Probing carbon-bearing species and CO$_2$ inclusion in amorphous carbon-MgSiO$_3$ enstatite reaction products at 1.5 GPa: Insights from 13C high-resolution solid-state NMR

Kim, Eun Jeong1; Fei, Yingwei2; Lee, Sung Keun1,*

1School of Earth and Environmental Sciences
Seoul National University
Seoul, 151-742, Korea

2Geophysical Laboratory
Carnegie Institution of Washington
5251 Broad Branch Rd. N.W.
Washington D.C., 20015, USA

*Corresponding author,
Lee, Sung Keun
Professor
School of Earth and Environmental Sciences
Seoul National University
E-mail: sungklee@snu.ac.kr
Webpage: http://hosting03.snu.ac.kr/~sungklee
Phone: 82-2-880-6729
Fax: 82-2-871-3269

Submitted to ‘American Mineralogist’
11-18-2015
ABSTRACT

Understanding the carbon speciation in earth materials is important to unravel the geochemical evolution of the earth’s atmosphere, composition of partial melts, and overall distribution of carbon in the deep mantle. In an effort to provide the systematic protocols to characterize carbon-bearing fluid inclusions and other carbon-bearing species using high-resolution 13C solid-state NMR, one of the element specific probe of local structure around carbon, we explore the atomic configurations around the carbon species formed during the reaction between 13C-enriched amorphous carbon and MgSiO$_3$ enstatite synthesized at 1.5 GPa and 1400 °C using 13C MAS NMR spectroscopy and Raman spectroscopy. The Raman spectra for the fluid inclusion show the presence of multiple molecular species (e.g., CO$_2$, CO, CH$_4$, H$_2$O, and H$_2$) and reveal heterogeneous distribution of these species within the inclusion. 13C MAS NMR results show that the sharp peak at 125.2 ppm is dominant. While the peak could be assigned to either molecular CO$_2$ in the fluid phase or four-coordinated carbon (13C), the peak is likely due to fluid CO$_2$, as revealed by Raman analyses of μm-size fluid inclusions in the sample. The peaks at 161.2, 170.9, and 173.3 ppm in the 13C NMR spectrum correspond to the carbonate ions (CO$_3^{2-}$) and additional small peak at 184.5 ppm can be attributed to carbon monoxide. Based on the established relationship between 13C abundance and peak intensity in the 13C MAS NMR, the estimated 13C amounts of CO$_2$, CO$_3^{2-}$, and CO species are much larger than those estimated from carbon solubility in the crystals, thus, indicating that those carbon species are from external phases. The 13C NMR spectrum for amorphous carbon showed a peak shift from ~130 ppm to ~95 ppm after compression, thereby suggesting that the amorphous carbon underwent permanent pressure-induced densification, characterized by the transition from sp^2 to sp^3 hybridization and/or pressure-induced changes in sp^2 carbon topology. While direct probing of carbon species...
in the crystalline lattice using NMR is challenging, the current results and method can be utilized
to provide quantitative analysis of carbon-species in the fluid-inclusions in silicates, which is
essential for understanding the deep carbon cycle and volcanic processes.

Keywords: \(^{13}\)C MAS NMR, enstatite, carbon speciation, amorphous carbon

INTRODUCTION

Understanding the carbon speciation in earth materials is important to unravel the
geochemical evolution of the earth’s atmosphere, composition of partial melts, and overall
distribution of carbon in the deep mantle (Blank and Brooker, 1994; Green, 1972; Keppler et al.,
2003; Richet and Bottinga, 1984; Shcheka et al., 2006; Zhang and Zindler, 1993). The properties
of carbon-bearing crystalline silicates and their precursor liquids are also influenced by the
amount of \(\text{CO}_2\) present in these phases (Eggler and Kadik, 1979; Eggler and Rosenhauer, 1978).
As the carbon-retention capacity of silicate melts and crystals depends heavily on pressure,
decompression processes accompanied by eruption and upwelling of earth materials lead to the
formation of exsolved \(\text{CO}_2\) inclusions (Blundy et al., 2010; Eggler and Kadik, 1979; Lloyd et al.,
2014; Parfitt and Wilson, 2008; Sides et al., 2014; Wallace, 2005).

\(\text{H}_2\text{O}\) and \(\text{CO}_2\) are the most abundant volatile components in the Earth’s interior.
Additional species such as \(\text{CH}_4\), \(\text{H}_2\), and \(\text{CO}\) can be formed depending on total bulk chemistry of
inclusion, \(f_{\text{O}_2}\) condition, as well as temperature and pressure (e.g., Morizet et al., 2010; Mysen
and Richet, 2005; Pawley et al., 1992). While the \(\text{CO}_2\) inclusions are not included in an estimate
of carbon solubility into silicate crystals and melts, they can contribute to the total bulk carbon
contents of magma chambers, thereby affecting their buoyancy and rising speed (Blundy et
al., 3)
Kim, Fei, and Lee

2010; Burton et al., 2013; Dixon and Clague, 2001; Gerlach et al., 2002; Kaminski and Jaupart, 1997; Lloyd et al., 2014; Parfitt and Wilson, 2008; Rust and Cashman, 2011; Sugioka and Bursik, 1995). For example, the exsolved CO₂ in Kilauea magma was estimated to be ~ 0.61 wt%, which is approximately 87% of the total CO₂ emitted from the volcanic eruption, while that of dissolved (and thus structurally-bound) CO₂ is ~ 0.09 wt% (Gerlach et al., 2002), indicating that the exsolved CO₂ in the glasses is among the important carbon reservoirs.

Together with CO₂ inclusions in the glasses, carbon species in crystalline silicates has been proposed as an additional carbon reservoir in the deep Earth (Green, 1972). Spectroscopic studies of vibrational density of states of species in fluid inclusion have provided useful information on the temperature-pressure conditions of the formation of the inclusion (Rosso and Bodnar, 1995; Seitz et al., 1996). In addition to the dissolved molecular CO₂ inclusions in the silicate crystals, neutral carbon may dissolve into the interstitial site in the crystal and/or dissolve into cation vacancies (Freund, 1981). Additionally, direct substitution of Si⁴⁺ with C⁴⁺ or with O⁻ has also been suggested (Fyfe, 1970; Sen et al., 2013). However, revealing the mechanistic details of carbon incorporation into the crystalline silicates is challenging (Keppler et al., 2003; Shcheka et al., 2006).

