1	Revision 1
2	Preservation of organic matter in nontronite against iron redox
3	cycling
4	Qiang Zeng ¹ , Hailiang Dong ^{1,2} *, Linduo Zhao ² , and Qiuyuan Huang ²
5	
6	¹ State Key Laboratory of Biogeology and Environmental Geology
7	China University of Geosciences, Beijing 100083, P. R. China
8	
9	² Department of Geology and Environmental Earth Science
10	Miami University, Ohio 45056, USA
11	
12	Authors to whom correspondence should be addressed
13	(dongh@cugb.edu.cn or dongh@miamioh.edu)
14	
15	
16	Revised for American Mineralogist
17	
18	
19	
20	July 24, 2015
21	
22	
23	
	1

8/27

8/27

24

25 Abstract

It is generally believed that clay minerals can protect organic matter from 26 degradation in redox active environments, but both biotic and abiotic factors can 27 influence the redox process and thus potentially change the clay-organic association. 28 However, the specific mechanisms involved in this process remain poorly understood. 29 In this study, a model organic compound, 12-Aminolauric acid (ALA) was selected to 30 31 intercalate into the structural interlayer of nontronite (an iron-rich smectite, NAu-2) to form an ALA-intercalated NAu-2 composite (ALA-NAu-2). Shawanella putrefaciens 32 CN32 and sodium dithionite were used to reduce structural Fe(III) to Fe(II) in NAu-2 33 34 and ALA-NAu-2. The bioreduced ALA-NAu-2 was subsequently re-oxidized by air. The rates and extents of bioreduction and air re-oxidation were determined with wet 35 chemistry methods. ALA release from ALA-NAu-2 via the redox process was 36 37 monitored. Mineralogical changes after iron redox cycle were investigated with X-ray diffraction, infrared spectroscopy, and scanning and transmission electron microscopy. 38 At the beginning stage of bioreduction, S. putrefaciens CN32 reductively dissolved 39 40 small and poorly crystalline particles and released intercalated ALA, resulting a positive correlation between ALA release and iron reduction extent (<12%). The 41 subsequent bioreduction (reduction extent from 12~30%) and complete air 42 re-oxidation showed no effect on ALA release. These results suggest that released 43 ALA was largely from small and poorly crystalline NAu-2 particles. In contrast to 44 bioreduction, chemical reduction did not exhibit any selectivity in reducing 45

46	ALA-NAu-2 particles, and a considerable amount of reductive dissolution was
47	responsible for a large amount of ALA release (>80%). Because bacteria are the
48	principal agent for mediating redox process in natural environments, our results
49	demonstrated that the structural interlayer of smectite can serve as a potential shelter
50	to protect organic matter from oxidation.
51	Key words: nontronite, iron redox cycle, organic matter preservation
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	

68

69

INTRODUCTION

The largest carbon sinks on earth are the ocean and land ecosystems, which 70 absorb a half of the carbon dioxide emission produced by anthropogenic activities 71 (Houghton, 1996). Organic carbon is a highly dynamic carbon repository and its 72 turnover time has a major impact on carbon cycling. A large fraction of organic 73 carbon is associated with minerals, especially clay minerals, largely because of their 74 75 large surface area (Mayer, 1994a), diverse types of charges on surfaces and edges (Hedges and Hare, 1987), pronounced cation exchange capacity in the expandable 76 interlayer region (Kennedy et al. 2002; Theng et al. 1986), and irregular 77 78 intra/inter-granular microstructures (Bock and Mayer, 2000). Association of organic matter with clay minerals can significantly reduce its bioavailability and slow down 79 mineralization rate (Conant et al. 2011; Jones and Edwards, 1998; Keil et al. 1994a), 80 81 thus reducing the amount of CO_2 flux from the land to the atmosphere.

Abundant evidence has accumulated over the last few decades about the 82 relationship between clay minerals and organic matters in a wide range of 83 environments, such as seafloor sediments (Keil et al. 1994a), continental margin 84 (Mayer, 1999; Mayer, 1994b; Ransom et al. 1998), terrestrial soils (Kaiser and 85 Guggenberger, 2000; Mayer, 1994a), and sedimentary rocks (Kennedy et al. 2006; 86 87 Kennedy et al. 2002). Several mechanisms have been proposed to explain the association between clay minerals and organic matter, such as external surface 88 adsorption via ligand or ion exchange, cation bridging, Van der Waals forcing 89

90 (Arnarson and Keil, 2001; Bergamaschi et al. 1997; Kaiser and Guggenberger, 2000; Keil et al. 1994b; Keil and Mayer, 2014; Kleber et al. 2014; Mayer, 1994a, b; Ransom 91 et al. 1998), and particle flocculation and aggregation(Bock and Mayer, 2000). 92 However, the fate of organic matter in the interlayer region of clay minerals has 93 received relatively little attention, possibly because it is difficult to accurately 94 characterize and quantify it (Keil and Mayer, 2014). However, several studies have 95 identified such intercalated organic matter in clay minerals, mostly through indirect 96 evidence (Kennedy et al, 2002; Theng et al, 1986). A recent study found that the 97 acidic interlayer sites of montmorillonite can promote thermal degradation of 98 interlayer organics (Yuan et al. 2012). Approximately 43 times more C_{1-5} 99 hydrocarbons were generated from the interlayer intercalated-organic matter than 100 from organic matter alone. Thus, it is likely that the interlayer region of clay minerals 101 is not only a potential storage space for stabilizing organic matter, but also plays an 102 important role in organic matter maturation and fossil fuel generation. Therefore, prior 103 to deep burial and diagenesis, these clay-organic matter associations may be subjected 104 105 to biotic and abiotic redox processes.

Most clay minerals contain variable amounts of structural iron, and the oxidation state of structural iron affects their physical and chemical properties such as specific surface area, basal spacing and degree of swelling, layer charge, cation exchange capacity (Stucki, 2011; Stucki and Kostka, 2006), and their association with organic matter (Zhang et al. 2007; Zhang et al. 2014). The cycling of iron valence state can be achieved either biologically or chemically. To date, numerous studies have shown the

important role of microbes in the iron redox cycle (Weber et al. 2006; Melton et al.,
2014). Recently, a wide variety of microorganisms isolated from diverse environments
have been used to either reduce or oxidize structural iron in clay minerals (Dong et al.
2009; Dong 2012; Pentráková et al. 2013; Stucki and Kostka, 2006; Stucki 2011;
Zhao et al., 2015).

During the last decades, many studies have revealed that the biogeochemical 117 cycles of iron and organic carbon are strongly linked in various environments 118 (Jonhson et al. 1997; Kaiser and Guggenberger, 2000; Lalonde et al. 2012). These 119 authors found that reactive iron phases (such as iron oxides) can promote organic 120 121 carbon preservation through co-precipitation and/or direct chelation. Reductive 122 dissolution of such iron phases can release the associated organic carbon. Moreover, several model experiments have studied the relationship between iron reduction and 123 organic carbon release from clay minerals. For example, Zhang et al. (2007) found 124 that organic compounds cysteine and toluene can be intercalated into the nontronite 125 interlayers, and microbial dissolution of its structural Fe(III) can partially release 126 127 these compounds, but the extent of release depends on the type of organic matter in the interlayer. Most recently, Zhang et al. (2014) showed that reductive dissolution 128 mediated by a methanogen could partially release a model organic compound. 129 However, it remains unclear if a similar mechanism operates by other bacteria such as 130 dissimilatory iron-reducing bacteria. The physiological difference between 131 methanogen and iron-reducing bacteria may be important to the release and the fate of 132 133 ALA. A systematic comparison of the effects of biological vs. chemical reduction on

134	clay structural alterations and organic matter release mechanism is also lacking. The
135	stability of clay-associated organic compound against a complete iron redox cycle (e.g.
136	reduction followed by oxidation) is currently unknown. Furthermore, the impact of
137	organic matter on clay structural and mineral transformation is poorly understood.
138	To achieve these goals, a model organic compound, 12-Aminolauric acid (ALA)
139	was intercalated into the interlayer of an iron-rich smectite, nontronite (NAu-2), to
140	synthesize an organoclay ALA-NAu-2. The choice of nontronite was to facilitate a
141	mechanistic understanding of Fe redox process and its impact on organic compound
142	stability within the mineral. A well-studied dissimilatory iron reducing bacterium
143	(DIRB) Shawanella putrefaciens CN32 and sodium dithionite were used as a
144	biological and a chemical reducing agent, respectively. After the intercalation of ALA
145	into the nontronite interlayer, the resulting organoclay was subjected to bioreduction
146	by S. putrefaciens CN32 and air re-oxidation to assess the effects of iron redox
147	cycling on ALA preservation within the nontronite structure. Various geochemical and
148	mineralogical methods were used to examine the reaction progress, ALA release, and
149	mineralogical changes. Our results demonstrated that the release pattern of ALA from
150	the nontronite interlayer was dependent on the Fe(III) reduction mechanism.
151	Reductive dissolution of small and poorly crystalline particles as triggered by
152	bioreduction resulted in ALA release at the beginning, but subsequent reduction of
153	structural Fe(III) from larger and more crystalline particles did not further release
154	ALA. In contrast, chemical reduction largely destroyed the nontronite structure and
155	resulted in a nearly complete release of ALA.

156

MATERIALS AND METHODS

157 Clay mineral preparation

Nontronite (NAu-2) was purchased from the Source Clays Repository of the Clay 158 Minerals Society (West Lafayette, IN). The formula of NAu-2 159 was $(K_{0.01}Na_{0.30}Ca_{0.15})(Al_{0.55}Fe^{3+}_{3.27}Fe^{2+}_{0.06}Mg_{0.12})(Si_{7.57}Al_{0.15}Fe^{3+}_{0.28})O_{20}(OH)_4$ (Keeling et 160 al. 2000). The bulk sample was manually ground and soaked in 0.5 N NaCl solution 161 for 24 hrs with constant stirring. A specific size fraction (0.02-0.5 μ m) was collected 162 by repeated centrifugation and washing with doubly distilled water. The cation 163 exchange capacity of this fraction was $697.1 (\pm 73.4)$ meq/kg, as previously 164 determined using the NH₄⁺ exchange method (Jaisi et al. 2008b). The removal of 165 excess chlorine anion was confirmed with the AgNO3 test. Our XRD analysis 166 confirmed our previous studies (Jaisi et al. 2005; Yang et al. 2012; Zhao et al. 2015) in 167 showing that this size fraction consisted of pure nontronite without any iron oxides. 168

169

170 Synthesis of organo-clay composite

171 12-Aminolauric acid (ALA) [NH₂(CH₂)₁₁COOH] was chosen as a model organic 172 compound. ALA is a non-conductive molecule and very stable in neutral environment. 173 The isoelectric point of ALA is about 2. ALA is not an effective carbon source for 174 *Shewanella* species. In this study, ALA was chosen based on two reasons. First, it 175 contains both carboxyl groups and alkyl chains with moderate carbon numbers, which 176 are typical of natural organics associated with clay minerals (Wattel-Koekkoek et al. 177 2011). Second, the aminopropyl group (-NH₂) of ALA is readily transformed to 178 protonated amino group $(-NH_3^+)$ in acidic solution, and therefore, it can be 179 intercalated into the NAu-2 interlayer via cation exchange.

