Ye, K., Maruyama, S., Cong, B.L., and Fan, H.R. (2001) Mineral inclusions in zircon
768	from gneisses in the ultrahigh-pressure zone of the Dabie Mountains, China. The Journal of
769	Geology, 109, 523–535.
770	Liu, Q., Hermann, J., and Zhang, J.F. (2013) Polyphase inclusions in the Shuanghe UHP
771	eclogites formed by subsolidus transformation and incipient melting during exhumation of
772	deeply subduced crust. Lithos, 177, 91–109.
773	Liu, Q., Jin Z.M., and Zhang J.F. (2009) An experimental study of dehydration melting of
774	phengite-bearing eclogite at 1.5–3.0 GPa. Chinese Science Bulletin, 54, 2090–2100.
775	Liu, Y.S., Hu, Z.C., Gao, S., Günther, D., Xu, J., Gao, C.G., and Chen, H.H. (2008) In situ
776	analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without
777	applying an internal standard. Chemical Geology, 257(1), 34-43.
778	Manning, C.E. (2004) The chemistry of subduction-zone fluids. Earth and Planetary Science
779	Letters, 223, 1–16.
780	Martin, L. A.J., Hermann, J., Gauthiez-Putallaz, L., Whitney, D.L., Vitale Brovarone, A., Fornash,
781	K.F., and Evans, N.J. (2014) Lawsonite geochemistry and stability – implication for trace
782	element and water cycles in subduction zones. Journal of Metamorphic Geology, 32,
783	455–478.
784	Mibe, K., Kawamoto, T., Matsukage, K.N., Fei Y.W., and Ono, S. (2011) Slab melting versus
785	slab dehydration in subduction-zone magmatism. Proceedings of the National Academy of
786	Sciences, 108(20), 8177–8182.
787	Murad, E., and Rojik, P. (2005) Iron mineralogy of mine-drainage precipitates as environmental
788	indicators: review of current concepts and a case study from the Sokolov Basin, Czech
789	Republic. Clay Minerals, 40, 427–440.

700	Ni II Liu II Tang VI Yang IID Vie 7 M and Cue OI (2012) The Walion
790	Matamarphia Cara Complex: A Newly Discovered Matamarphia Cara Complex along the
702	Sulu Oragonia Balt, Eastern China, Journal of Earth Saionaa, 24(3), 207, 213
792	Dilippot P and Salverstone I (1001) Trace element rich brings in aclogitic vaius: Implications
704	for fluid composition and transport during subduction. Contributions to Minoralogy and
794	Petrology 106 417-430
796	Philippot P Chevallier P Chopin C and Dubessy I (1995) Fluid composition and evolution
790 797	in coesite-bearing rocks (Dora-Maira massif, Western Alps): Implications for element
798	recycling during subduction. Contributions to Mineralogy and Petrology, 121, 29-44.
799	Rasmussen, B., Fletcher, I.R., Muhling, J.R., Gregory, Courtney, J., and Wilde, S.A. (2011).
800	Metamorphic replacement of mineral inclusions in detrital zircon from Jack Hills, Australia:
801	Implications for the Hadean Earth. Geology, 39, 1143–1146.
802	Roedder, E. (1984) Fluid Inclusions. Reviews in Mineralogy, 12, 678.
803	Rubatto, D. (2002) Zircon trace element geochemistry: partitioning with garnet and the link
804	between U-Pb ages and metamorphism. Chemical Geology, 184, 123-138.
805	Sakamaki, K., and Ogasawara, Y. (2014) Hydroxyl in clinopyroxene and titanite in a UHP
806	diamond-free garnet-clinopyroxene rock from the Kokchetav Massif, northern Kazakhstan.
807	International Geology Review, 56, 133–149.
808	Scambelluri, M., and Philippot, P. (2001) Deep fluids in subduction zones. Lithos, 55, 213–227.
809	Sheng, Y.M., Xia, Q.K., Dallai, L., Yang, X.Z., and Hao, Y.T. (2007) H ₂ O contents and D/H
810	ratios of nominally anhydrous minerals from ultrahigh-pressure eclogites of the Dabie
811	orogen, eastern China. Geochimica et Cosmochimica Acta, 71, 2079–2103.
812	Sheng, Y.M., Zheng, Y.F., Li, S.N., and Hu, Z. (2013) Element mobility during continental
813	collision: insights from polymineralic metamorphic vein within UHP eclogite in the Dabie
814	orogen. Journal of Metamorphic Geology, 31, 221-241.
815	Sizova, E., Gerya, T., and Brown, M. (2012) Exhumation mechanisms of melt-bearing ultrahigh
816	pressure crustal rocks during collision of spontaneously moving plates. Journal of
817	Metamorphic Geology, 30, 927–955.
818	Spandler, C., and Hermann, J. (2006) High-pressure veins in eclogite from New Caledonia and
819	their significance for fluid migration in subduction zones. Lithos, 89, 135–153.
820	Spandler, C., Pettke, T., and Rubatto, D. (2011) Internal and External Fluid Sources for
821	Eclogite-facies Veins in the Monviso Meta-ophiolite, Western Alps: Implications for Fluid
822	Flow in Subduction Zones. Journal of Petrology, 52(6), 1207–1236.
823	Sun, S.S., and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts:
824	implications for mantle composition and processes. Geological Society, London, Special
825	Publications, 42(1), 313–345.
826	Sun, X.M., Tang, Q., Sun, W.D., Xu, L., Zhai, W., Liang, J.L., Liang, Y.H., Shen, K., Zhang,
827	Z.M., Zhou, B., and Wang, F.Y. (2007) Monazite, iron oxide and barite exsolutions in apatite
828	aggregates from CCSD drillhole eclogites and their geological implications. Geochimica et
829	Cosmochimica Acta, 71, 2896–2905.