Extensive previous studies using spectroscopic techniques such as Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), as well as nuclear magnetic resonance spectroscopy (NMR) have revealed the speciation of carbon in silicate glasses (Blank et al., 1993; Brooker et al., 1999; Fine and Stolper, 1985; Kadik et al., 2004; Kohn et al., 1991; Morizet et al., 2002; Morizet et al., 2009; Morizet et al., 2010; Mysen, 2013; Mysen et al., 1975; Pawley et al., 1992; Richet and Bottinga, 1984; Stolper et al., 1987). While the Raman and FTIR techniques provide information on the collective vibration, solid-state NMR yields detailed, element-
specific, and quantitative information on the environment of nuclides of interest in the diverse crystalline and non-crystalline earth materials (e.g., Cody and Alexander, 2005; Cody et al., 2011; Feng et al., 2006; Kirkpatrick and Brow, 1995; Kirkpatrick et al., 1986; Lee, 2010; Papenguth et al., 1989; Phillips et al., 2000; Stebbins, 1995; Stebbins and Xue, 2014; Tangeman et al., 2001). Particularly, 13C solid-state NMR has been used to determine the carbon speciation in synthetic silicate glasses with varying pressure and composition [e.g., Na-binary silicate glasses, Mg-binary silicate glasses, and CaO-MgO-Al$_2$O$_3$-SiO$_2$ (CMAS) silicate glasses, etc.] (Brooker et al., 1999; Jones et al., 2005; Kohn et al., 1991; Kwak et al., 2010; Morizet et al., 2002; Morizet et al., 2010). In contrast, the speciation of carbon in crystalline silicates has not been fully explored with the 13C solid-state NMR techniques because carbon solubility into the crystals is often much lower than that into glasses and melts and NMR is one of the insensitive spectroscopic techniques. Additionally, the natural abundance of 13C is only 1.1%, and the 13C isotope enrichment is necessary. To the best of our knowledge, there is only a single 13C NMR study of the carbon species in crystalline oxides (anatase TiO$_2$) where the sharp peak at 126 ppm was observed. On the basis of the usual peak position of orthocarbonate species in organic solids (121.0 ppm) (Pretsch et al., 2009), the peak was assigned to four-coordinated carbon (41C) (Rockafellow et al., 2009). However, the 126 ppm peak could also be due to the exsolved CO$_2$ species in the oxides (Herzfeld and Berger, 1980; Kohn et al., 1991). Despite the difficulty, 13C NMR can provide unique structural information around carbon species that is not accessible with other spectroscopic probes. For instance, the spinning sidebands patterns can be used to indicate whether CO$_2$ is structurally-incorporated or exsolved in silicate networks: CO$_2$ molecule in the inclusion may not show spinning sidebands while structurally-bound CO$_2$ can lead to the formation of spinning sideband patterns due to its large 13C chemical shift anisotropy (Herzfeld...
Because the solubility of carbon into crystalline lattice is rather low (~ 0.1–5 ppm) and the amount carbon in fluid inclusion is also limited, direct probing of carbon species using NMR is challenging. While it is also currently difficult to detect the carbon signal, it would be useful to establish experimental protocols to further distinguish whether the observed NMR peaks are due to carbon species in the crystalline network or from the external phases (e.g., fluid inclusion, grain boundary etc.). Although solid-state NMR is not among the most sensitive spectroscopic techniques, we have made recent progress in probing (and detecting) dilute amount of nuclear spins in the earth materials under the extreme conditions (high pressure) using NMR (Lee, 2010; Lee, 2011; Lee et al., 2004; Lee et al., 2012). Furthermore, progress has been made to detect dilute nuclear spins in 2-dimensionally confined, 5 nm amorphous thin film (Lee and Ahn, 2014; Lee et al., 2009; Lee et al., 2010). These recent experimental achievements shed light on an opportunity to explore the dilute spins (such as 13C in the inclusion and in the crystal) using high-resolution solid-state NMR. As few attempt to detect carbon species in the fluid inclusion or crystalline silicates has been reported, experimental verification of these species with practical detection limit for 13C has been anticipated.

MgSiO$_3$ is the most abundant mineral composition in the mantle, which is likely to be the earth’s largest carbon reservoir (Jambon, 1994; Shcheka et al., 2006). Enstatite is one of the MgSiO$_3$ phases stable in the crust and upper mantle. Here, we explore the atomic configuration around the carbon species formed during the reaction between 13C amorphous carbon and enstatite synthesized at 1.5 GPa and 1400 °C using 13C MAS NMR spectroscopy in order to test the utility of NMR technique to probe the carbon-bearing species in the reaction product and fluid inclusions. The study also aims to provide the systematic protocols to characterize
bearing fluid inclusion using high-resolution 13C solid-state NMR. We also report the pressure-induced structural changes in the amorphous carbon that was used as a 13C-enriched carbon reservoir in the high-pressure experiments. While the potential result can be helpful to provide comprehensive atomistic insights into the deep carbon cycle in the Earth’s mantle, we also discuss the advantages and limitations of the NMR based strategy to detect 0.1–10 ppm of dissolved 13C in crystalline silicates.

EXPERIMENTAL & COMPUTATIONAL METHODS

Sample preparation

The carbon-bearing enstatite samples for the spectroscopic analyses were synthesized by mixing MgSiO$_3$ (initially synthesized at 1.5 GPa) and 13C-enriched amorphous carbon at 1.5 GPa. The starting MgSiO$_3$ enstatite was synthesized from a mixture of powdered SiO$_2$ and MgO in a Pt capsule using piston-cylinder apparatus with a 0.5” assembly at the Geophysical Laboratory, Carnegie Institution of Washington. The synthesis experiment was performed at 1400 °C and 1.5 GPa for 48 h. Subsequently, the enstatite was mixed with 2.4 wt% of 13C-enriched (~ 99.7% enriched) amorphous carbon and H$_2$O, and then loaded in a Pt capsule. H$_2$O was added to promote the overall reaction and control the oxygen fugacity of the system [estimated oxygen fugacity was similar to that of C-CO (CCO) buffer (with estimated f_{O_2} value of ~ and D(2010)]. See Raman results below for details]. We then ran the experiments at 1.5 GPa and 1400 °C for 48 h to produce carbon-bearing enstatite. We have synthesized two distinct batches of samples under the same P-T conditions to check reproducibility of the carbon speciation in the synthesized samples. The formation of gas phases was observed when the capsule was opened after the experiments. This could be due to excess gas phases such as H$_2$O, 7
CO₂ or CH₄ (Mysen et al., 2009; Zhang and Duan, 2010). The resulting products included clear carbon-bearing enstatite and black aggregated amorphous carbon (used as initial carbon source). The latter, referred as compressed amorphous carbon, was handpicked and separated from the enstatite. The decrepitation experiment was performed to identify the stability of the observed carbon species and CO₂ inclusion in the sample: the synthesized MgSiO₃ grain [~ 80 μm (w) × 100 μm (h)] with CO₂ inclusions were heated at 750 °C for 10 min in a tube furnace as previous experimental studies often showed that the fluid inclusion in the crystal is not stable above 750 °C (Bodnar et al., 1989).

Raman spectroscopy

The Raman spectra for the carbon-bearing enstatite were collected on a micro Raman spectrometer at Seoul National University. Thin-sections for Raman analysis were made by fixing the enstatite particles in an epoxy resin. The enstatite crystals were polished using 1500 mesh diamond powder (8–10 μm) for 3 h and subsequently using 1 μm diamond paste for 1 h. The spectra were collected under the following conditions: laser wavelength of 488 nm, exposure time of 10 s, and number of accumulation being 60 with grating groove density of 1800/500 L/mm. The spectral resolution is ~ 0.55–0.85 cm⁻¹/pixel and the spectrometer slit width is 250 μm. Typical spectral width is ~ 840 cm⁻¹ (centered at 1400 cm⁻¹) and ~ 780 cm⁻¹ (centered at 2250 cm⁻¹), respectively. Beam diameter of 3.1 μm (using 50× microscope objectives), laser power of 32.8 mW, and beam scattering of 1 mrad were used. An estimated reproducibility in recorded peak positions of the current spectra is less than ± 0.5 cm⁻¹.