Before the ALA intercalation experiment, five grams of the prepared NAu-2 size 180 fraction were placed in a clean beaker and stirred with 500 ml deionized water 181 182 overnight to allow complete dispersion of the NAu-2 slurry. An ALA solution was made with a concentration approximately twice the cation exchange capacity (CEC) 183 184 of the prepared NAu-2. Before its addition to the NAu-2 solution, ALA was protonated by mixing with HCl solution (0.07 N; pH=1.14) at 80°C. The protonation 185 reaction was considered complete when the ALA solution became clear. The NAu-2 186 and ALA solutions were then mixed and stirred vigorously for 30 minutes in an 80°C 187 water bath (pH=4.5). The synthesized organo-NAu-2 complex (termed as 188 ALA-NAu-2 hereafter) was collected by repeated centrifugation and washing with 189 190 80°C double distilled water (five times) to remove any free and weakly sorbed ALA.

191

192 Biological reduction and air re-oxidation experiments

Shawanella putrefaciens strain CN32 was isolated from an anaerobic subsurface core sample (250 m beneath the surface) obtained from the Morrison Formation in northwestern New Mexico (Fredrickson et al, 1998). CN32 cells were routinely cultured in tryptic soy broth (TSB) aerobically from the stock culture, which was kept in 40% glycerol at -80°C. The cells of the exponential growth phase were harvested, washed with sterilized bicarbonate buffer (2.5 g/L reagent grade NaHCO₃) three times to completely remove any residual TSB, and re-suspended in sterilized bicarbonate

200 buffer for inoculation.

201	Both NAu-2 and ALA-NAu-2 were made into slurries (final conc. 5 g/L) with
202	bicarbonate buffer (2.5 g/L reagent grade NaHCO ₃). Bioreduction experiments were
203	conducted in serum bottles sealed with rubber stoppers and aluminum caps after the
204	clay slurries were purged with N_2 :CO ₂ (80:20) (clay suspension volume 80 ml, total
205	volume of the bottles 120 ml). After autoclaving, filter-sterilized lactate was injected
206	to serve as the sole electron donor with a final concentration 10 mM. In selected
207	groups, sterilized anthraquinone-2,6-disulfonate (AQDS) was added as an electron
208	shuttling compound to facilitate the electron transfer (final conc. 0.1 mM). Finally
209	bicarbonate-washed CN32 cells were injected into the serum bottles to achieve a cell
210	concentration of 10 ⁸ cells/ml (acridine orange direct count, AODC). Both the NAu-2
211	and ALA-NAu-2 experiments consisted of three groups: a). Abiotic control group
212	containing lactate and AQDS but without cells; b). Experimental group 1 containing
213	lactate and CN32 cells without AQDS; c). Experimental group 2 containing lactate
214	and CN32 cells but with AQDS. All treatments were performed in duplicates. The
215	serum bottles were incubated at 37°C with constant shaking to prevent solid
216	precipitation.

Although the microbial Fe(III) reduction activity ceased in 10 days, the subsequent re-oxidation experiment was not commenced until 30 days. In an anaerobic glove box filled with 95% N₂ and 5% H₂ (Coy Laboratory Products, Grass Lake, MI, USA), the bioreduced clay suspensions in the serum bottles were pasteurized in a water bath (80° C, 3 times each at 30 mins) followed by transfer to

222	27-mL Balch tubes (final clay suspension volume 15 ml) without any washing in
223	order to protect the integrity of the clay particles. To avoid evaporation during the
224	re-oxidation process, the Balch tubes were sealed with rubber stoppers but with two
225	needles inserted into it. One needle was used as an air inlet and the other as a vent.
226	Re-oxidation of the reduced clay fractions was started by constantly bubbling air
227	through the needle and continued for 10 days.

228

229 Chemical reduction and air re-oxidation experiments

In order to compare the reduction kinetics and ALA release patterns between biotic and abiotic reduction, ALA-NAu-2 was also chemically reduced using sodium dithionite (Stucki et al. 1996). To achieve different Fe(III) reduction extents, six different sodium dithionite/mineral ratios (from 0.5:1 to 8:1) were used in the reduction experiments. The reduction procedure was the same as the bioreduction experiment except that sodium dithionite replaced CN32 cells without lactate and AQDS.

237

238 Analytical methods

Chemical analyses. To monitor the progress of Fe(III) reduction and Fe(II) oxidation
in NAu-2 and ALA-NAu-2, the total Fe(II) concentration was measured with the
1,10-phenanthroline method (Amonette and Templeton, 1998). At selected time points,
0.2 ml homogenized clay slurry was sampled with an anoxic and sterile syringe
followed by the Fe(II) measurement. To detect any reductive dissolution of NAu-2

244	and ALA-NAu-2 after the Fe redox cycle, those samples from the beginning and the
245	end of reduction and re-oxidation experiments were also measured for aqueous
246	concentrations of Fe, Al, and Si. Approximately 5 ml of homogenized clay slurries
247	were sampled and centrifuged inside an anaerobic glove box. Aqueous Fe, Al, and Si
248	concentrations in the supernatants were measured with inductively coupled plasma
249	optical emission spectrophotometry (ICP-OES) (Agilent Technologies 700 Series).
250	
251	X-ray diffraction (XRD). XRD was performed to detect mineralogical changes of
252	both NAu-2 and ALA-NAu-2 after reduction and re-oxidation. Approximately 0.5 ml
253	clay slurries were sampled and smeared onto petrographic glass slides and dried
254	overnight in an anaerobic glove box. Samples were also treated with ethylene glycol
255	(EG) in order to distinguish between smectite and illite. XRD patterns were obtained
256	with a Rigaku Smart lab X-ray powder diffractometer using $CuK\alpha$ radiation,
257	rotating-anode generator, and a power of 8500 W (200 kV, 45 mA). The samples were
258	scanned from 2 to 15° 2-theta stepping at 0.02 with a count time of 1s per step.
259	For modeling of the diffraction peaks, a Gauss peak-fitting method was applied to
260	selected XRD patterns with the Origin 8.5 program. The fitting region was between 3°
261	to 12° to ensure that the whole peak area was covered. A multi peak fitting method
262	was applied to automatically detect and deconvolute overlapping peaks.
263	

Fourier transform infrared spectroscopy (FTIR). In order to confirm ALA intercalation into the interlayer of NAu-2 and to detect any change of chemical

bonding of ALA and ALA-NAu-2 after the iron redox cycle, unreduced, reduced, and 266 re-oxidized NAu-2 and ALA-NAu-2 were prepared for FTIR analysis in the 267 mid-infrared region. In an anaerobic glove box, 0.4 ml clay slurry was sampled from 268 the sample serum bottle followed by centrifugation to acquire a pellet. After washing 269 with anoxic distilled water (3 times), the clay pellet was allowed to dry inside an 270 anaerobic glove box for over 24 hrs. Subsequently, two milligrams of the dried clay 271 pellet were manually mixed with 200 mg KBr and pressed into discs. The samples 272 were immediately analyzed in the diffuse reflectance mode using a Perkin-Elmer 273 Frontier Infrared Spectrometer. Fifty scans over the range 400-4000 cm⁻¹ with a 274 spectral resolution of 4 cm⁻¹ were accumulated for each spectrum. The Origin 8.5 275 program was applied to calculate the specific peak areas. 276

277

Total organic carbon (TOC) measurement. Time-course TOC measurement was made to monitor its release due to Fe reduction and re-oxidation. Approximately six milliliters of homogenized clay slurry were sampled inside a glove box and washed with anoxic DI water (3 times). After drying, TOC content was measured using an Analytik-jena multi series analyzer with a furnace temperature of 1000°C.

283

Scanning electron microscopy (SEM). To further detect mineralogical changes of NAu-2 and ALA-NAu-2 after the iron redox cycle, these clay minerals were observed under SEM. Clay suspensions were mounted on glass cover slips and fixed with a mixture of 2% paraformaldehyde and 2.5% glutaraldehyde. These sample-containing

288	cover slips were then sequentially dehydrated in varying proportions of ethanol
289	followed by critical point drying with a Quorum K850 Critical Point Dryer (CPD)
290	(Dong et al., 2003). After drying, the sample-coated cover slips were mounted on
291	SEM stubs and Pt-coated with Quorum SC7620 Sputter Coater for SEM observations.
292	A Zeiss Supra 55 SAPPHIRE SEM with Genesis 2000 X-ray energy dispersive
293	spectroscopy (SEM/EDS) was employed for morphological observation and chemical
294	analysis. The SEM was operated at an accelerating voltage of 8-15 kV. A working
295	distance (15 mm) and low beam current (30-40 $\mu A)$ were used to achieve the best
296	image resolution. A higher beam current (50-70 μ A) was used for qualitative EDS.

297

Transmission electron microscopy (TEM). To further confirm ALA intercalation 298 into the interlayer of NAu-2 and to detect any mineralogical change after the Fe redox 299 cycle, TEM observations were made. Clay slurries were diluted by a factor of 50, and 300 pipetted onto 300 mesh copper grids with carbon-coated nitrocellulose membrane. 301 302 The grids were allowed to dry overnight inside an anaerobic glove box. TEM imaging 303 and analysis were performed with a JEOL JEM-2100 LaB6 TEM/STEM with a 200 keV accelerating voltage. The bright-field imaging mode (TEM BF) was used to study 304 the morphology of clay particles. TEM images were recorded using a Gatan Orius 305 SC200D camera attached on a Gatan 863 Tridiem GIF Post-Column Energy Filter 306 EELS/EFTEM (Gatan Image Filter). 307

308

309

RESULTS

310 Characterization of ALA-NAu-2

311	Physical and chemical characteristics. In comparison with NAu-2, ALA-NAu-2
312	became fluffy in texture and light green in color. When NAu-2 and ALA-NAu-2 were
313	made into slurries and stirred for 24 hrs, the former turned into a homogeneous
314	colloidal suspension (Fig. 1A, left), whereas the latter settled down in a few minutes
315	(Fig. 1A, right). This physical difference between NAu-2 and ALA-NAu-2 suggested
316	an association of ALA with NAu-2. SEM images did not exhibit any obvious
317	morphological difference between NAu-2 and ALA-NAu-2 (Fig. 1 B & C). Particles
318	in both NAu-2 and ALA-NAu-2 showed a flaky texture with a low Al/Si ratio (Fig. 1
319	D & E). The carbon content was higher in ALA-NAu-2 than in NAu-2, again
320	suggesting an association of ALA with NAu-2. The total iron content decreased from
321	23.9% in NAu-2 to 19.9% in ALA-NAu-2, of which 99% was Fe(III). In contrast,
322	total organic carbon (TOC) content increased from 0.97% in NAu-2 to 6% in
323	ALA-NAu-2.