830	Tomkins, H.S., Powell, R., and Ellis, D.J. (2007) The pressure dependence of the
831	zirconium-in-rutile thermometer. Journal of Metamorphic Geology, 25(6), 703-713.
832	Touret, J.L.R. (2001) Fluids in metamorphic rocks. Lithos, 55, 1–25.
833	Tumiati, S., Godard, G., Martin, S., Malaspina, N., and Poli, S. (2015) Ultra-oxidized rocks in
834	subduction melanges? Decoupling between oxygen fugacity and oxygen availability in a
835	Mn-rich metasomatic environment. Lithos, 226, 116–130.
836	van Keken, P.E., Hacker, B.R., Syracuse, E.M., and Abers, G.A. (2011) Subduction factory: 4.
837	Depth-dependent flux of H ₂ O from subducting slabs worldwide. Journal of Geophysical
838	Research–Solid Earth, 116, B01401.
839	Vitale Brovarone, A., Alard, O., Beyssac, O., Martin, L., and Picatto, M. (2014a) Lawsonite
840	metasomatism and trace element recycling in subduction zones. Journal of Metamorphic
841	Geology, 32, 489–514.
842	Vitale Brovarone, A., and Beyssac, O. (2014b) Lawsonite metasomatism: A new route for water
843	to the deep Earth. Earth and Planetary Science Letters, 393, 275–284.
844	Wallis, S.R., Ishiwatari, A., Hirajima, T., Ye, K., Guo, J., Nakamura, D., Kato, T., Zhai, M.,
845	Enami, M., and Cong, B. (1997) Occurrence and field relationships of ultrahigh-pressure
846	metagranitoid and coesite eclogite in the Su-Lu terrane, eastern China. Journal of the
847	Geological Society, 154(1), 45–54.
848	Wallis, S., Tsuboi, M., Suzuki, K., Fanning, M., Jiang, L., and Tanaka, T. (2005) Role of partial
849	melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology,
850	33(2), 129–132.
851	Wang, L., Kusky, T., and Li, S.Z. (2010) Structural geometry and evolution of an exhumed
852	ultra-high pressure eclogite massif, Yangkou Bay, Sulu Belt. Journal of Structural Geology,
853	32, 423–444.
854	Wang, L., Kusky, T., Polat, A., Wang, S.J., Jiang, X.F., Zong, K.Q., Wang, J.P., Deng, H., and Fu,
855	J.M. (2014) Partial melting of deeply subducted eclogite from the Sulu Orogen in China.
856	Nature Communications, 5:5604, DOI: 10.1038/ncomms6604
857	www.nature.com/naturecommunications.
858	Watson, E.B., and Harrison T.M. (2005) Zircon thermometer reveals minimum melting
859	conditions on earliest Earth. Science, 308, 841–844.
860	Watson, E.B., Wark, D.A., and Thomas, J.B. (2006) Crystallization thermometers for zircon and
861	rutile. Contributions to Mineralogy and Petrology, 151(4), 413–433.
862	Whitney, D.L., and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals.
863	American mineralogist, 95(1), 185–187.
864	Wu, T.Y., and Fu, Y.T. (2014) Cretaceous deepwater lacustrine dedimentary sequences from the
865	northernmost South China Block, Qingdao, China. Journal of Earth Science, 25(2), 241–251.
866	Xia, Q.K., Sheng, Y.M., Yang, X.Z., and Yu, H.M. (2005) Heterogeneity of water in garnets from
867	UHP eclogites, eastern Dabieshan, China. Chemical Geology, 224, 237–246.
868	Xu, H.J., Ye, K., and Zhang, J.F. (2012) Temperature of Prograde Metamorphism,
869	Decompressional Partial Melting and Subsequent Melt Fractional Crystallization in the