NMR spectroscopy
The 13CMAS NMR spectra were collected on a Varian 400 MHz solid-state NMR spectrometer (9.4 T, Seoul National University) at a Larmor frequency of 100.582 MHz for 13C using a 3.2 mm zirconia rotor in a Varian double-resonance probe. It may require longer relaxation delays to obtain the fully relaxed spectrum for the carbon-bearing enstatite. We therefore performed 13C MAS NMR experiments with varying relaxation delay times. The results showed negligible effect on the different relaxations of carbon peaks. Therefore, the recycle delay of 5 s was used to reduce the total NMR collection time. The magic-angle sample spinning speed of 14 kHz was employed. The current signal-to-noise ratio in the spectra was achieved by averaging nearly 86400 scans (~ 5 days). The spectra were referenced to solid-state adamantane (ADM, C$_{10}$H$_{16}$), whose resonance of left peak was located at 38.56 ppm relative to the more common reference, tetramethylsilane (TMS). Approximately 20 mg of carbon-bearing MgSiO$_3$, 1.7 mg of 13C-enriched uncompressed amorphous carbon, and 3.2 mg of 13C-enriched compressed amorphous carbon were used in the 13C MAS NMR experiments. The background signals were collected under identical measurement conditions using an empty zirconia rotor. The background spectrum was subsequently subtracted from the 13C MAS NMR spectrum for each sample to yield the NMR spectrum free from any background carbon signals.

13C NMR spin-counting experiment was performed using mixtures of ADM and SiO$_2$ (Sigma-Aldrich product no. 204358). We collected 13C MAS NMR spectra for the mixtures with varying ADM/SiO$_2$ ratio [$X_{\text{ADM}} = 1/4$ (25 wt%, 2750 ppm of 13C), 1/8 (12.5 wt%, 1375 ppm of 13C), 1/16 (6.25 wt%, 688 ppm of 13C), 1/50 (2.0 wt%, 220 ppm of 13C), 1/233 (0.43 wt%, 47 ppm of 13C), 1/310 (0.32 wt%, 35 ppm of 13C)]. The mixtures were ground in an agate mortar for 1 h. It is somewhat difficult to constrain the composition of the mixtures with low ADM concentration (e.g., the data for X_{ADM}=1/50, 1/233, and 1/310). This is due to uneven mixing.
between ADM and SiO$_2$ in the mortar stemming from the difference in surface adhesiveness of the ADM and SiO$_2$ particles. Therefore, in order to minimize the ADM loss upon mixing in the agate mortar (i.e., to yield better calibration curve), a designed amount of ADM was located at the center of the rotor and SiO$_2$ powder was placed both on top and bottom of the rotor. The NMR collection conditions for the mixtures were identical to those for carbon-bearing enstatite. As elemental analysis does not provide robust measurement of the carbon content in SiO$_2$-ADM mixture used in the study primarily due to difference in volatilization between ADM and SiO$_2$, the quantitative carbon content of the mixture with low carbon concentration was constrained using the calibration curve (between NMR peak intensity and carbon content) based on the mixture with higher concentration (see discussion below). The NMR experiment under proton decoupling was also performed to improve the quality of 13C abundance and peak intensity calibration curve. Proton decoupling power was optimized using ADM standard. The spectra for the mixtures were collected at a decoupling power $\omega_1/2\pi$ of 33 kHz.

Quantum chemical calculations

Quantum chemical calculations of NMR chemical shift of C(OH)$_4$ clusters were performed using Gaussian 03 in order to get insights into the 13C NMR chemical shielding for $^{[4]}C$ with varying C-O bond lengths (Frisch et al., 2004). A model C(OH)$_4$ cluster was optimized by varying the C-O bond lengths while maintaining the tetrahedral symmetry constraints at the Becke, three-parameters, Lee-Yang-Parr (B3LYP) level of theory with a 6-311+G(2d) basis set. The NMR chemical shielding calculations of the C atoms in C(OH)$_4$ cluster were calculated using the gauge-including atomic orbital (GIAO) method at the B3LYP level of theory with the 6-311G+(2d) and 6-31G(d) basis sets (Lee and Lee, 2009). The 13C NMR chemical shift of the
C(OH)$_4$ cluster was estimated by subtracting NMR chemical shielding of TMS (external reference used in the experiment) that was also calculated at the identical energy level of theory and basis sets.

RESULTS

Probing of CO$_2$ in fluid inclusions in carbon-bearing enstatite: Insights from Raman spectroscopy

Figure 1 shows the optical micrograph image of the sample (Figure 1 a, grain size of approximately 80 μm (w) × 100 μm (h)) and Raman spectrum for the observed fluid inclusion [4 μm (w) × 10 μm (h)] (Figure 1 b, c, d). The Raman spectra for the fluid inclusion (Fig. 1 b) show the presence of multiple molecular species (e.g., CO$_2$, CO, CH$_4$, H$_2$O, and H$_2$) and reveal heterogeneous distribution of these species within the inclusion. The peaks at 1280 and 1380 cm$^{-1}$ correspond to the symmetric stretching vibration (ν_1) and the overtone of the symmetric bending ($2\nu_2$) vibrations in CO$_2$ (Morizet et al., 2009), and those at 2100 cm$^{-1}$ and 3000–3800 cm$^{-1}$ are due to CO and H$_2$O (Morizet et al., 2009; Mysen et al., 2011), respectively. The peaks at 2912 and 4150 cm$^{-1}$ originate from CH$_4$ and H$_2$, respectively (Mysen et al., 2009).

Figure 1 c and d shows further details of characteristic of vibrational modes of CO$_2$ and CO, respectively. The two peaks at 1360 cm$^{-1}$ and 1385 cm$^{-1}$ in Fig. 1 c are characteristic of the overtone of the symmetric bending ($2\nu_2$) vibrations of 13CO$_2$ and 12CO$_2$ in the fluid inclusions while the two peaks at 1260 cm$^{-1}$ and 1285 cm$^{-1}$ correspond to the symmetric stretching (ν_1) vibrations of 13CO$_2$ and 12CO$_2$, respectively (Ni and Keppler, 2013). The peak at 1405 cm$^{-1}$ represents the hot band vibration of the low-lying vibration of ν_2 at 667.38 cm$^{-1}$ (Rosso and Bodnar, 1995). Figure 1 d indicates the presence of minor but detectable 13CO and 12CO species.
Kim, Fei, and Lee

in the fluid inclusion at 2090 cm\(^{-1}\) and 2140 cm\(^{-1}\), respectively (Morizet et al., 2009). These Raman features for CO and CO\(_2\) were not observed within the inclusion-free enstatite crystals. The coexistence of these fluid species can correspond to \(f_{O_2}\) ranging from -7.14 to -10.88 (calculated using the GFluid code), similar to those with C-CO buffer \((f_{O_2} = \sim -7.5)\) (Zhang and Duan, 2010).