324

325 **XRD and FTIR.** XRD and FTIR results further indicated that ALA was intercalated 326 into the interlayer region of NAu-2. For the air-dried samples, the d(001) spacing 327 increased from 12.33 Å for NAu-2 to 17.10 Å for ALA-NAu-2 (Fig. 2 A & B). In 328 addition, the d(001) peak was broader in ALA-NAu-2 than the same peak in NAu-2, 329 suggesting that the intercalation of ALA into the interlayer region of NAu-2 may have 330 decreased crystallinity and/or particle size of NAu-2, consistent with a previous 331 observation (Liu et al. 2011).

332	To further confirm that the d(001) layer expansion was due to the intercalation of
333	ALA, FTIR spectroscopy was performed on ALA-NAu-2 and a mechanical mixture
334	of ALA and NAu-2 (in the same ratio as that used for ALA-NAu-2 synthesis, termed
335	as ALA+NAu-2). Almost all the characteristic absorption bands of ALA were present
336	in ALA+NAu-2, but only a subset of ALA bands were visible in ALA-NAu-2 with
337	some minor shifts in wave number (Fig. 3), suggesting that the ALA and NAu-2
338	association in ALA-NAu-2 was via interlayer intercalation, not due to physical
339	mixing.

Specifically, the broad H–OH stretching band for the molecular water in the interlayer region of NAu-2 became weaker in the ALA-NAu-2 (Fig. 3A, a & d centered at 3426 cm⁻¹), suggesting a partial replacement of adsorbed interlayer water by intercalated ALA (Katti et al. 2006). A sharp N-H stretching band at 3236 cm⁻¹ that was clearly observed in pure ALA became invisible in ALA-NAu-2, possibly because this small band may be buried under a broad H-OH hydrogen bonded water (3500-3200 cm⁻¹) (Fig. 3A, b &d) (Neumann et al. 2011; Sikdar et al. 2008).

Two sharp absorption bands at 2923 and 2851 were observed for pure ALA and they were assigned to C-H asymmetric and symmetric stretching, respectively (Fig. 3B, b) (Katti et al. 2006; Sikdar et al. 2008). In ALA+NAu-2, these two bands stayed at the same positions (Fig. 3B, c). However, in ALA-NAu-2, these absorption bands became weaker and broader, and shifted slightly to higher wave numbers (from 2923 to 2930, 2851 to 2855, respectively) (Fig. 3B, d). It has been reported that the orientation of intercalated ALA in smectite should be flat and parallel to the smectite

354	layer (Katti et al. 2008; Sikdar et al. 2006a). Thus, the interaction of oriented ALA in
355	the interlayer space of NAu-2 with the tetrahedral layers above and below might have
356	caused these wave number shifts (Katti et al. 2006; Sikdar et al. 2006a).
357	In the 1700-1550 cm^{-1} region, the broad absorption peak at 1633 cm^{-1} was
358	assigned to the O-H deformation in NAu-2 (Fig. 3D, a) (Katti et al. 2006; Sikdar et al.
359	2008). A sharp absorption band at 1637 cm^{-1} was observed for pure ALA that could be
360	assigned to a combination of O-H deformation and N-H bending (Fig. 3D, b) (Katti et
361	al. 2006). In ALA + NAu-2, these two bands were superimposed to produce a broad
362	peak centered at 1642 (Fig. 3D, c). In ALA-NAu-2, this composite band became even
363	broader and its center shifted to 1627 cm ⁻¹ (Fig. 3D, d). This shift can be attributed to
364	the electrostatic interaction of the functional groups of ALA with the surface oxygen
365	of the Si-O ₄ tetrahedra present above and below the NAu-2 interlayer. The broad peak
366	shape may be a result of the replacement of interlayer water in NAu-2 by ALA,
367	further confirming the intercalation of ALA (Katti et al. 2006; Sikdar et al. 2006a;
368	Sikdar et al. 2008).

In pure ALA solid, the carboxyl functional group should remain in dissociated form (R-COO⁻) and therefore gave rise to the asymmetric and symmetric stretching bands at 1514 and 1396 cm⁻¹, respectively (Fig. 3E, b) (Katti et al. 2006; Sikdar et al. 2008). During the intercalation process, ALA was protonated in aqueous solution, and the COO⁻ group was converted to the COOH group, which appeared to cause the emergence of a carbonyl absorption band (C=O) (e.g. 1711 cm⁻¹) (Katti et al. 2006). Thus, the protonation of COO⁻ to COOH in ALA-NAu-2 resulted in disappearance of 1514 and 1396 cm⁻¹ (Fig. 3E, d) and emergence of an absorption band at 1711 cm⁻¹
(Fig. 3C, d).

378

379 Microbial reduction of structural Fe(III) and air re-oxidation of biogenic Fe(II)

380 in NAu-2 and ALA-NAu-2

Reduction rate and extent. Within the experimental time frame (32 days), no 381 reduction was observed in the abiotic control groups (Fig. 4). S. putrefaciens CN32 382 cells were able to reduce structural Fe(III) in both NAu-2 and ALA-NAu-2, but there 383 were differences in the rate and extent of bioreduction. In the absence of AQDS, the 384 bioreduction was complete within 32 days, with the final reduction extents of 16.8% 385 and 15.1%, and the initial rates of 2.11×10^{-4} mM/h and 0.96×10^{-4} mM/h, for NAu-2 386 (Fig. 4A) and ALA-NAu-2 (Fig. 4B), respectively. A "stagnant phase" was observed 387 in the ALA-NAu-2 group (day 5 to 12), when bioreduction apparently stopped (Fig. 388 4B). This "stagnant phase" was also observed in bioreduction of ALA-NAu-2 by 389 methanogens (Zhang et al. 2014). 390

The presence of AQDS significantly increased both the rate and extent of bioreduction. Both NAu-2 and ALA-NAu-2 reached a similar extent of reduction by the end of 32 days (25.0% and 26.0%, respectively), but with different rates. Within the first 36 hrs, the average reduction rate was 0.081 mM/h for NAu-2, but only 0.043 mM/h for ALA-NAu-2. The highest rate during this time period (from 12 to 24 hrs) was 0.145 mM/h for NAu-2 but only 0.068 mM/h for ALA-NAu-2. These rates were almost 3 orders of magnitudes higher than those in the absence of AQDS. A "stagnant 398 phase" was also observed for ALA-NAu-2 around 4-5 days (Fig. 4B).

399	Bioreduced NAu-2 and ALA-NAu-2 exhibited a similar re-oxidation behavior.
400	The majority of the biogenic Fe(II) (about 60%) was rapidly re-oxidized within the
401	first 4 hrs (Fig. 5), which was consistent with a previous study (Yang et al. 2012). The
402	fastest oxidation occurred within the first 2 hrs with rates of 1.57 mM/h and 1.19
403	mM/h for NAu-2 and ALA-NAu-2, respectively. The re-oxidation experiments ceased
404	by the end of 12 hrs, but they were allowed to continue until 240 hrs to ensure
405	complete re-oxidation. The final Fe(II)/Fe(III) ratio in ALA-NAu-2 was slightly
406	higher than that in NAu-2 (4.7% and 3.3%, respectively).

407

ALA release. During the redox cycle, TOC content in the abiotic control groups of 408 both NAu-2 and ALA-NAu-2 remained the same throughout the complete reduction 409 (0-32 days) and oxidation (32-40 days) cycle, 6% for ALA-NAu-2 and 0.97% for 410 NAu-2 (Fig. 6A). This constant TOC content suggested that the intercalated ALA in 411 the interlayer of NAu-2 remained stable throughout the redox cycle. A small amount 412 413 of TOC in original NAu-2 has been reported previously (Jaisi et al. 2005) and its stability over the redox cycle suggested that it was not used by any microbial activity. 414 Bioreduction of structural Fe(III) in ALA-NAu-2 released a small amount of ALA in 415 the first 2 days (TOC decrease from 6% to 5%), however no further release was 416 detected afterwards (Fig. 6A). This TOC release pattern did not correspond to the 417 bioreduction pattern (Fig. 4). For example, for the experimental group with AQDS, 418 419 TOC content did not decrease any further after 2 days, even when microbial reduction

420	of Fe(III) was still rapid (compare Figs. 4B & Fig. 6A). The experimental group
421	without AQDS followed the same pattern. At the end of the bioreduction, the final
422	TOC content in ALA-NAu-2 was essentially the same regardless of the presence or
423	absence of AQDS.
424	Subsequent air re-oxidation of Fe(II) in ALA-NAu-2 did not further release any
425	ALA, as evidenced by a constant TOC content throughout the experimental duration
426	for both abiotic control and experimental groups (dashed lines in Fig. 6A). Thus, a
427	positive correlation ($r^2=0.87$) between TOC and ferrous iron content was only found
428	when the bioreduction extent was low (<12%, Fig. 7). This correlation broke down
429	when the extent of reduction was higher than 12%.

430

Aqueous cation concentrations. Aqueous concentrations of Al, Fe, and Si increased
from the abiotic control to the bioreduced to the re-oxidized samples (Table 1),
suggesting that a small amount of reductive and oxidative dissolution occurred as a
result of iron redox cycle.