870	Weihai Migmatitic Gneisses, Sulu UHP Terrane: Constraints from Ti-in-Zircon Thermometer.
871	Journal of Earth Sciences, 23(6), 813–827.
872	Xu, H.J., Ye, K., Song, Y.R., Chen, Y., Zhang, J.F., Liu, Q., and Guo, S. (2013) Prograde
873	metamorphism, decompressional partial melting and subsequent melt fractional
874	crystallization in the Weihai migmatitic gneisses, Sulu UHP terrane, eastern China. Chemical
875	Geology, 341, 16–37.
876	Xu, Z.Q., Zeng, L.S., Liu, F.L., Yang, J.S., Zhang, Z.M., McWilliams, M., and Liou, J.G. (2006)
877	Polyphase subduction and exhumation of the Sulu high-pressure-ultrahigh-pressure
878	metamorphic terrane. Geological Society of America Special Papers, 403, 93–113.
879	Yakymchuk, C., and Brown, M. (2014) Consequences of open system melting in tectonics.
880	Journal of the Geological Society, London, 171, 21–40.
881	Yakymchuk, C., Brown, M., Ivanic, T.J., and Korhonen, F.J. (2013) Leucosome distribution in
882	migmatitic paragneisses and orthogneisses: A record of self-organized melt migration and
883	entrapment in a heterogeneous partially-molten crust. Tectonophysics, 603, 136–154.
884	Yang, H., Zhang, L.F., and Liu, F.L. (2006) Barite-bearing UHP eclogite from the main borehole
885	core of the Chinese Continental Scientific Drilling. Acta Geologica Sinica, 80, 1892–1897
886	(in Chinese with English abstract).
887	Yang, H., Zhang, L.F., and Liu, F.L. (2010) Study on barite as an accessory mineral in eclogite
888	from main borehole core of the Chinese Continental Scientific Drilling (CCSD). Acta
889	Petrologica Sinica, 26(7), 2073–2082 (in Chinese with English abstract).
890	Yang, J.J., Fan, Z.F., Yu, C., and Yan, R. (2014) Coseismic formation of eclogite facies
891	cataclasite dykes at Yangkou in the Chinese Su-Lu UHP metamorphic belt. Journal of
892	Metamorphic Geology, 32, 937–960.
893	Yao, Y.P., Ye, K., Liu, J.B., Cong, B.L., and Wang, Q.C. (2000) A transitional eclogite- to high
894	pressure granulaite-facies overprint on coesite-eclogite at Taohang in the Sulu
895	ultrahigh-pressure terrane, Eastern China. Lithos, 52(1), 109–120.
896	Yardley, B., Gleeson, S., Bruce, S., and Banks, D. (2000) Orogin of retrograde fluids in
897	metamorphic rocks. Journal of Geochemical Exploration, 69–70, 281–285.
898	Ye, K., Hirajima, T., and Ishiwatari, A. (1996) The discovery of intergranular coesite in eclogite
899	of Yangkou, Qingdao and its significance. Chinese Science Bulletin, 41(15), 1407–1408.
900	Ye, K., Cong, B.L., and Ye, D.N. (2000) The possible subduction of continental material to
901	depths greater than 200 km. Nature, 407(6805), 734–736.
902	Zack, T., Moraes, R., and Kronz, A. (2004) Temperature dependence of Zr in rutile: empirical
903	calibration of a rutile thermometer. Contributions to Mineralogy and Petrology, 148(4),
904	471–488.
905	Zack, T., Rivers, T., and Foley, S.F. (2001) Cs-Rb-Ba systematics in phengite and amphibole: an
906	assessment of fluid mobility at 2.0 GPa in eclogites from Trescolmen, Central Alps.
907	Contributions to Mineralogy and Petrology, 140, 651–669.
908	Zeng, L.S., Liu, F.L., Liang, F.H., and Chen, F.Y. (2007) Barite in omphacite-hosted K-feldspar +
909	quartz polycrystalline aggregates from the Sulu eclogites and its implications. Chinese
910	Science Bulletin, 52(21), 2995–3001.