The internal pressure in the fluid inclusion have been estimated from the frequency difference in upper band and lower band of CO\(_2\) (i.e., \(\nu_1-2\nu_2\)) (Garrabos et al., 1989; Kobayashi et al., 2012; Rosso and Bodnar, 1995; Seitz et al., 1996; Wright and Wang, 1973). Alternatively, the peak position of \(\nu_1\) vibration of CH\(_4\) at room temperature has also been utilized to obtain internal pressure (Lin et al., 2007; Seitz et al., 1996). As we have not collected the Raman spectrum for the inclusion with varying temperature, taking into consideration sources of uncertainty and potential complications in the previous calibration curve, the difference in CO\(_2\) bands (104.2–104.7 cm\(^{-1}\)) may not be directly used to provide robust pressure conditions in the current study. In order to estimate the internal pressure of the fluid inclusion from the CH\(_4\) peak positions in the Raman spectrum, the exact composition of the inclusion needs to be known. As the chemical composition of the inclusion is currently not clear, a quantitative estimation of the internal pressure is not straightforward. Roughly, the current peak position of CH\(_4\) (2911.5–2912.2 cm\(^{-1}\)) corresponds to the internal pressure of \(\sim 100–200\) bar (e.g. if \(X_{\text{CH}_4} = \sim 0.1\) in CH\(_4\)–CO\(_2\) mixture). Further detailed study with in-situ high-temperature Raman analyses is necessary for robust estimation of internal pressure.

While Raman spectroscopy may not be fully quantitative, previous extensive Raman studies of fluid inclusions in silicate glasses highlighted that quantitative estimation of carbon species concentration is indeed possible, once their respective peak intensity was calibrated with 12
the Raman efficiency for each molecule established from the standard samples with controlled concentrations (Burke, 2001; Morizet et al., 2009). The method is not applied for the samples studied here due mainly to difficulties in establishing the Raman efficiency of the species with the spectrometer used in the current study (mostly due to lack of heating stage, standard samples with known concentrations of molecular species, and heterogeneous distribution of carbon-bearing species in the inclusion). Nevertheless, this earlier approach, combined with NMR, is potentially useful to provide quantitative information of fluid composition and species concentration.

Probing of carbon species and inclusion in carbon-bearing enstatite: 13C MAS NMR results

Figure 2 shows the 13C MAS NMR spectrum for carbon-bearing enstatite. Because the 13C MAS NMR spectrum of the empty rotor shows the presence of a detectable amount of carbon background signal from the rotor and stator ranging from 100–170 ppm (Fig. 2 bottom), the background signal was subtracted from the collected spectrum (Fig. 2 middle). The top spectrum in Figure 2 shows the background-subtracted 13C MAS NMR spectrum for the sample. The background-subtracted spectrum shows multiple sharp peaks at 184.5, 173.3, 170.9, 161.2, and 125.2 ppm, which can be attributed to the distinct carbon species in enstatite. The sharp peak at 125.2 ppm is prevalent. Based on the NMR chemical shift of the peak, it could be attributed to either molecular CO$_2$ in fluid phase, structurally bound CO$_2$ in silicate network, or $^{[4]}$C (Herzfeld and Berger, 1980; Kohn et al., 1991; Rockafellow et al., 2009). While the origin of the peak at 125.2 ppm in carbon-bearing enstatite will be discussed, the peak is mostly due to molecular CO$_2$ on the basis of its narrow peak width with negligible spinning sideband intensity and insights.
Kim, Fei, and Lee

from the quantum chemical calculations (see discussion discussion below for further details). This assignment is also consistent with the aforementioned Raman results (Fig. 1).

The 161.2, 170.9, and 173.3 ppm peaks correspond to the carbonate ions (CO$_3^{2-}$) on the basis of previous studies of carbonate species in the silicate glasses (e.g., Brooker et al., 1999; Kohn et al., 1991; Mysen et al., 2011). Additionally, chemical shifts for carbonate minerals (e.g., calcite, magnesite, vaterite, dolomite, lithium carbonate, sodium carbonates, and cerussite) also range from 166–171 ppm (Papenguth et al., 1989). Previous quantum simulations of 13C NMR chemical shift in aluminosilicate glasses showed that the distortion of CO$_3^{2-}$ cluster decreases in the 13C NMR chemical shift (Tossell, 1995), as also suggested from an earlier NMR study (Brooker et al., 1999). The simulations also indicated that highly distorted carbonate ions with C-O bond length of 1.265 Å, which was shorter than the average bond lengths of the carbonate minerals (1.285 Å), have smaller NMR chemical shift (Tossell, 1995). The additional small peak at 184.5 ppm observed in the spectrum (Fig. 2) can be attributed to carbon monoxide (Kohn et al., 1991; Tossell, 1995). Figure 3 also shows the 13C MAS NMR spectra for carbon-bearing enstatite synthesized at 1.5 GPa and 1400 °C, and that annealed at 750 °C for 10 min. Upon annealing, the 13C MAS NMR spectrum for the annealed carbon-bearing enstatite did not show the presence of carbon species (Fig. 3 bottom). This suggests that the carbon species in enstatite are not stable upon annealing at 750 °C.

On the basis of the relationship between peak area and 13C abundance (see discussion 4.3), we should note that the amount of 13CO and 13CO$_3^{2-}$ are much larger than the reported solubility of carbon (including 12C and 13C) into enstatite (\sim 0.05–4.7 ppm) (Keppler et al., 2003; Shcheka et al., 2006) (see appendix A1 for the previously estimated solubility of carbon species in crystalline silicates at high pressure). Therefore, the observed carbonates and CO species

in 14
the spectra are not likely due to carbon species in enstatite crystalline network, rather these stem from external reaction products formed during sample synthesis.

The Raman spectra show the presence of CH₄ in the fluid inclusion (Fig. 1 b). Because the potential peak position for CH₄ species somewhat overlaps with the spinning side bands of the probe background signal (at 14 kHz), ¹³C MAS NMR spectra for the sample were collected with varying spinning speed (11 and 14 kHz). A small feature at ~ -9 ppm is observed in ¹³C MAS NMR spectra at 11 kHz (Fig. 4). Previous study of carbon-bearing Na₂O-4SiO₂ glass synthesized at 1.5 GPa and 1400°C reported a sharp peak due to CH₄ species at -5.4 ppm in the ¹³C MAS NMR (Mysen et al., 2011). Figure A1 in appendix A2 shows ¹³C MAS NMR spectrum for carbon-bearing enstatite under proton decoupling where any expected decrease in the peak width for the peak ~ -9 ppm is not shown, indicating that the carbon species responsible for -9 ppm peak does not have clear proximity toward hydrogen. ¹H MAS NMR spectrum for carbon-bearing enstatite shows the presence of CH₄ species at ~ 0.3 ppm (not shown here) (Pretsch et al., 2009). The result, therefore, indicates that the feature at ~ -9 ppm in ¹³C MAS NMR spectra is mostly due to the probe background signal and the observed CH₄ in the Raman spectrum is likely due to the ¹²C infiltrated from the graphite heater (Brooker et al., 1998; Cerfontain et al., 1987).