435

436 **Structural changes detected by FTIR.** Upon the reduction-oxidation cycle of Fe in 437 ALA-NAu-2, the characteristic absorption bands of ALA did not shift in wave number, 438 but increased in peak area. Specifically, the C-H asymmetric and symmetric stretching 439 bands at ~2930 and ~2855 cm⁻¹ (Fig. 3B, f & g), the C=O stretching band at ~1711 440 cm⁻¹ (Fig. 3C, f & g), the N-H bending band at ~1627 cm⁻¹ (Fig. 3D, f & g) and the 441 CO–H bending band at ~1470 cm⁻¹ (Fig. 3E, f & g) all stayed at the same positions but

442	became sharper after the redox cycle. The peak areas of these characteristic bands
443	increased after the bioreduction and air re-oxidation cycle (Table 2). In addition, the
444	N-H stretching band at 3287 cm ⁻¹ , which was barely visible in ALA-NAu-2 (Fig. 3A,
445	d), became distinct after the redox cycle (Fig. 3A, f & g).
446	Furthermore, the R-COO ⁻ asymmetric and symmetric stretching bands at 1514
447	and 1396 cm ⁻¹ became slightly more prominent in the redox-cycled samples relative
448	to the unreduced ALA-NAu-2 (Fig. 3E, d, f & g), suggesting that a small amount of
449	released ALA might have re-adsorbed onto NAu-2 particle surfaces.
450	
451	Mineralogical changes detected by XRD results. Both air-dried and
452	ethylene-glycolated samples were examined with XRD to detect mineralogical
452 453	ethylene-glycolated samples were examined with XRD to detect mineralogical changes after bioreduction of Fe(III) and air re-oxidation of Fe(II) in NAu-2 and
452 453 454	ethylene-glycolated samples were examined with XRD to detect mineralogical changes after bioreduction of Fe(III) and air re-oxidation of Fe(II) in NAu-2 and ALA-NAu-2. Because ethylene glycol would expand the interlayer of all samples
452 453 454 455	ethylene-glycolated samples were examined with XRD to detect mineralogical changes after bioreduction of Fe(III) and air re-oxidation of Fe(II) in NAu-2 and ALA-NAu-2. Because ethylene glycol would expand the interlayer of all samples (Both ALA-NAu-2 and NAu-2) to the same spacing, air dried samples were used for
452 453 454 455 456	ethylene-glycolated samples were examined with XRD to detect mineralogical changes after bioreduction of Fe(III) and air re-oxidation of Fe(II) in NAu-2 and ALA-NAu-2. Because ethylene glycol would expand the interlayer of all samples (Both ALA-NAu-2 and NAu-2) to the same spacing, air dried samples were used for interpreting the intercalation effect of ALA. To promote possible mineralogical
452 453 454 455 456 457	ethylene-glycolated samples were examined with XRD to detect mineralogical changes after bioreduction of Fe(III) and air re-oxidation of Fe(II) in NAu-2 and ALA-NAu-2. Because ethylene glycol would expand the interlayer of all samples (Both ALA-NAu-2 and NAu-2) to the same spacing, air dried samples were used for interpreting the intercalation effect of ALA. To promote possible mineralogical changes, the bioreduced NAu-2 and ALA-NAu-2 samples were incubated under the
452 453 454 455 456 457 458	ethylene-glycolated samples were examined with XRD to detect mineralogical changes after bioreduction of Fe(III) and air re-oxidation of Fe(II) in NAu-2 and ALA-NAu-2. Because ethylene glycol would expand the interlayer of all samples (Both ALA-NAu-2 and NAu-2) to the same spacing, air dried samples were used for interpreting the intercalation effect of ALA. To promote possible mineralogical changes, the bioreduced NAu-2 and ALA-NAu-2 samples were incubated under the same condition for additional 60 days after cessation of bioreduction. The air
452 453 454 455 456 457 458 459	ethylene-glycolated samples were examined with XRD to detect mineralogical changes after bioreduction of Fe(III) and air re-oxidation of Fe(II) in NAu-2 and ALA-NAu-2. Because ethylene glycol would expand the interlayer of all samples (Both ALA-NAu-2 and NAu-2) to the same spacing, air dried samples were used for interpreting the intercalation effect of ALA. To promote possible mineralogical changes, the bioreduced NAu-2 and ALA-NAu-2 samples were incubated under the same condition for additional 60 days after cessation of bioreduction. The air re-oxidized samples were analyzed as soon as the re-oxidation experiments were

For the air-dried samples, the (001) peak remained at the same position (~17 Å,
2θ=5.20°) but became sharper after bioreduction of Fe(III) in ALA-NAu-2 (Fig. 2C &
D), suggesting little release of ALA from the NAu-2 interlayer. In addition to this

464	main peak, a small shoulder appeared at around 12.9 Å (2θ =6.88°) for the bioreduced
465	ALA-NAu-2 sample, which was similar to the d(001) spacing of NAu-2 (Fig. 2A).
466	This newly emerged shoulder was slightly more intense in the AQDS-treated sample
467	than in the one without AQDS. A deconvolution of this broad "double peak" in the
468	XRD pattern for the bioreduced ALA-NAu-2 sample (with AQDS) quantified an
469	ALA-NAu-2/NAu-2 weight ratio of 4.29:1 (Fig. 8). This ratio suggested that 18.6% of
470	the ALA-NAu-2 converted back to regular NAu-2 after a bioreduction-triggered loss
471	of ALA from the interlayer of NAu-2. This amount was similar to a total of 20% ALA
472	release from NAu-2, as determined from TOC analysis (Fig. 6A).
473	The small shoulder at 12.9 Å disappeared after air re-oxidation of ALA-NAu-2
474	with or without AQDS (Fig. 2E), and the (001) peak at 17 Å became even sharper
475	after air re-oxidation. After the ethylene glycol treatment of ALA-NAu-2, the small
476	shoulder disappeared and the (001) peak at 17 Å became even sharper (Appendix 1)
477	

Mineralogical changes as evidenced by SEM and TEM observations. 478 479 Bioreduction of structural Fe(III) in NAu-2 apparently broke NAu-2 into particles to form a net-like morphology with a lower amount of Fe relative to unreduced NAu-2 480 (Fig. 9A). Similarly, after bioreduction of structural Fe(III) in ALA-NAu-2, many 481 dissolution pits appeared on some plate-shaped particles, forming a net-like 482 morphology (Fig. 9B). Some particles were broken to form a lamella or even a 483 filament-like texture. SEM/EDS analyses revealed that the platy particles contained 484 485 higher amounts of iron and carbon (point b2 on Fig. 9B) than the ones with a net or 486 lamella-like morphology (point b1 on Fig. 9B).

487	Some particles in bioreduced ALA-NAu-2 exhibited a smooth surface and
488	plate-like morphology, and EDS analysis identified them as albite (point c2 on Fig.
489	9C). The albite appeared to be connected to some residual iron-deficient nontronite
490	flakes (point c1 on Fig. 9C). However, XRD did not detect any albite, possibly due to
491	a low amount. Silica aggregates also appeared in bioreduced NAu-2 (data not shown)
492	and ALA-NAu-2 (Fig. 9D).

In the air re-oxidized ALA-NAu-2, lamella- and filament-shaped particles that were observed in bioreduced ALA-NAu-2 disappeared. Those net-shaped flakes which were ubiquitous in bioreduced samples (Fig. 9B) were not common any more. Residual plate-shaped particles appeared to form large aggregates after air re-oxidation (Fig. 9E). The chemical composition of these aggregates (point e1) was similar to that of unreduced ALA-NAu-2 (data not shown). In addition, a few carbon-rich particles occurred within clay aggregates (Fig. 9F).

Elemental mapping of carbon in a typical plate-like bioreduced NAu-2 particle showed an uneven carbon distribution. Relative to a uniform distribution of carbon in the abiotic control group (Fig. 10A), local depletion and enrichment of carbon was apparent for bioreduced ALA-NAu-2 (Fig. 10B). Similar depletion and enrichment of carbon was also observed for air-reoxidized sample. This heterogeneous distribution of carbon suggests that carbon was re-distributed as a result of bioreduction and air re-oxidation.

507 TEM data provided additional evidence for mineralogical changes. In unreduced

508	NAu-2, the dominated d(001) spacing was 1.1-1.2 nm (Fig. 11A). After ALA
509	intercalation into the interlayer NAu-2, the d(001) spacing increased to 1.5 nm
510	(Fig.11B). However, this spacing was smaller than 17.1 Å as observed in XRD pattern
511	(Fig. 2B), likely due to nontronite layer collapse inside the high vacuum of TEM. In
512	bioreduced ALA-NAu-2, two kinds of d(001) spacings, 1.5 nm and 1.1 nm (Fig.11C),
513	were commonly observed. These two types of spacings corresponded to the "double
514	peaks" in the XRD profile, e.g., 17.10 and 12.33 Å (Fig. 2C & D) but with smaller
515	values due to layer collapse. The carbon content in the 1.5 nm fringes was much
516	higher than that in the 1.1 nm fringes (Fig.11 C), suggesting that the 1.1 nm fringes
517	were residual NAu-2 layers after ALA loss.

518

519 Chemical reduction of structural Fe(III) in NAu-2 and ALA-NAu-2

520 **Reduction rate and extent.**

521 Different reduction extents (~28% to ~80%) were achieved by using different sodium 522 dithionite to NAu-2 ratios. In contrast to bioreduction, chemical reduction was rapid 523 and the maximum extent of reduction was reached within 2 hrs with a similar extent 524 and rate for NAu-2 and ALA-NAu-2 (Appendix 2).

525

ALA release. In comparison to the bioreduced ALA-NAu-2, a different TOC release
pattern was observed for chemically reduced sample. A reduction extent of 28.6%
(similar to the final bioreduction extent) triggered a significant amount of TOC release
(Fig. 6B). The measured amount of ALA release was not directly correlated with the

530 reduction extent.

531

Aqueous concentrations. In contrast to bioreduction, aqueous concentrations of Al, Fe, and Si in chemically reduced ALA-NAu-2 suspensions were almost two orders of magnitude higher than those for the bioreduced samples (Table 1). These concentrations increased with reduction extent.

536

Structural changes detected by FTIR. Unlike bioreduced ALA-NAu-2 where 537 characteristic absorption bands did not show any significant changes in wave number, 538 chemical reduction of ALA-NAu-2 led to significant changes in both band position 539 and intensity. Regardless of the reduction extent, chemical reduction of Fe(III) in 540 ALA-NAu-2 shifted the C-H asymmetric and symmetric stretching bands back to 541 their original positions as in pure ALA (e.g. from 2930 to 2923 cm⁻¹, 2855 to 2851 542 cm⁻¹) with greatly decreased band intensities (Fig. 3B, i; Table. 2; data not shown for 543 higher extents). Similar observation was made for the N-H bending band, where the 544 peak shifted from 1633 to 1642 cm⁻¹ with a decreased intensity (Fig. 3D, i; Table. 2). 545 In addition, the C=O stretching band at 1711 cm⁻¹ that was characteristic of 546 intercalated ALA-NAu-2 disappeared after chemical reduction (Fig. 3C, i; Table. 2), 547 again regardless of the reduction extent. The absorption peak at 1470 cm⁻¹ (CO-H 548 bending) became nearly invisible (Fig. 3E, i; Table. 2). The asymmetric and 549 symmetric stretching bands of R-COO⁻ at 1514 and 1396 cm⁻¹ became hardly visible, 550 551 suggesting that the released ALA might not be able to re-adsorb on NAu-2 particle surfaces in such a short amount of time. As expected, chemically reduced NAu-2
exhibited similar patterns as in unreduced NAu-2 (Fig. 3A-E, h).

554

Mineralogical changes detected by XRD results. In contrast to bioreduction,
chemical reduction of structural Fe(III) in ALA-NAu-2 resulted in a decrease in both
the intensity and the spacing of the d(001) peak from 17 Å to 12.6 Å (Fig. 2F & G).
The 12.6 Å spacing was the nearly the same as that for the unreduced NAu-2 (Fig.
2A). These data are consistent with a nearly complete loss of ALA from NAu-2 upon
chemical reduction.