- 911 Zhang, R.Y., and Liou, J.G. (1997) Partial transformation of gabbro to coesite-bearing eclogite from Yangkou, the Sulu terrane, eastern China. Journal of Metamorphic Geology, 15(2), 912 183-202. 913 Zhang, R.Y., Hirajima, T., Banno, S., Cong, B.L., and Liou, J.G. (1995) Petrology of 914 915 ultrahigh-pressure rocks from the southern Su-Lu region, eastern China. Journal of 916 Metamorphic Geology, 13(6), 659–675. Zhang, R.Y., Iizuka, Y., Ernst, W.G., Liou, J.G., Xu, Z.Q., Tsujimori, T., Lo, C.H., and Jahn, B.M. 917 (2009) Metamorphic P-T conditions and thermal structure of Chinese Continental Scientific 918 919 Drilling main hole eclogites: Fe-Mg partitioning thermometer vs. Zr-in-rutile thermometer. 920 Journal of Metamorphic Geology, 27,757–772. 921 Zhang, R.Y., Liou, J.G., Zheng, Y.F., and Fu, B. (2003) Transition of UHP eclogites to gneissic 922 rocks of low-amphibolite facies during exhumation: evidence from the Dabie terrane, central 923 China. Lithos, 70(3), 269–291. Zhang, Z.M., Shen, K., Liou, J.G., Dong, X., Wang, W., Yu, F., and Liu, F. (2011) Fluid-rock 924 interactions during UHP metamorphism: A review of the Dabie-Sulu orogen, east-central 925 China. Journal of Asian Earth Sciences, 42(3), 316–329. 926 927 Zhang, Z.M., Shen, K., Sun, W.D., Liu, Y.S., Liou, J.G., Shi, C., and Wang, J.L. (2008) Fluids in deeply subducted continental crust: petrology, mineral chemistry and fluid inclusion of UHP 928 929 metamorphic veins from the Sulu orogen, eastern China. Geochimica et Cosmochimica Acta, 930 72(13), 3200-3228. Zheng, Y.F. (2009) Fluid regime in continental subduction zones: petrological insights from 931 932 ultrahigh-pressure metamorphic rocks. Journal of the Geological Society, 166(4), 763–782. 933 Zheng, Y.F., and Hermann, J. (2014) Geochemistry of continental subduction-zone fluids. Earth, 934 Planets and Space, 66(1), 93. Zheng, Y.F., Fu, B., Gong, B., and Li, L. (2003) Stable isotope geochemistry of ultrahigh 935 pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for 936 geodynamics and fluid regime. Earth-Science Reviews, 62, 105-161. 937 Zheng, Y.F., Gao, T.S., Wu, Y.B., Gong, B., and Liu, X.M. (2007) Fluid flow during exhumation 938 of deeply subducted continental crust: zircon U-Pb age and O-isotope studies of a quartz 939 940 vein within ultrahigh-pressure eclogite. Journal of Metamorphic Geology, 25, 267–283. 941 Zheng, Y.F., Gao, X.Y., Chen, R.X., and Gao, T.S. (2011a) Zr-in-rutile thermometry of eclogite in 942 the Dabie orogen: Constraints on rutile growth during continental subduction-zone metamorphism. Journal of Asian Earth Sciences, 40(2), 427–451. 943 944 Zheng, Y.F., Xia, Q.X., Chen, R.X., and Gao, X.Y. (2011b) Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. 945 946 Earth-Science Reviews, 107(3), 342–374. Zong, K.Q., Liu, Y.S., Hu, Z.C., Kusky, T., Wang, D.B., Gao, C.G., Gao, S., and Wang, J.Q. 947 (2010) Melting-induced fluid flow during exhumation of gneisses of the Sulu 948 ultrahigh-pressure terrane. Lithos, 120(3), 490-510. 949
- 950