Pressure-induced structural changes of amorphous carbon: Insights from ¹³C MAS NMR

Because we used ¹³C-enriched amorphous carbon as a carbon reservoir, the current NMR experiment for amorphous carbon can also provide insights into the effect of pressure on the structure of amorphous carbon. Figure 5 (a) shows the background-subtracted ¹³C MAS NMR spectra for the compressed and uncompressed ¹³C-enriched amorphous carbon. The ¹³C NMR spectrum for amorphous carbon shows a broad peak at ~ 130 ppm. After compression at
1.5 GPa and 1400 °C for 48 h, the spectrum for the compressed amorphous carbon shows a broad peak at ~ 95 ppm. The observed pressure-induced changes in the peak position of amorphous carbon in the 13C NMR spectra (Fig. 5) may stem from multiple distinct structural changes upon compression, which includes bonding transition from sp^2 to sp^3 states. This could also be due to incorporation of hydrogen into carbon stemming from H$_2$O added during synthesis and the pressure-induced changes in network topology without changes in bonding states.

As the peak position for the typical carbon species with sp^2 and sp^3 bonding are ~ 138 ppm and ~ 68 ppm, respectively (Alam et al., 2002; Cho et al., 2008), this observation may indicate that the uncompressed amorphous carbon contains more sp^2 hybridized carbon species, while the compressed amorphous carbon at 1.5 GPa has more sp^3 hybridized carbon; amorphous carbon undergoes permanent pressure-induced densification, characterized by the transition from sp^2 to sp^3 hybridization. Alternatively, the previous studies have also shown that chemical shift and peak positions for sp^2 carbon varies with varying carbon network topology. Table 1 shows the 13C NMR chemical shifts (and peak positions) of various carbon species in amorphous and crystalline carbon phases and allotropes. These phases have distinct network topology, yet consisting only of carbons with sp^2 bonding orbitals. While NMR chemical shift for sp^3-like carbon varies from 62 to 67.5 ppm (Alam et al., 2003; Pan et al., 1991), those for sp^2-like carbons also range from 102.3 to 149.7 ppm and are dependent on network topology; for example, the chemical shift of carbon in carbon nanotubes decreases with increasing the number of walls (Abou-Hamad et al., 2011). The peak positions of aromatic C=C bonds in graphene and carbon black is 123–126 ppm (Jäger et al., 1999; Si and Samulski, 2008). The chemical shift for fullerene C$_{60}$ is 142.6 ppm and that for fullerene C$_{70}$ shows multiple sharp peaks at 129.9 ppm, 144.7 ppm, 146.9 ppm and 149.7 ppm; all those crystallographically distinct carbon sites have
varying symmetry and topology (Kanowski et al., 1997; Taylor et al., 1990).

Therefore, while the observed peak shift in the 13C MAS NMR spectrum for the amorphous carbon (Fig. 5) can certainly be due to changes in sp^2 to sp^3 hybridization that was also previously reported at higher pressure upon cold compression (Lin et al., 2011), it could also stem from the pressure-induced changes in carbon topology while maintaining sp^2 bonding state as shown in Table 1. Further experimental and theoretical confirmations are necessary. Finally, while the observed shift may be due to the effect of residual hydrogen, taking into consideration negligible hydrogen content in the compressed amorphous carbon as evidenced by the 1H NMR spectra, the pressure-induced peak shift is not affected by the proton in the sample (see appendix A3).

We note that the NMR signal is comparable to that of background signal; Figure 5 (b) and (c) show the 13C MAS NMR spectra for 13C-enriched uncompressed and compressed amorphous carbon and those for rotor and stator backgrounds. The observed difference in signal-to-noise ratio between the two spectra (uncompressed vs. compressed) are due to the absolute intensity differences in the two samples because of possible difference in spin-lattice relaxation times and/or the potential paramagnetic interaction between unpaired electron and 13C nuclides in the amorphous carbons: roughly, the calibration curve between 13C NMR peak intensity and 13C concentration based on the spin-counting experiment (see section 4.3 below), the peak intensity of compressed amorphous carbon corresponds to only $\sim 20\%$ of 13C in the sample. It is currently difficult to distinguish the effect of paramagnetic interaction from the contribution from the spin-lattice relaxation times (T_1) mostly because of difficulty in estimating T_1 time for the compressed carbon.
In order to yield the background-subtracted spectra, the intensity of the background signal was adjusted (~ 80%) by matching the sharp peak intensity at ~ 170 ppm. A decrease in the background intensity of the 13C MAS NMR spectra for the compressed and uncompressed amorphous carbon is likely due to the presence of the unpaired electrons in both samples [as expected from the presence of sp^2 bonding (Cho et al., 2008)]. While the current result is the first-of-its-kind observation of the pressure-induced permanent structural changes in amorphous carbon using 13C MAS NMR, the effect of paramagnetic interaction (between unpaired electron and 13C nuclides) remains to be fully established.

DISCUSSION

Origin of peak at 125.2 ppm in carbon-bearing enstatite

The current 13C NMR spectrum shows a strong and sharp resonance peak at 125.2 ppm. The FWHM of the peak is approximately 0.6 ppm with an applied Gaussian broadening factor of 0.01. While the 13C NMR studies of carbon phases in the crystalline silicates have not been performed hitherto, previous studies on the 13C MAS NMR for carbon-bearing anatase TiO$_2$ proposed that the extremely sharp peak at 126 ppm can be attributed to 14C in crystalline TiO$_2$ (Rockafellow et al., 2009). Alternately, in the previous 13C NMR study of the carbon species in the sodium aluminosilicate glasses, the peak at ~125 ppm with the spinning sidebands was assigned to the dissolved molecular CO$_2$ in the glass network (Kohn et al., 1991). The dissolved CO$_2$ molecules bound to the crystalline/non-crystalline silicate networks would be subject to the low degree of freedom. This leads to a relatively large 13C NMR chemical shift anisotropy of ~260–270 ppm (Herzfeld and Berger, 1980), resulting in the visible spinning sidebands (Kohn et al., 1991). In contrast, the CO$_2$ molecules in micro-fluid inclusions, which were not strongly
bound to the networks, may not show spinning sidebands (Herzfeld and Berger, 1980; Kohn et al., 1991). If the CO₂ is bound to the enstatite network, the spinning sidebands of the CO₂ peak should appear at approximately 265 ppm and -15 ppm in the current ¹³C MAS NMR spectrum. However, the spinning sidebands for the CO₂ peak were not observed in the current study. Therefore, the observed peak at 125.2 ppm in the current ¹³C MAS NMR spectrum is likely to result from the fluid-phase CO₂ molecule in the inclusion as also indicated by the presence of CO₂ band in the Raman spectrum (Fig. 1). While an experimental artificial signal (central spike) may overlap with the peak at 125.2 ppm in the previous pioneering study (Kohn et al., 1991), the current ¹³C NMR experiments were performed with the varying carrier frequency. The result confirms that the peak at 125.2 ppm is not due to the additional artifact signal. We also synthesized the sample twice using the identical experimental conditions in the piston cylinder to substantiate the reproducibility: the ¹³C MAS NMR spectra for both samples also showed a sharp peak at 125.2 ppm.