561

Mineralogical changes detected by SEM observations. Consistent with the TOC, 562 XRD, and FTIR results, SEM images for chemically reduced ALA-NAu-2 were 563 drastically different from those for the bioreduced ALA-NAu-2. Particles with rose-564 and net-like morphologies were more common in chemically reduced samples, even 565 at the same reduction extent as in bioreduction (e.g. 28.6%, Fig. 9G). In samples with 566 567 a high reduction extent (>80%), dissolution pits were ubiquitous (Fig. 9H) and partially dissolved particles tended to aggregate to form large networks. The contents 568 of iron and carbon decreased with increased reduction extents (Point g1 and h1 on Fig. 569 9G and 9H, respectively). 570

571

572

573

DISCUSSION

574 Contrasting effects of interlayer ALA on biological and chemical reduction of

575 structural iron in nontronite

A previous study systematically investigated the interaction mechanism between 576 ALA and a Na-montmorillonite at the molecular level (Katti et al. 2006) and 577 concluded that ALA entry into the montmorillonite interlayer expanded the interlayer 578 spacing. The orientation of ALA in the interlayer was parallel to the layers. Both the 579 functional groups and the backbone chain of ALA exhibited a strong interaction with 580 adjacent tetrahedral sheets above and below the intercalated interlayer, and thus 581 significantly promoted particle aggregation. Our FTIR and XRD data are consistent 582 with this study, showing that ALA intercalation into the interlayer of NAu-2 583 significantly expanded the d(001) spacing. By substituting the interlayer Na⁺ and 584 molecular water, the intercalated ALA could have reduced the hydrophilicity of the 585 NAu-2, and thus promoted particle aggregation (Fig. 1) (Sikdar et al. 2006a; 2006b; 586 2008). 587

This structural configuration of ALA in the interlayer of NAu-2 would have 588 589 important implications for the electron transfer process. Previous studies suggested that electron transfer to structural Fe(III) in clay minerals can occur both parallel and 590 perpendicular to basal planes (Dong et al. 2009; Neumann et al. 2013). Under this 591 scenario, any mechanism that alters the interlayer region would affect the electron 592 transfer pathway. For example, electron shuttling compounds such as AQDS can 593 facilitate the electron transfer process because it can possibly enter the interlayer 594 region (Bishop et al. 2011; Zhang et al. 2013). According to the same logic, the 595

substitution of Na^+ and Ca^{2+} cations by ALA in the interlayer is expected to hinder the 596 electron transfer pathway because ALA is larger than these cations. In addition, the 597 hydrophobic and aggregated nature of ALA-intercalated NAu-2 (Fig. 1) would be 598 unfavorable for electron transfer as well. Furthermore, the released ALA from the 599 600 NAu-2 interlayer at the beginning of bioreduction could further hinder electron transfer via adsorption onto NAu-2 particle surfaces. Likewise, released ALA 601 molecule may coat cell surfaces, which can inhibit microbial activity as well (Choi et 602 al. 2008). These interactions work together to create an unfavorable environment for 603 electron transfer, even with the help of hydrophilic electron shuttling compounds such 604 as AQDS, because these compounds may not be able to enter the already congested 605 interlayer region and/or remove ALA from NAu-2 and cell surfaces. However, the 606 expansion of the interlayer spacing of NAu-2 by intercalated ALA should facilitate 607 608 electron transfer and thus would increase the reduction rate and extent. Our data suggest that the inhibitory effect of the intercalated ALA was more important than the 609 facilitation effect at the beginning of the bioreduction experiments and may have been 610 611 responsible for the lower initial reduction rate of ALA-NAu-2 relative to NAu-2. However, the facilitation effect may become important over longer incubation time 612 and eventually the inhibitory and facilitation effects may have canceled out with each 613 other, resulting in no difference in the ultimate reduction extent between ALA and 614 ALA-NAu-2 (Fig. 4). 615

616 Our current results were significantly different from our early data by Zhang et al. 617 (2014). During a study of Fe(III) bioreduction by a methanogen *Methanosarcina*

618	mazei , Zhang et al. (2014) showed that ALA decreased both the rate and extent of
619	Fe(III) bioreduction, apparently because ALA blocked the electron transfer pathway,
620	even in the presence of AQDS. However, our results here did not show any inhibition
621	effect of ALA, even in the absence of AQDS. These results collectively demonstrate
622	that electron transfer pathway is dependent on both the mineral and the microbe
623	involved. Clearly, DIRB and methanogen may produce different electron transfer
624	proteins, cell appendages, and shuttling compounds, which would all contribute to
625	their difference in their Fe(III) reduction mechanisms. For example, M. mazei can
626	produce methanophenazine, which is a hydrophobic redox-active cofactor (Abken et
627	al. 1998), but Shewanella can produce menaquinone-related shuttles (Newman and
628	Kolter, 2000). These different electron shuttling compounds are expected to play
629	different roles in the electron transfer process. Future work is necessary to further
630	understand these differences under well controlled conditions.

In contrast to the inhibitory effect of ALA on bioreduction, ALA did not appear to 631 affect the chemical reduction rate and extent (Appendix 2). Three possible reasons 632 633 may be responsible for this difference between chemical and biological reduction. First, because of the rapid rate of chemical reduction, the inhibitory/promoting factors 634 of ALA could not be manifested in such a short time span. Second, sodium dithionite 635 is a small molecule and can possibly enter the NAu-2 interlayer without any 636 impedance, even in the presence of ALA. Third, the fundamental difference in the 637 electron transfer mechanism between microbial and chemical reduction (Ribeiro et al. 638 639 2009; Stucki, 2011) may render ALA as an inefficient agent in blocking electron transfer in the case of chemical reduction. All these reasons may have been
responsible for the lack of any inhibitory/facilitation effect of ALA on chemical
reduction.

643

644 New insights of the mechanisms of ALA release from NAu-2

Biological reduction and air re-oxidation. Biological reduction of structural Fe(III) 645 in clay minerals is believed to proceed from the edge towards the interior of the 646 structure (Ribeiro et al. 2009; Stucki, 2011) via a reduction front. With increasing 647 extent of Fe(III) reduction, this reduction front progressivly moves from the exterior 648 into the interior of NAu-2 particles. Because of a limited extent of bioreduction by 649 various microorganisms (usually < 30%, Dong et al. 2009), it is likely that a large 650 fraction of Fe(III) bioreduction is accomplished through clay edges (Fig. 12; Zhao et 651 al. 2015). According to this model, only that fraction of intercalated ALA that was 652 associated with clay edge may be released during the initial phase of Fe(III) reduction 653 (Fig. 12, mechanism 1), likely due to its close proximity to aqueous solution and 654 655 reduction-triggered structural instability. This ALA release mechanism would account for the splitting of the d(001) spacing from ~1.7 nm for unreduced ALA-NAu-2 into 656 \sim 1.5-1.7 and \sim 1.2 nm for the bioreduced sample (Fig. 2) because ALA release would 657 shrink the interlayer spacing of ALA-NAu-2 particles back to the original spacing of 658 NAu-2. This model would also explain the heterogeneous distribution of carbon as a 659 result of bioreduciton of ALA-NAu-2: e.g., depletion on the particle edges and 660 661 enrichment in the interior (Fig. 10). This preferential release of ALA along NAu-2

662	edges also explains larger fringe spacings in the particle interior but smaller spacings
663	around the edges (Fig. 11C). At the experimental pH (neutral), ALA should be
664	deprotonated and its charge should be either neutral or negative, so its release from
665	the nontronite interlayer is consistent with charge balance requirement.
666	Subsequent air re-oxidation would only convert the edge-Fe(II) back to Fe(III)
667	with no further release of ALA, because this thin layer of Fe(II)-rich ALA-NAu-2 was
668	already depleted in ALA (Fig. 12, mechanism 1). Our ALA release pattern (a small
669	amount of ALA release at the beginning of bioreduction with no further release during
670	subsequent oxidation, Fig. 6A) was consistent with this model. Reoxidation of Fe(II)
671	to Fe(III) would create excess positive charge to the nontronite structure, and one
672	mechanism to achieve charge balance is via removal of Na^+ from the interlayer. It is
673	unlikely that ALA in aqueous solution would re-enter the interlayer in order to balance
674	the charge because released ALA should have been either sorbed onto nontronite and
675	bacterial cell surfaces or precipitated.

676 NAu-2 particle heterogeneity could be another reason for the observed ALA 677 release. The broad XRD peaks for unreduced NAu-2 (Fig. 2A) suggest that this mineral was heterogeneous in particle size (surface area), thickness, and crystallinity 678 (Yang et al. 2012). The intercalation of ALA into the interlayer of NAu-2 and 679 adsorption of ALA onto NAu-2 particle surfaces could have introduced additional 680 NAu-2 particle heterogeneities, as evidenced by the broadening of the (001) peak of 681 ALA-NAu-2 (Fig. 2B) relative to NAu-2 (Fig. 2A). Based on our previous 682 observation that small and poorly crystalline particles should be preferentially 683

684	subjected to reductive dissolution (Yang et al. 2012; Zhao et al., 2015), it is likely that
685	reductive dissolution of these particles released a small amount of ALA at the
686	beginning of the bioreduction experiments. This model would explain the
687	"purification effect" (e.g. peak sharpening" as revealed by XRD and FTIR (Table. 2;
688	Fig. 2; Fig. 3). That is, after reductive dissolution of the small and/or poorly
689	crystalline particles, the molecular interaction between ALA and NAu-2 in the
690	residual but more crystalline ALA-NAu-2 particles would be stronger, and would
691	result in sharper peaks in XRD patterns and more intense absorption bands in FTIR
692	spectra. These lines of evidence collectively suggest that the fraction of ALA
693	associated with small and/or poorly crystalline particles was unstable and
694	preferentially released during the iron redox cycle (Fig. 12, mechanism 2).

In summary, our results in this study demonstrated that ALA release pattern was 695 much more complex than the model proposed in our earlier study (Zhang et al., 2014). 696 The release of ALA throughout the iron redox cycle can be divided into three stages. 697 698 During the first stage (days 0-2) (Fig. 4B), the small and/or poorly crystalline particles 699 may be preferentially reduced and dissolved at the beginning of bioreduction, and a small amount of the intercalated or adsorbed ALA was released from these particles. 700 701 During this stage, the amount of release ALA was positively correlated with the bioreduction extent (Fig. 7), as consistent with the model proposed by Zhang et al. 702 703 (2014). During the second stage (days 2-32) (Fig. 4B), because a fraction of the 704 intercalated ALA had been already released from small/poorly crystalline particles, continued bioreduction of structural Fe(III) in larger and well-crystalline NAu-2 705

706	particles would not release ALA any further (Fig. 6A). During the third stage (air
707	re-oxidation stage), although there was a small amount of dissolution (Table 1, Yang
708	et al. 2012), re-oxidation resulted in little ALA release because it occurred largely
709	around NAu-2 particle edges, which had already been stripped off ALA.