951 Figure Captions

952	FIGURE 1. (a) Location of the Sulu belt in China. NCC, North China Craton; TM, Tarim	
953	Craton; YC, Yangtze Craton; CP, Cathaysia Plate. (b) A geological sketch map of the Sulu belt	
954	(after Yao et al. 2000; Zong et al. 2010). WQF, Wulian–Qingdao Fault; JXF, Jiashan–Xiangshu	i
955	Fault; MF, Mishan Fault; WRF, Wendeng–Rongcheng Fault. (c) Geological map of Yangkou B	ay
956	in the central Sulu belt, Eastern China (after Wang et al. 2010), showing major litho-tectonic	
957	units and sample locations (eclogite – black stars, country rock orthogneiss – blue stars).	
958		
959	FIGURE 2. BSE images of type I barite located in the cores of garnet and omphacite; barite	
960	preserves equant anhedral shapes without any surrounding cracks in the host minerals, and abu	ts
961	against rutile and clinopyroxene inclusions indicating synchronous overgrowth by the host	
962	minerals. Mineral names are abbreviated according to the recommendations of Whitney and	
963	Evans (2010).	
964		
965	FIGURE 3. BSE images of type II and type III barite. (a) Type II barite in multiphase solid	
966	inclusions (MSI) located towards the rims of garnet and omphacite (see insert), or (b) in the	
967	cores of these minerals as partially collapsed pucker structures (see insert) associated with	
968	veinlets; (c – f) Type III barite in multi-mineral pseudomorphs (MMP) that have regular shapes	
969	suggestive of precursor mineral such as phengite, (d) and (f) are enlargements of the areas	
970	outlined in (c) and (e), respectively. Mineral names are abbreviated according to the	
971	recommendations of Whitney and Evans (2010).	39

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5384

972

973	FIGURE 4. Photomicrographs, BSE images and crystal orientation contrast images of type IV
974	barite. (a, b) Plane polarized and cross polarized light images of barite surrounded by hornblende
975	and albite symplectite with mutually embayed margins; (c, d) BSE images of barite surrounded
976	by hornblende and albite symplectites, barite tapers out along the grain boundary (yellow arrows
977	at top left and lower parts of (c) ; (e, f) Representative type IV barite (in area outlined) and
978	crystal orientation contrast images (inset) showing variable crystal orientations. Mineral names
979	are abbreviated according to the recommendations of Whitney and Evans (2010).
980	
981	FIGURE 5. BSE images of type V barite and associated minerals. (a–c) Barite veinlets and
982	co-existing intergranular barite along grain boundaries of garnet, omphacite and quartz; the inset
983	figure in \mathbf{c} is the Raman spectra referring to the analyzed spot shown in red; (d) Concentric
984	mineral microstructure with relict pyrite in the core, hematite in the mantle, and goethite and
985	barite at the rim; (e, f) K-feldspar veinlet crosscuts the barite, hematite, goethite and pyrite
986	replacement structure, (f) is an enlargement of the area outlined in (e) . Mineral names are
987	abbreviated according to the recommendations of Whitney and Evans (2010).
988	
989	FIGURE 6. Typical Raman spectra of minerals associated with the Type V barite. (a) shows the
990	core mineral in Fig. 5(d) is pyrite with major peaks at 343 and 377 cm ⁻¹ , and a minor peak at 436
991	cm ⁻¹ ; (b) shows the mantle mineral in Fig. 5 (d) is hematite with characteristic peaks at 218, 287,
992	402 and 658 cm ⁻¹ ; (c) shows the rim mineral in Fig. 5(d) is goethite with characteristic peaks at $\frac{40}{40}$

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

993	213, 294, 396, 550 and 597 cm ⁻¹ ; and (d) shows the mineral at the outer edge in Fig. 5(d) is
994	barite with characteristic peaks at 459 and 985 cm ⁻¹ .