¹³C NMR chemical shift for orthocarbonate species ([⁴C]): Insights from quantum chemical calculations

A previous study suggested that the peak at ~ 120 ppm can be assigned to [⁴C] (Rockafellow et al., 2009). The peak position also corresponds to suggested peak position for molecular CO₂ (e.g., Brooker et al., 1999; Kohn et al., 1991; Morizet et al., 2010; Mysen et al., 2011). In order to confirm these earlier peak assignments, theoretical confirmation is required. Here, we calculated the chemical shift of [⁴C] [C(OH)₄] cluster using quantum chemical calculations. The theoretical calculation of NMR chemical shielding tensor for the model C(OH)₄ cluster shows the effect of the C-O bond length of [⁴C] cluster on the ¹³C chemical shift (Fig. 6).
The calculated 13C NMR chemical shift is also dependent on the energy level of theory and the basis sets used. Here the calculations were performed at the B3LYP level of theory with a 6-311+G(2d) basis set that reproduced experimental 13C chemical shifts for the known molecules relatively well (Kim and Lee, 2011; Lee and Lee, 2009). For example, the calculated NMR chemical shift for the CO$_2$ molecule is 125.7 ppm at the B3LYP level of theory with a 6-311+G(2d) basis set (Kim and Lee, 2011). The chemical shift is consistent with the result from experimental 13C liquid-state static NMR spectrum of CO$_2$ gas molecule (Ettinger et al., 1960). The calculated NMR chemical shift also varies with basis sets used. For instance, the shift of CO$_2$ molecule calculated at the B3LYP/6-31G(d) is 108.807 ppm (Kim and Lee, 2011).

Figure 6 shows that the effect of the C-O bond length on a single point energy and NMR chemical shift. The quantum chemical calculations of C(OH)$_4$ cluster with an equilibrium C-O bond length of 1.388 Å [calculated at the B3LYP/6-311+G(2d)] show that the chemical shift is 117.451 ppm. The calculated NMR chemical shift of C(OH)$_4$ cluster gradually increases with increasing the C-O bond length. The 13C chemical shift increases from 121.2 ppm at 1.40 Å to 196.9 ppm at 1.60 Å. In the previous report, we also showed that the $^{[4]}$C peak with a C-O bond length of 1.60 Å (if C substitutes Si in the chain silicate network) leads to a chemical shift of 254.6 ppm (Kim and Lee, 2011).

If the C-O bond length of the $^{[4]}$C cluster in the enstatite were ~ 1.388 Å, the peak position of the $^{[4]}$C species would be ~ 117.451 ppm. Therefore, taking into consideration the similarity between the chemical shifts for CO$_2$ and $^{[4]}$C, it is difficult to assign the peak based only on the 13C chemical shift. In the current study, as we observed CO$_2$-rich fluid inclusions confirmed by Raman spectroscopy (Fig. 1), the peak at 125.2 ppm in the current 13C MAS NMR spectrum is likely to be the free CO$_2$ molecule in enstatite.
External vs. structurally-incorporated carbon species in the carbon-bearing enstatite: Insights from quantitative 13C spin counting experiment using ADM-SiO$_2$ mixture

Calibration curve between 13C abundance and 13C MAS NMR peak intensity. In order to evaluate whether the observed 13C NMR peaks stem from the structurally-incorporated carbons in the enstatite or those in external phases, it is necessary to estimate the solubility of carbon in enstatite and to perform quantitative measurement of the amount of carbon species in carbon-bearing enstatite in 13C MAS NMR spectra (Fig. 2), and finally to compare the estimated amount of carbon in enstatite with the solubility of carbon in enstatite. A clear linear relationship between peak intensity and concentration was established for $X_{ADM}=1/4$, 1/8 and 1/16. We then extrapolated the trend line obtained from the samples with these higher ADM concentration to the samples with lower ADM concentration. The NMR intensity data for the samples with the lower ADM concentration were then adjusted to match the extrapolated line. This allows us to estimate the carbon concentration in the carbon-poor sample. The estimated carbon contents from the calibration curve are 2.0 wt% (220 ppm of 13C) for $X_{ADM}=1/50$ sample; 0.43 wt% (47 ppm of 13C) for $X_{ADM}=1/233$ sample; and 0.32 wt% (35 ppm of 13C) for $X_{ADM}=1/310$ sample, respectively. Again that the carbon content of the mixture with low carbon concentration was estimated using its peak intensity and established calibration curve for the mixtures with higher carbon concentration, while this may not be fully desirable. This is mainly because of the aforementioned difficulty in homogeneous mixing between a small amount of ADM and SiO$_2$ and partly due to their differences in volatilization during elemental analysis. Nevertheless, NMR peak intensity does correspond to robust carbon content and thus allows for rigorous estimation of amount of carbon in the mixtures.
Figure 7 (top) shows 13C MAS NMR spectra for ADM-SiO$_2$ mixtures with varying X_{ADM}. The peak area in each spectrum decreases with decreasing X_{ADM}. Figure A3 in appendix A4 shows the 13C MAS NMR spectra for ADM-SiO$_2$ mixtures with varying X_{ADM} ratio under proton decoupling. The spectra show that proton decoupling indeed improves signal-to-noise ratio while the peak intensity is conserved. We also note that the carbon species (including CO$_2$, CO$_3$$^{2-}$) that do not have hydrogen bonded to carbon may not undergo enhancement in signal-to-noise ratio further. Figure 7 (bottom) shows the relationship between the 13C MAS NMR peak intensity and the estimated 13C abundance in ADM-SiO$_2$ mixtures. The linear correlation between the 13C abundance (X) in the ADM-SiO$_2$ mixture and the normalized peak intensity (Y, normalized with respect to that of X_{ADM}=1/4.) in 13C MAS NMR spectra can be established: $Y=0.0369X$.

Effect of spin-lattice relaxation time. While we used the ADM-SiO$_2$ mixtures as an analog for the carbon species in the compressed silicates, the spin-lattice relaxation times for ADM and carbon species in the compressed enstatite are different: the T_1 for the latter is longer than that of the former. Because of the differences in spin-lattice relaxation times, the actual carbon concentration (particularly that of carbonate species) in the sample can be higher from those estimated here: T_1 of ADM is \sim 1 s (Resing, 1969) and thus the current recycle delay of 5 s provides quantitative insight into the carbon content in the sample. As for the other carbon species, due to low spin density, the T_1 for the CO$_2$ has not been estimated. Nevertheless, the previous studies have shown that spin-lattice relaxation time of gas phase CO$_2$ varies from \sim 0.2 sec at an internal pressure of 10.3 bar, 16.34 sec at 137.89 bar, and to \sim 22 sec at an internal pressure of 413.68 bar (Etess et al., 1992). While the T_1 for CO$_2$ varies with the density, the 13C MAS NMR experiment with 5 s and 40 s delay times does not lead to a noticeable difference in signal intensity. Therefore, the current results with 5 s relaxation delay provide moderately
robust estimation of CO$_2$ content in the glasses. As for the CO$_3^{2-}$ species, the estimated T$_1$ values for Na$_2$CO$_3$ and CaCO$_3$ are \sim 1729 and 6418 s, respectively. That for MgCO$_3$ magnesite is \sim 78 s (Moore et al., 2015). Thus the calibration curve based on ADM may not provide robust and quantitative estimation of the carbonate content in the current sample, particularly. The predicted 13CO$_3^{2-}$ content is likely to be smaller than the actual content.