710

Chemical reduction. Because of the major differences in the mechanism between 711 chemical and biological reduction (Lee et al. 2006; Stucki, 2011; Stucki and Kostka, 712 2006), the pattern of ALA release was expected to be different. In contrast to the 713 reduction front model (Ribeiro et al. 2009;), chemical reduction follows a "pseudo 714 715 random" model, in which electron transfer from the reductant to structural Fe(III) in the octahedral sites is virtually random and does not exhibit much selectivity (Ribeiro 716 et al. 2009), especially in Fe-rich clays like nontronite (Neumann et al. 2011). In this 717 case, ALA in any part of the NAu-2 structure (not necessarily limited to edge sites) 718 would be equally susceptible to reductive release. Because of rapid and extensive 719 720 dissolution (Table 1 and Fig. 9G, H), chemical reductant may have resulted in a 721 homogeneous release of ALA from all particles. In this case, a large fraction of ALA would be expected to release from intercalated/adsorbed ALA (Table. 1). 722

723

724 Mineral transformation

In contrast to our early study (Zhang et al., 2014), where no mineralogical changes were observed as a result of Fe(III) bioreduction by methanogens, our XRD, SEM, and TEM all demonstrated extensive mineralogical changes as a result of Fe(III)

728	bioreduction by iron-reducing bacteria. The formation of albite and silica is consistent
729	with our earlier studies (Liu et al., 2015; Zhao et al., 2015) and supports our ALA
730	release model, e.g., reductive dissolution of small and poorly crystalline NAu-2
731	particles. Relative to the biogenic albite formed from microbial reduction of Fe(III) in
732	pure NAu-2 (Zhao et al., 2015), the size of the albite observed in this study was
733	several times larger, suggesting that ALA may have played an effect in its formation
734	and growth.

735

736 Preservation of ALA in NAu-2 against iron redox cycling

737 Oscillating redox conditions are common in natural environments such as the wetting-drying cycle of rice paddy soils (Favre et al. 2006; Stucki, 2011). Under such 738 conditions, the extent and rate of organic matter decomposition would be determined 739 by their chemical recalcitrance (Baldock and Skjemstad, 2000; Lützow et al. 2006), 740 oxygen exposure time (Hartnett et al. 1998) and its physico-chemical protection from 741 decomposition (Conant et al. 2011). A previous study indicated that even a brief, 742 743 periodic exposure to O₂ would result in extensive and sometimes rapid organic matter decomposition (Aller, 1994). Under long-term oxygen exposure, even organic 744 matter-mineral aggregates would be destroyed (Arnarson and Keil, 2007). Thus, an 745 oscillating redox condition clearly affects organic matter burial and preservation in 746 natural environment. 747

Our results demonstrated that after ALA removal from the edges of small/poorlycrystalline NAu-2 particles, ALA preserved in the nontronite structure was virtually

750	not released throughout the iron redox cycle (Fig. 6). After one complete redox cycle
751	of iron, NAu-2 clay particles appeared aggregated (Fig. 9E) which would be resistant
752	to further ALA loss. A reasonable prediction is that these aggregates may be able to
753	better protect ALA from degradation even if they are subjected to more iron redox
754	cycles. However, more research is needed to confirm this prediction. In comparison
755	with complicated natural system, there are many limitations in laboratory experiments
756	such as the short experimental time frame, the use of iron-rich clay mineral, and the
757	simplicity of the experiments, but these results are valuable as they provide
758	mechanistic insights into the role of clay minerals in preserving organic compound in
759	redox oscillating environment.

⁷⁶⁰

761

IMPLICATION

Although the type of association between mineral and organic matter varies 762 depending on the physical and chemical properties of the organic molecules and the 763 764 minerals of interest (Keil and Mayer, 2014; Kleber et al. 2014), there is little doubt 765 that sorption of organic matter onto mineral surfaces will protect it from degradation. While much evidence found in natural environment suggests that natural organic 766 matter is either adsorbed onto mineral surfaces or occluded in the space formed by 767 aggregation of irregular mineral particles (Keil and Mayer, 2014; Lützow et al. 2006), 768 not enough evidence has been found for organic matter intercalation into the 769 770 interlayers of clay minerals as a protection mechanism. This gap in knowledge may be 771 due to lack of appropriate characterization methods to characterize the intercalated

772	organic matter quantitatively (Alexandre and Dubois, 2000). Our results demonstrated
773	that certain organic compound can be effectively protected within the interlayers of
774	clay mineral structures against a changing redox environment and this protection may
775	be responsible for the observed positive correlation between the total organic carbon
776	content and the mineral surface area of sediments and sedimentary rocks (including
777	both external and internal surface areas) (Kennedy et al. 2002; 2006). Relative to the
778	external mineral surfaces or the interstitial pore space with mineral aggregates, the
779	interlayer region of expandable clay minerals may be a better shelter because this
780	region may not be readily accessible to geochemical weathering agents and may resist
781	the negative effects induced by changing environments (such as redox condition). It is
782	also a potential site for hydrocarbon generation (Yuan et al. 2013). Thus, it is possible
783	that the amount of organic matter preserved in the interlayers of clay minerals,
784	especially expandable clay mineral such as smectite, may be higher than previously
785	known.

786 Our results further revealed that one way to release organic matter from the 787 interlayer region of clay minerals is via intense chemical reduction with strong chemical reductant such as sodium dithionite. However, chemically active reductants 788 are not commonly present in natural environment. So this type of extreme condition 789 should be rare in nature. Nevertheless, our results do support the reliability of a 790 previously reported method of using chemical reduction to determine the amount of 791 organic carbon associated with reactive iron phases in sediments of varying 792 mineralogy (Lalonde et al. 2012). 793

794	Our results also have implications for the industry-scale purification process of
795	organominerals. For commercial organoclays, the purity and surfactant loadings can
796	significantly affect their thermal stability (Cui et al. 2008), and thus pose a serious
797	concern. The removal of organic impurities using the traditional methods such as
798	washing may be incomplete (Bellucci et al. 2006). Our data suggest that microbial
799	reduction of structural iron in organoclays can release the poorly-sorbed organic
800	impurity, especially those associated with small/poorly crystalline clay particles while
801	at the same time preserving the organic matter in the interlayer of larger and
802	well-crystalline clay particles. Chemical reduction could be an alternative option if
803	more extensive leaching of organic matter is desired. Although still much research
804	needs to be performed to assess the potential industrial application of our method, this
805	study provides a possible alternative to purify industrial organoclays.

806

807 Acknowledgments

This work was supported by grants from the National Basic Research Program of China (No. 2012CB822004) and the Natural National Science Foundation of China (41030211). We thank Peng Yuan at the Institute of Geochemistry, Chinese Academy of Science for help in ALA-nontronite synthesis. We are grateful to two anonymous reviewers whose comments improved the quality of the manuscript.

814 **References**

815

- Abken, H.J., Tietze, M., Brodersen, J., Bäumer, S., Beifuss, U., and Deppenmeier, U.
- 817 (1998) Isolation and characterization of methnophenazine and function of
- phenazines in membrane-bound elevtron transport of Methanosarcina mazi Gö1.
- 819 Journal of Bacteriology, 180, 2027–2032.
- Alexandre, M., and Dubois, P. (2000) Polymer-layered silicate nanocomposites:
- preparation, properties and uses of a new class of materials. Materials Science
- and Engineering: R: Reports, 28, 1-63.
- 823 Aller, R.C. (1994) Bioturbation and remineralization of sedimentary organic matter:
- effects of redox oscillation. Chemical Geology, 114, 331-345.
- Amonette, J.E., and Templeton, J.C. (1998) Improvements to the quantitative assay of
- 826 nonrefractory minerals for Fe (II) and total Fe using 1, 10-phenanthroline. Clays
- and Clay Minerals, 46, 51-62.
- Anderson, D., Saggar S., Bettany, J., and Stewart, J.(1981) Particle size fractions and
- their use in studies of soil organic matter: I. The nature and distribution of forms
- of carbon, nitrogen, and sulfur. Soil Science Society of America Journal, 45,
- 831 767-772.
- Arnarson, T.S., and Keil, R.G. (2001) Organic–mineral interactions in marine
 sediments studied using density fractionation and X-ray photoelectron
 spectroscopy. Organic Geochemistry, 32, 1401-1415.
- Arnarson, T.S., and Keil, R.G. (2007) Changes in organic matter-mineral interactions

- for marine sediments with varying oxygen exposure times. Geochimica et
 Cosmochimica Acta, 71, 3545-3556.
- Baldock, J.A., and Skjemstad, J. (2000) Role of the soil matrix and minerals in
 protecting natural organic materials against biological attack. Organic
 Geochemistry, 31, 697-710.
- 841 Bellucci, F., Camino, G., Frache, A., Ristori, V., Sorrentino, L., Iannace, S., Bian, X.,
- Guardasole, M., and Vaccaro, S. (2006) Effect of organoclay impurities on
 mechanical properties of EVA-layered silicate nanocomposites. e-Polymers, 6,
 185-194.
- 845 Bergamaschi, B.A., Tsamakis, E., Keil, R.G., Eglinton, T.I., Montluçon, D.B., and
- Hedges, J.I. (1997) The effect of grain size and surface area on organic matter,
- 847 lignin and carbohydrate concentration, and molecular compositions in Peru
 848 Margin sediments. Geochimica et Cosmochimica Acta, 61, 1247-1260.
- Bishop, M.E., Dong, H., Kukkadapu, R.K., Liu, C., and Edelmann, R.E. (2011)
 Bioreduction of Fe-bearing clay minerals and their reactivity toward
- pertechnetate (Tc-99). Geochimica et Cosmochimica Acta, 75, 5229-5246.
- Bock, M.J., and Mayer, L.M. (2000) Mesodensity organo–clay associations in a
 near-shore sediment. Marine Geology, 163, 65-75.
- Choi, O., Deng, K.K., Kim, N.J., Ross, Jr. L., Surampalli, R.Y., and Hu, Z. (2008) The
- 855 inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids
 856 on microbial growth. Water Research, 42, 3066-3074.
- 857 Conant, R.T., Ryan, M.G., Ågren, G.I., Birge, H.E., Davidson, E.A., Eliasson, P.E.,

- Evans, S.E., Frey, S.D., Giardina, C.P., Hopkins, F.M., and others (2011)
- Temperature and soil organic matter decomposition rates–synthesis of current
- knowledge and a way forward. Global Change Biology, 17, 3392-3404.
- Cui, L., Khramov, D.M., Bielawski, C.W., Hunter, D., Yoon, P., and Paul, D. (2008)
- Effect of organoclay purity and degradation on nanocomposite performance, Part
- 1: Surfactant degradation. Polymer, 49, 3751-3761.
- 864 Dong, H., Kukkadapu, R.K., Fredrickson, J.K., Zachara, J.M., Kennedy, D.W. and
- Kostandarithes, H.M. (2003) Microbial reduction of structural Fe(III) in illite and
- goethite. Environmental Science & Technology, 37, 1268–1276.
- B67 Dong, H., Jaisi, D.P., Kim, J., and Zhang, G. (2009) Microbe-clay mineral interactions.
- American Mineralogist, 94, 1505-1519.
- Bong, H. (2012) Clay–microbe interactions and implications for environmental
 mitigation. Elements, 8, 113-118.
- 871 Emerson, D., Fleming, E.J., and McBeth, J.M. (2010) Iron-oxidizing bacteria: an
- environmental and genomic perspective. Annual Review of Microbiology, 64,561-583.
- Favre, F., Bogdal, C., Gavillet, S., and Stucki, J.W. (2006) Changes in the CEC of a
- soil smectite-kaolinite clay fraction as induced by structural iron reduction and
 iron coatings dissolution. Applied Clay Science, 34, 95-104.
- 877 Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Dong, H., Onstott, T.C., Hinman,
- 878 N.W., and Li, S.M. (1998). Biogenic iron mineralization accompanying the
- 879 dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium.