995

996 **FIGURE 7.** Covariation diagrams between BaO and SrO for (**a**–**e**) all five morphological types

997 of barite in the UHP eclogite from Yangkou, and (f) barite in eclogites from other locations in the

998 Sulu belt. Note the different scales in (**a**–**f**).

999

1000 **FIGURE 8.** Covariation diagrams (a) between BaO and SrO + CaO, and (b) SrO and CaO for

1001 the type I barite in the UHP eclogite from Yangkou.

1002

1003 FIGURE 9. (a) Primitive mantle normalized trace element patterns, (b) chondrite-normalized

1004 rare earth element patterns, (c) whole-rock Ba–Sr concentrations of barite-bearing eclogites,

1005 country rock gneisses and protolith metagabbros, and (d) high field strength element

1006 concentrations for barite-bearing eclogites and protolith metagabbros. Normalization values are

1007 from Sun and McDonough (1989), whole-rock trace element data of one UHP barite-bearing

1008 eclogite (YK5-2a) is from Wang et al. (2014), trace element data of metagabbros are from Yang

1009 et al. (2014). Note the different scales in (c) and (d).

1010

1011 **FIGURE 10.** Box and whisker plots displaying the distribution of temperatures calculated by

- 1012 Zr-in-rutile thermometry at 3.5 GPa (a) and Ti-in-zircon thermometry at 1 GPa (b). The box
- 1013 represents the interquartile range (the middle 50 % of the data from the 25th to the 75th percentile),

41

1014	the whiskers extend to 1.5 times the interquartile range in (a) and the open circle in (a) represents
1015	a suspected outlier, whereas the whiskers in (b) only extend to the limits of the data. The
1016	numbers beneath each box represent the number of data in each case. The temperature at the top
1017	of the box is shown in each case.
1018	
1019	FIGURE 11. (a) <i>P</i> – <i>T</i> path for the UHP eclogite at Yangkou in the central Sulu belt (modified
1020	from Wang et al. 2014) and (b) the different types of barite in relation to the $P-T$ evolution. Box
1021	1 shows the Zr-in-rutile temperatures (with an uncertainty of \pm 30 °C) calculated at pressures
1022	from 2.5 to 4.5 GPa, box 2 shows the range of peak Grt-Cpx temperatures calculated at
1023	pressures > 3.5 GPa for the Coe eclogite (from Wang et al. 2014, supplementary data set 3), box
1024	3 shows the $P-T$ range for the Grt + Omp + Ph + Coe/Qz assemblage (from Wang et al. 2014,
1025	supplementary data set 3, with uncertainty assessed as \pm 50 °C and \pm 0.2 GPa), line 4 shows the
1026	range of Grt-Cpx temperatures at 2.5 GPa for the Qz eclogite (from Wang et al. 2014,
1027	supplementary data set 3, with uncertainty assessed as \pm 50 °C), and box 5 shows the Ti-in-zircon
1028	temperatures (with an uncertainty of \pm 20 °C) calculated at pressures of 2 to 1 GPa for the
1029	retrogressed eclogite. The second critical endpoint for the basalt-water system (A) is from Mibe
1030	et al. (2011), and the grey box (B) shows the phase transition from Cpx + Ph + Qz to Bt + Pl +
1031	Grt + Melt from Auzanneau et al. (2006). Further explanation is given in the text. Mineral names

are abbreviated according to the recommendations of Whitney and Evans (2010).