Estimated carbon contents. The estimated minimum 13C abundance from 13C MAS NMR spectra for ADM-SiO$_2$ mixture is \sim 35 ppm of 13C from the calibration curve based on 13C MAS NMR experiments. Based on the established calibration curve, we believe that the detection limit is \sim 5–10 ppm for 13C species with the employed instrumentation and the experimental conditions in the current study (\sim 5 days of signal averaging at 9.4 T static field with a rf field strength of 66.7 kHz in the 3.2 mm rotor with full sample volume of \sim 19 mm3). Whereas the spin-lattice relaxation times, particularly carbonates species in the enstatite-amorphous carbon reaction products need to be estimated, because of the limited sample volume, it is currently challenging to measure T$_1$. Nevertheless, based on the calibration curve, the estimated 13C amounts of CO$_2$, CO$_3^{2-}$, and CO species are \sim 142–166 ppm, \sim 28–45 ppm (once calibrated with T$_1$ effect, the concentration should be higher than the current value), and \sim 6–7 ppm, respectively. The previously reported solubility of carbon species in enstatite is 0.05–4.7 ppm (Keppler et al., 2003; Shcheka et al., 2006); therefore the estimated carbon contents from the NMR spectra indicate that those carbon species are from external phases.

External crystalline carbonate phases. Characteristic vibrational frequencies for calcite and magnesite are expected to be at 1088 cm$^{-1}$ and 1095 cm$^{-1}$, respectively. We note that there is also an expected peak shift toward higher frequency with increasing pressure. C-O asymmetric stretching vibration for bicarbonate species would show up at 1630 cm$^{-1}$, if exists (Davis and 23
Oliver, 1972; Wen and Brooker, 1995). The Raman spectra for the fluid inclusion in the carbon-bearing enstatite do not show the peak due to carbonate species. Therefore the carbonate peak observed in the 13C NMR is not from the inclusion. In order to check the potential presence of carbonate phases in the grains, we also performed SEM analysis of the grains. The preliminary analysis does not show any evidence for the carbonate phases although we cannot discard the possibility of its potential presence (See appendix A5 and A6).

Sources of 12C contamination

In this study, 13C-enriched amorphous carbon (~ 99.7%) was used to synthesize the carbon-bearing enstatite and the sample was sealed in a Pt tube (a closed system); therefore, the presence of 12C was not expected. The Raman spectra for fluid-inclusion in enstatite, however, showed the presence of 12C species, which was not present inside the capsule during the sample preparation and welding. The presence of 12C thus indicates a potential contamination by infiltration of carbon from the graphite furnace during the compression and heating in the piston cylinder (Balta et al., 2011; Brooker et al., 1998; Brooker et al., 1999; Ni and Keppler, 2013). Note that double Pt capsules were used to minimize the changes in f_{O_2} in several previous synthesis of carbon-bearing silicates in the previous studies (Balta et al., 2011; Brooker et al., 1998; Ni and Keppler, 2013 and references therein). The 12C infiltrated from the graphite furnace may lead to the spatial heterogeneity in f_{O_2}: oxygen fugacity near the boundary of the Pt capsule may be low, resulting in the formation of 13CO species [13CO$_2$ + 12C (from graphite furnace) = 13CO + 12CO] (Brooker et al., 1998; Cerfontain et al., 1987). Despite the observed presence of 12C in the carbon-bearing enstatite (Fig. 1), the 13C MAS NMR spectrum obtained from the sample shows only the 13C contribution in enstatite, taking into consideration the fact that the 13C
is the only active isotope.

IMPLICATIONS

Here, we have reported the 13C MAS NMR spectrum for carbon-bearing enstatite. The 13C MAS NMR spectrum for the carbon-bearing enstatite shows multiple peaks from different carbon environments: CO, CO$_3^{2-}$, and molecular CO$_2$. The Raman spectra for the observed fluid inclusion in the carbon-bearing enstatite show multiple molecular species (e.g., CO$_2$, CO, CH$_4$, H$_2$O, and H$_2$). The quantum chemical calculations of the C(OH)$_4$ cluster show that 13C chemical shift of the cluster has strong C-O bond length dependence; with increasing C-O bond length from 1.40 Å to 1.60 Å, 13C chemical shift increases from 121.2 ppm to 196.9 ppm.

While the Raman spectrum of the observed fluid inclusions in the carbon-bearing enstatite can provide information on the collective vibration of molecules of different isotopes (e.g., peaks of 13CO$_2$ and 12CO$_2$, and 13CO and 12CO), the 13C NMR spectrum can provide complementary and element-specific information on the nature of carbon species in crystalline silicates, distinguishing the molecular CO$_2$ in fluid phase and structurally bound CO$_2$ in silicate network. Taking into consideration the similarity between the chemical shifts of CO$_2$ and $^{[4]}$C, it is not straightforward to assign the peak solely based on the 13C NMR peak positions. Yet, we expect that the method could potentially probe the minor fraction of $^{[4]}$C whose peak width is expected to be much larger than that of molecular CO$_2$ due to its pronounced nuclear spin anisotropy. The current results suggest that the 13C MAS NMR technique, combined with Raman spectroscopy can be used as a tool for the detection of carbon species and inclusions in crystalline silicates.

Whereas the 13C MAS NMR technique was utilized to probe carbon speciation in
silicates at relatively low pressure (1.5 GPa in the current study), the method can also be utilized to analyze carbon species in carbon-bearing silicate minerals at much higher pressure and additional carbon reservoirs in earth’s interior, such as metal carbides and carbonate minerals (Catalli and Williams, 2005; Hazen et al., 2013; Mikhail et al., 2011; Mookherjee, 2011; Mookherjee et al., 2011; Oganov et al., 2013; Rohrbach and Schmidt, 2011; Santillán et al., 2005; Seto et al., 2008). As for the latter, presence of crystalline silicon carbonate phase where silicon behaves as a metal cation in carbonates at 18–26 GPa was also reported (Santoro et al., 2011). While the detailed structural characterization of these phases remains to be seen, future 13C solid-state NMR studies of these phases may reveal the detailed bonding nature of these complexes under compression.