- Beochimica et Cosmochimica Acta, 62, 3239-3257.
- Hedges, J.I., and Hare, P. (1987) Amino acid adsorption by clay minerals in distilled
- water. Geochimica et Cosmochimica Acta, 51, 255-259.
- 883 Houghton, J.T. (1996) Climate change 1995: The science of climate change:
- contribution of working group I to the second assessment report of the
- Intergovernmental Panel on Climate Change (Vol. 2), p. 3-45. Cambridge
- 886 University Press, U.K.
- Jaisi, D.P., Kukkadapu, R.K., Eberl, D.D., and Dong, H. (2005) Control of Fe(III) site
- occupancy on the rate and extent of microbial reduction of Fe(III) in nontronite.

69, 5429–5440. Geochimica et Cosmochimica Acta, 69, 5429–5440.

- Jaisi, D.P., Dong, H., and Morton, J.P. (2008a) Partitioning of Fe (II) in reduced
- 891 nontronite (NAu-2) to reactive sites: Reactivity in terms of Tc (VII) reduction.
- 892 Clays and Clay Minerals, 56, 175-189.
- Jaisi, D.P., Liu, C., Dong, H., Blake, R.E., and Fein, J.B. (2008b) Fe²⁺ sorption onto
- nontronite (NAu-2). Geochimica et Cosmochimica Acta, 72, 5361-5371.
- Johnson, K.S., Gordon, R.M., and Coale, K.H. (1997) What controls dissolved iron
- concentrations in the world ocean? Marine Chemistry, 57, 137-161.
- Jones, D. and Edwards, A. (1998) Influence of sorption on the biological utilization of
- two simple carbon substrates. Soil Biology and Biochemistry, 30, 1895-1902.
- 899 Kaiser, K., and Guggenberger G. (2000) The role of DOM sorption to mineral surfaces
- in the preservation of organic matter in soils. Organic Geochemistry, 31, 711-725.
- 901 Katti, K.S., Katti, D.R., and Dash, R. (2008) Synthesis and characterization of a novel

- 902 chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue903 engineering. Biomedical Material, 3, 034122.
- 904 Katti, K.S., Sikdar, D., Katti, D.R., Ghosh, P., and Verma, D. (2006) Molecular
- 905 interactions in intercalated organically modified clay and clay–polycaprolactam
- nanocomposites: experiments and modeling. Polymer, 47, 403-414.
- 907 Keeling, J.L., Raven, M.D., and Gates, W.P. (2000) Geology and characterization of
- two hydrothermal nontronites from weathered metamorphic rocks at the Uley
 graphite mine, South Australia. Clays and Clay Minerals, 48, 537-548.
- 910 Keil, R.G., and Mayer, L.M. (2014) Mineral Matrices and Organic Matter, In Turekian,
- H.D. and Holland K.K. Ed., Treatise on Geochemistry (Second Edition), p.
 337-359. Elsevier Press, Oxford.
- 913 Keil, R.G., Montluçon, D.B., Prahl, F.G., and Hedges, J.I. (1994a) Sorptive
- preservation of labile organic matter in marine sediments. Nature, 370, 549-552.
- 915 Keil, R.G., Tsamakis, E., Fuh, C.B., Giddings, J.C., and Hedges, J.I. (1994b)
- 916 Mineralogical and textural controls on the organic composition of coastal marine
- 917 sediments: Hydrodynamic separation using SPLITT-fractionation. Geochimica et
- 918 Cosmochimica Acta, 58, 879-893.
- 919 Kennedy, M., Droser, M., Mayer, L.M., Pevear, D., and Mrofka, D. (2006) Late
- Precambrian oxygenation; inception of the clay mineral factory. Science, 311,1446-1449.
- Kennedy, M.J., Pevear, D.R., and Hill, R.J. (2002) Mineral surface control of organic
 carbon in black shale. Science, 295, 657-660.

- 924 Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., Nico, P.S. (2014).
- 925 Mineral–Organic Associations: Formation, Properties, and Relevance in Soil
- Environments. Advances in Agronomy, 30, 1-140.
- 927 Lützow, M.V, Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G.,
- 928 Marschner, B., Flessa, H. (2006) Stabilization of organic matter in temperate soils:
- 929 mechanisms and their relevance under different soil conditions-a review.
- European Journal of Soil Science, 57, 426-445.
- 231 Lalonde, K., Mucci, A., Ouellet, A., and Gélinas Y. (2012) Preservation of organic
- matter in sediments promoted by iron. Nature, 483, 198-200.
- 233 Lee, K., Kostka, J.E., and Stucki, J.W. (2006) Comparisons of structural Fe reduction
- in smectites by bacteria and dithionite: An infrared spectroscopic study. Clays andClay Minerals, 54, 195-208.
- Liu, D., Dong, H., Wang, H., and Zhao, L. (2015) Low-temperature feldspar and illite
- 937 formation through bioreduction of Fe(III)-bearing smectite by an alkaliphilic938 bacterium. Chemical Geology, 406, 25-33.
- 939 Liu, M.T., Pu, M.F., Ma, H.W., Hu, Y.F., Liu, X., J. and Pang, X. (2011) The effect of
- 940 organic modifier-12-aminolauric acid on morphology and thermal properties of
 941 polylactide nanocomposites. Polymer Composites, 32, 1002-1008.
- Lovley, D.R., Holmes, D.E., and Nevin, K.P. (2004) Dissimilatory Fe (III) and Mn
- 943 (IV) reduction. Advances in Mcrobial Physiology, 49, 219-286.
- 944 Mayer, L.M. (1999) Extent of coverage of mineral surfaces by organic matter in
- marine sediments. Geochimica et Cosmochimica Acta, 63, 207-215.

- 946 Mayer, L.M. (1994a) Relationships between mineral surfaces and organic carbon
- 947 concentrations in soils and sediments. Chemical Geology, 114, 347-363.
- 948 Mayer, L.M. (1994b) Surface area control of organic carbon accumulation in
- continental shelf sediments. Geochimica et Cosmochimica Acta, 58, 1271-1284.
- 950 McGill, W., and Cole, C. (1981) Comparative aspects of cycling of organic C, N, S
- and P through soil organic matter. Geoderma, 26, 267-286.
- 952 Melton, E.D., Swanner, E.D., Behrens, S., Schmidt, C., and Kappler, A. (2014) The
- 953 interplay of microbially mediated and abiotic reactions in the biogeochemical Fe
- 954 cycle. Nature Reviews Micorbiology, 12, 797-808.
- Newman, D.K. and Kolter, R. (2000) A role for excreted quinones in extracellular
 electron transfer. Nature, 405, 94-97.
- 957 Neumann, A., Olson, T.L., and Scherer, M.M. (2013) Spectroscopic Evidence for Fe
- 958 (II)–Fe (III) Electron Transfer at Clay Mineral Edge and Basal Sites.
- Environmental Science & Technology, 47, 6969-6977.
- 960 Neumann, A., Petit, S., and Hofstetter, T.B. (2011) Evaluation of redox-active iron
- 961 sites in smectites using middle and near infrared spectroscopy. Geochimica et
 962 Cosmochimica Acta, 75, 2336-2355.
- 963 Pentráková, L., Su, K., Pentrák, M., and Stucki, J. (2013) A review of microbial redox
- 964 interactions with structural Fe in clay minerals. Clay Minerals, 48, 543-560.
- 965 Ransom, B., Kim, D., Kastner, M., and Wainwright, S. (1998) Organic matter
- 966 preservation on continental slopes: importance of mineralogy and surface area.
- 967 Geochimica et Cosmochimica Acta, 62, 1329-1345.

- 968 Ribeiro, F.R., Fabris, J.D., Kostka, J.E., Komadel, P., and Stucki J.W. (2009)
- 969 Comparisons of structural iron reduction in smectites by bacteria and dithionite:
- 970 II. A variable-temperature Mössbauer spectroscopic study of Garfield nontronite.
- 971 Pure & Applied Chemistry, 81,1499-1509.
- 972 Sikdar, D., Katti, D.R., and Katti, K.S. (2006a) A molecular model for
- 973 ε-caprolactam-based intercalated polymer clay nanocomposite: integrating
 974 modeling and experiments. Langmuir, 22, 7738-7747.
- 975 Sikdar, D., Katti, D.R., Katti, K.S., and Bhowmik, R. (2006b) Insight into molecular
- 976 interactions between constituents in polymer clay nanocomposites. Polymer, 47,977 5196-5205.
- 978 Sikdar, D., Katti, K.S., and Katti, D.R. (2008) Molecular interactions alter clay and
- polymer structure in polymer clay nanocomposites. Journal of Nanoscience &Nanotechnology, 8, 1638-1657.
- 981 Stucki, J.W., Bailey, G.W., and Gan, H. (1996) Oxidation-reduction mechanisms in
- iron-bearing phyllosilicates. Applied Clay Science, 10, 417-430.
- Stucki, J.W., and Kostka, J.E. (2006) Microbial reduction of iron in smectite. Comptes
- 984 Rendus Geoscience, 338, 468-475.
- 985 Stucki, J.W. (2011) A review of the effects of iron redox cycles on smectite properties.
- 986 Comptes Rendus Geoscience, 343, 199-209.
- 987 Theng, B.K.G., and Newman, R. (1986) The occurrence of interlayer clay-organic
- complexes in two New Zealand soils. Soil Science, 142, 262-266.
- 989 Wattel-Koekkoek, E.J.W., Van Genuchten, P.P.L., Buurman, P., and Van Lagen, B.