Lithology	Brt-bearing	gEclogites		Country Gneiss	es	Metagabbros			
MMC	Grt+Omp+Coe/Qz+Brt		Qz+Ph	+PI+Assessory	Minerals	Yang et al. 2014			
Sam. No.	YK5-2a	YK24b	YK137-1	YK137-16	YK137-17	07YK07	11YK01	11YK02	11YK05
Ga	19.40	20.20	19.60	19.00	19.30	n.a.	n.a.	n.a.	n.a.
Rb	1.71	2.34	62.20	36.70	60.90	37.50	24.50	34.30	21.10
Sr	68.30	81.20	30.10	72.00	24.80	818.00	834.00	890.00	593.00
Y	23.30	23.60	36.90	43.10	30.30	18.00	19.60	21.30	22.30
Zr	94.70	98.80	229.00	324.00	245.00	70.00	129.00	118.00	122.00
Nb	4.54	4.00	11.80	11.20	12.40	6.03	6.16	5.50	6.57
Sn	0.87	0.98	2.13	1.70	2.26	n.a.	n.a.	n.a.	n.a.
Cs	0.04	0.04	0.41	0.26	0.40	n.a.	n.a.	n.a.	n.a.
Ва	105.00	326.00	264.00	280.00	281.00	1152.00	1763.00	1670.00	459.00
La	12.10	13.60	18.00	36.40	14.70	31.20	41.60	42.80	38.10
Ce	26.70	30.70	53.50	85.60	47.20	60.90	77.60	80.90	76.70
Pr	3.48	4.03	5.61	9.17	4.55	7.25	9.46	9.76	9.40
Nd	15.00	17.00	20.40	33.20	16.50	29.40	36.20	36.70	37.10
Sm	3.45	3.71	4.61	7.14	3.88	5.83	7.42	7.02	7.06
Eu	1.23	1.27	0.57	0.89	0.52	1.74	2.22	2.09	2.17
Gd	4.31	4.44	4.20	6.60	3.67	5.24	5.48	5.49	6.59
Tb	0.78	0.77	0.78	1.16	0.68	0.67	0.74	0.80	0.91
Dy	4.36	4.38	5.29	7.17	4.47	3.32	3.66	4.13	4.60
Ho	0.83	0.82	1.21	1.50	0.98	0.70	0.77	0.82	0.97
Er	2.24	2.24	4.03	4.44	3.22	1.95	2.21	2.27	2.71
Tm	0.30	0.30	0.69	0.68	0.52	0.29	0.31	0.32	0.39
Yb	1.84	1.99	4.87	4.44	3.61	1.82	1.97	2.05	2.51
Lu	0.26	0.27	0.82	0.64	0.57	0.28	0.30	0.32	0.39
Hf	2.35	2.47	6.71	8.50	7.06	1.71	2.78	2.78	2.97
Та	0.68	0.45	0.96	1.06	0.95	0.53	0.41	0.33	0.40
TI	0.02	0.01	0.12	0.13	0.09	n.a.	n.a.	n.a.	n.a.
Pb	2.66	3.60	2.69	4.77	2.62	n.a.	n.a.	n.a.	n.a.
Th	1.26	1.63	11.30	11.90	13.50	5.43	5.11	3.19	6.46
U	0.24	0.24	2.18	2.64	2.25	0.74	0.97	0.61	2.02
Sr/Ba	0.65	0.25	0.00	0.26	0.09	0.71	0.47	0.53	1.29
∑LREE	61.96	70.31	102.69	172.40	87.35	136.32	174.50	179.27	170.53
∑REE	76.88	85.52	124.58	199.03	105.07	150.59	189.94	195.47	189.60
(La/Sm) _{cn}	2.38	2.27	2.52	3.30	2.45	3.46	3.62	3.94	3.49
(Gd/Yb) _{cn}	1.85	1.94	0.71	1.23	0.84	2.38	2.30	2.22	2.17

1034 Values for metagabbro are from from Yang et al. (2014). Further explanation in text.

(Eu/Eu*) _{cn}	0.96	0.98	0.39	0.40	0.42	0.96	1.07	1.03	0.97	
Note: MMC represents main mineral composition; Sam. No. represents Sample number; normalization values from Sun and										
McDonough (McDonough (1989). " <i>n.a.</i> " represents data not analyzed in original paper.									

Fig. 2 a Grt Brt-Qz Gpt Rt Сое Rt Qz -Rt Omp Brt→ Brt Omp Sym Hb Omp Grt 100 µm 50 µm С d Omp Grt Rt Rt Sym Rt Omp Brt-Grt Ŕt Ŕt Grt Brt Grt 0 Sym Omp 100 µm 100 µm е f Omp Çрх Rt Void Grt Zrn Brt Rt Срх Ep Rt Brt Brt. Rt Ċрх Cpx Brt Ep Brt

Grt 1 Rt Omp

50 µm

1 Rt Ар Срх Ήb Срх 20 µm

Fig. 6