- 990 (2001). Amount and composition of clay-associated soil organic matter in a range
- of kaolinitic and smectitic soils. Geoderma, 99, 27-49.
- Weber, K.A., Achenbach, L.A., and Coates, J.D. (2006) Microorganisms pumping
 iron: anaerobic microbial iron oxidation and reduction. Nature Reviews
 Microbiology, 4, 752-764.
- 995 Yang, J., Kukkadapu, R.K., Dong, H. Shelobolina, E.S., Zhang, J., and Kim, J. (2012)
- Effects of redox cycling of iron in nontronite on reduction of technetium.Chemical Geology, 291, 206-216.
- 998 Yuan, P., Liu, H., Liu, D., Tan, D., Yan, W., & He, H. (2013). Role of the interlayer
- space of montmorillonite in hydrocarbon generation: An experimental studybased on high temperature–pressure pyrolysis. Applied Clay Science, 75, 82-91.
- 1001 Zhang, G., Kim, J., Dong, H., and Sommer, A.J. (2007) Microbial effects in promoting
- 1002 the smectite to illite reaction: Role of organic matter intercalated in the interlayer.
- American Mineralogist, 92, 1401-1410.
- 1004 Zhang, J., Dong, H., Liu, D., and Agrawal, A. (2013) Microbial reduction of Fe (III)
- in smectite minerals by thermophilic methanogen Methanothermobacter
 thermautotrophicus. Geochimica et Cosmochimica Acta, 106, 203-215.
- 1007 Zhang, J., Dong, H., Zeng, Q., and Agrawal, A. (2014) The role of Fe(III)
- 1008 bioreduction by methanogens in the preservation of organic matter in smectite.
- 1009 Chemical Geology, 389, 16-28.
- 1010 Zhao, L., Dong, H., Kukkadapu, R.K., Zeng, Q., Edelmann, R., Pentrák, M., and
- 1011 Agrawal, A. (2015). Biological Redox Cycling of Iron in Nontronite and its

1012 Potential Application in Nitrate Removal. Environmental science & technology,

1013 49, 5493-5501.

1014

- 1015 FIGURE CAPTION
- 1016 Fig. 1. Pictures showing different dispersion behaviors between NAu-2 (left)

1017 ALA-NAu-2 (right). B, C, D and E are SEM images and corresponding EDS analyses

1018 for NAu-2 and ALA-NAu-2.

1019

1020 Fig. 2. XRD patterns of air-dried samples showing the changes of the d(001) spacing

1021 after different treatments of ALA-NAu-2 in comparison with NAu-2. A). Abiotic

1022 NAu-2 control; B). Abiotic ALA-NAu-2 control; C). Bioreduced ALA-NAu-2

1023 (without AQDS); D). Bioreduced ALA-NAu-2 (with AQDS); E). Bioreduced, air

1024 re-oxidized ALA-NAu-2 (the same pattern regardless of AQDS); h). Chemically

- 1025 reduced ALA-NAu-2 (28.6% reduction extent); i). Chemically reduced NAu-2
- 1026 (reduction extent 81.2%).

1027

Fig. 3. Fourier-transform infrared spectra for NAu-2 and ALA-NAu-2 that were either
biologically or chemically reduced followed by air re-oxidation over different regions
of wave number. a). Unaltered NAu-2; b). ALA; c). Mechanical mixture of NAu-2
and ALA; d) Unreduced ALA-NAu-2; d). e). Bioreduced ALA-NAu-2; f). Bioreduced
NAu-2; g). Bioreduced, air re-oxidized ALA-NAu-2; h). Chemically reduced
ALA-NAu-2 (reduction extent 25%); i). Chemically reduced NAu-2 (reduction extent

1034 25%).

1035

1036	Fig. 4.Time-course production of total Fe(II) in NAu-2 and ALA-NAu-2 as measured
1037	by the 1,10-phenanthroline method. Initial cell concentration was 10^8 cells/mL.
1038	Averages of two measurements from duplicate experimental tubes are reported. The
1039	error bars represent the higher and lower values. Control did not have any cells.
1040	
1041	Fig. 5. Time-course re-oxidation of Fe(II) in ALA-NAu-2 and NAu-2 as measured by
1042	the 1,10-phenanthroline method. The inset is an enlargement of the graph over the
1043	0–12 hour period.
1044	
1045	Fig. 6. Time-course decrease of TOC content (wt %) in NAu-2 and ALA-NAu-2 over
1046	the course of Fe(III) reduction and air re-oxidation of Fe(II) (A). Bioreduction
1047	followed by air re-oxidation; (B). Chemical reduction followed by air re-oxidation.
1048	For NAu-2, there is no difference in TOC release pattern between abiotic control and
1049	bioreduced samples (open cycles in Fig. 6A).
1050	
1051	Fig. 7. Correlation between ferrous iron content and TOC during bioreduction and air
1052	re-oxidation process.

1053

1054 Fig. 8. Deconvolution of the (001) peak for the bioreduced ALA-NAu-2 with AQDS.

1055 Fit peak 1 represents the peak at d = 16.6 Å; Fit peak 2 represents the peak with d =

1056 12.8Å. The grey areas represent the relative weight percentages of the ALA-NAu-21057 and NAu-2.

1058

1059	Fig. 9. Secondary electron images showing NAu-2 and ALA-NAu-2 particles after
1060	bioreduction, air re-oxidation, and chemical reduction. A) Lamella-like (a1) and platy
1061	(a2) particles in bioreduced ALA-NAu-2; B) Net-like particle morphology with many
1062	dissolution pits in bioreduced NAu-2; C) Albite in bioreduced ALA-NAu-2; D) Silica
1063	aggregates in bioreduced ALA-NAu-2; E) Particle aggregates in air re-oxidized
1064	ALA-NAu-2; F) Newly formed particles with a high carbon content in air re-oxidized
1065	ALA-NAu-2; G) Particles with rose and net-like morphologies in chemically reduced
1066	ALA-NAu-2 (28.6% reduction extent); H) Net-shaped ALA-NAu-2 particles in
1067	chemically reduced ALA-NAu-2 (81.2% reduction extent). The panels at the right
1068	side of the images show the corresponding EDS composition of those labeled particles
1069	(e.g. a1, a2, etc). The Pt peak came from sample coating.
1070	

Fig. 10. Elemental mapping of carbon in unreduced (A) and bioreduced (B)
ALA-NAu-2 particles. A comparison between these two maps illustrate a carbon
redistribution after bioreduction. Depletion occurs along edges and grain boundaries,
whereas enrichment occurs locally.

1075

Fig. 11. Lattice fringe images for bioreduced NAu-2 and ALA-NAu-2.A). UnreducedNAu-2 showing 1.2 nm layer spacing with a corresponding EDS spectrum; B)

8/27

1078	UnreducedALA-NAu-2 showing 1.5 nm layer spacing with a corresponding EDS
1079	spectrum; C). Bioreduced ALA-NAu-2 particles with a d(001) spacing of 1.5 nm; D)
1080	Bioreduced ALA-NAu-2 particles with a d(001) spacing of 1.1-1.2 nm.
1081	
1082	Fig. 12. Schematics showing electron transfer pathway in ALA-NAu-2 and two
1083	proposed different ALA release mechanisms.
1084	
1085	
1086	
1087	
1088	
1089	
1090	
1091	
1092	
1093	
1094	
1095	
1096	Table 1. Aqueous concentrations of Al, Si, and Si in bioreduced, re-oxidized and
1097	chemically reduced NAu-2 and ALA-NAu-2
1098	

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5410

		Aqueous Al (10 ⁻³ mmol/g)	Aqueous Fe (10 ⁻² mmol/g)	Aqueous Si (10 ⁻¹ mmol/g)	Reduction extent (%)
Bioreduction	Control	1.4±0.1	1.4±0.1	1.2±0.1	0
Dioreduction	NAu-2	1.0±0.3	3.9±0.3	3.0±0.1	25.0
	ALA-NAu-2	1.3±0.1	3.8±0.1	1.9±0.0	26.0
Abiotic air	Control	1.3±0.1	1.5±0.2	1.3±0.2	0
re-oxidation	NAu-2	6.6±0.1	10.9±0.2	4.6±0.0	2.4
	ALA-NAu-2	3.9±0.1	4.9±0.3	5.0±0.1	4.7
Chamiaal	Control	1.2±0.2	1.6±0.1	1.4±0.2	0
Chemical		81.6±1.3	69.3±1.2	14.5±0.2	28.5
reduction of		147.3±50.6	145.1±15.2	29.0±2.0	37.6
ALA-NAu-2	Experiment	242.4±11.2	205.6±10.3	39.9±1.9	50.0
		297.9±6.9	268.6±35.9	53.6±7.4	58.5
(diff. extent)		314.3±12.7	260.1±8.5	260.1±8.5 52.2±2.3	
		325.2±35.9	268.2±26.8	54.1±6.3	79.0

1099 Table 2. Peak areas of some characteristic bands of ALA in bioreduced, re-oxidized, and chemically reduced ALA-NAu-2

						1100
Deale	NH ₂ stretching	CH ₂ -CH ₂	CH ₂ -CH ₂	C=O stretching	N-H bending	CO-H bending
Реак	at 3287 cm ⁻¹	Asymmetric strecching	symmetric stretching	at 1711 cm ⁻¹	at 1627 cm ⁻¹	At 1470 cm ⁻¹ 1101
		at 2932 cm ⁻¹	at 2855 cm ⁻¹			
Sample						1102
ALA NAN 2		1.2	2.84	0.52	2.10	0.26
ALA-NAU-2	na	1.2	5.64	0.55	2.10	1103
Diamahara di Ali Al Mara 2	4.25	2.0(0.01	1.25	4 4 4	0.70
Bioreduced ALA-NAU-2	4.33	2.90	8.01	1.55	4.44	0.70 1104
	10.19	2.21	0.0	2.05	4.51	0.04
Re-oxidized ALA-NAU-2	10.18	3.31	8.9	2.95	4.51	0.94 1105
Chemically reduced		0.91	2.25	4	0.94	0.07
ALA-NAu-2	nd	0.81	2.25	па	0.84	0.07 1106

1107 <u>nd: not detected.</u>

8/27

1109 Fig. 1.

8/27

1118

8/27

Fig. 7

1128

8/27

8/27

1130 Fig. 8

1131

1132 Fig. 9

1133

1134

1135

1136 Fig. 10

Fig. 11 B Unaltered ALA-NAu-2 A Unaltered NAu-2 **Bioreduced ALA-NAu-2** 1.1 nm 1.5 nm |||| 1.4 nm 1.2 nm 1.1 nm 20 nm 10 nm 20 na 1137 Fig. 11 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

1151

1154 Fig. 12