The solubility of carbon into (Mg,Fe)$_2$SiO$_4$ olivine increases from 0.09 ppm to 12.75 ppm as pressure increases from 1.5 GPa to 11 GPa and that into MgSiO$_3$ bridgmanite at ~ 26 GPa is less than 0.05 ppm (Shcheka et al., 2006). Due to relatively low carbon solubility, it is currently challenging to detect carbon species in these phases using the experimental conditions employed here. While the NMR data indeed provide complementary and unique insights into the speciation of carbon-bearing phases to vibrational spectroscopy, we fully acknowledged the fact that the current data also address the limitation of the NMR studies on quantitative estimation of ~ ppm scales of carbon dissolved in a crystalline lattice: 13C may not reveal the carbon species at concentration below 5–10 ppm using the current experimental protocols at the current stage. NMR experiments at high magnetic field with fast spinning probes lead to significant gain in signal intensity and may provide insights into the carbon solubility mechanism into the crystalline phases in Earth’s mantle.
ACKNOWLEDGEMENT

This research was supported by National Research Foundation, Korea Laboratory Program to S.K.L. (2014-053-046). We thank I. Lee (SNU), C.S. Yoo (WSU), G.D. Cody (CIW) for helpful discussions, B. Phillips (SUNY, Stony Brook) for constructive suggestions, which greatly improved quality and clarify of the manuscript, and three anonymous reviewers and Y. Morizet for helpful comments and suggestions on the original manuscript.
REFERENCES CITED

Bodnar, R.J., Binns, P.R., and Hall, D.L. (1989) Synthetic fluid inclusions - VI. Quantitative evaluation of the decrepitation behaviour of fluid inclusions in quartz at one atmosphere
Kim, Fei, and Lee

confining pressure. Journal of Metamorphic Geology, 7, 229-242

The detection of carbon infiltration into platinum capsules. American Mineralogist, 83, 985-994

speciation and dissolution mechanisms for CO2 in melts on the NaAlO2-SiO2 join.
Geochimica et Cosmochimica Acta, 63, 3549-3565

Burke, E.A.J. (2001) Raman microspectrometry of fluid inclusions. Lithos, 55, 139-158

R.M. Hazen, A.P. Jones, and J.A. Baross, Eds. Reviews in Mineralogy & Geochemistry, 75,
p. 323-354. Mineralogical Society of America, Virginia

Catalli, K., and Williams, Q. (2005) A high-pressure phase transition of calcite-III. American
Mineralogist, 90, 1679-1682

gasification in CO-CO2 mixtures: An extended model for the oxygen exchange and
gasification reaction. Journal of Catalysis, 107, 173-180

amorphous carbon films by solid state nuclear magnetic resonance. Journal of Applied
Physics, 104, 013531

Cody, G.D., and Alexander, C.M.O.D. (2005) NMR studies of chemical structural variation of
insoluble organic matter from different carbonaceous chondrite groups. Geochimica et
Cosmochimica Acta, 69, 1085-1097

Cody, G.D., Heying, E., Alexander, C.M.O., Nittler, L.R., Kilcoyne, A.L.D., Sandford, S.A., and
Kim, Fei, and Lee

Ettinger, R., Blume, P., Patterson, A., and Lauterbur, P.C. (1960) 13C chemical shifts in CO and CO$_2$. Journal of Chemical Physics, 33, 1597-1598

Freund, F. (1981) Mechanism of the water and carbon dioxide solubility in oxides and silicates
and the role of O⁻. Contributions to Mineralogy and Petrology, 76, 474-482

Herzfeld, J., and Berger, A.E. (1980) Sideband intensities in NMR spectra of samples spinning at the magic angle. The Journal of Chemical Physics, 73, 6021-6030

Kim, Fei, and Lee

479-517. Mineralogical Society of America, Washington

Kirkpatrick, R.J., Oestrike, R., Weiss, C.A., Smith, K.A., and Oldfield, E. (1986) High-resolution 27Al and 29Si NMR spectroscopy of glasses and crystals along the join CaMgSi$_2$O$_6$-CaAl$_2$SiO$_6$. American Mineralogist, 71, 705-711
Kim, Fei, and Lee

Kim, Fei, and Lee

Kim, Fei, and Lee

O-H volatiles in silicate melts at high pressure and temperature. Geochimica et Cosmochimica Acta, 73, 1696-1710

Phillips, B.L., Xu, H., Heaney, P.J., and Navrotsky, A. (2000) 29Si and 27Al MAS-NMR spectroscopy of β-eucryptite (LiAlSiO$_4$): The enthalpy of Si,Al ordering. American Mineralogist, 85, 181-188

resonance studies. Structure, Dynamics and Properties of Silicate Melts, 32, 191-246

surfaces of magnesium oxide and olivine single crystals. Diffusion from the bulk or surface contamination? Physics and Chemistry of Minerals, 12, 261-270

Figure captions.

Figure 1 (A) A stereoscopic micrograph image of one of the grains of carbon-bearing enstatite. The size of the grain is 80 μm (w) × 100 μm (h) and the fluid inclusions are 4 μm (w) × 10 μm (h) (indicated with red rectangles). (B) Raman spectra for carbon-bearing enstatite in the frequency range of 1000–4300 cm⁻¹ and (C) that in the range of 1200–1500 cm⁻¹ and (D) 2000–2200 cm⁻¹.

Figure 2 13C MAS NMR spectra for background-subtracted carbon-bearing enstatite (top), carbon-bearing enstatite and stator and rotor backgrounds (middle), and stator and rotor backgrounds (bottom). The asterisks denote expected positions of spinning sidebands for 125.2 ppm peak.

Figure 3 13C NMR spectra for carbon-bearing enstatite synthesized in this study (top) and corresponding annealed sample at 750 °C for 10 min (bottom). All spectra were background-subtracted.

Figure 4 13C NMR spectra for carbon-bearing enstatite and stator and rotor backgrounds at 11 kHz of spinning speed (top), that at 14 kHz of spinning speed (middle), and rotor and stator background at 14 kHz (bottom). The asterisks and dotted arcs denote expected positions of spinning side bands for background signal at 130 ppm. The spinning sideband of the spectrum for carbon-bearing enstatite at 14 kHz overlaps with a small peak at ~ -9 ppm.

Figure 5 (A) Background-subtracted 13C NMR spectra for 13C-enriched compressed and uncompressed amorphous carbon. (B) 13C NMR spectra for 13C-enriched uncompressed amorphous carbon, and stator and rotor background. (C) 13C NMR spectra for 13C-enriched compressed amorphous carbon, and stator and rotor background.

Figure 6 (A) Single point energy of C(OH)$_4$ cluster with varying C–O bond length. A model
C(OH)$_4$ cluster is also shown in the inset. (B) NMR chemical shift of C(OH)$_4$ cluster with varying C–O bond length.

Figure 7 (Top) 13C MAS NMR spectrum for the mixtures of ADM-SiO$_2$ with varying ADM/SiO$_2$ ratio [$X_{ADM} = 1/4$ (25 wt%, 2750 ppm of 13C), 1/8 (12.5 wt%, 1375 ppm of 13C), 1/16 (6.25 wt%, 688 ppm of 13C), 1/50 (2.0 wt%, 220 ppm of 13C), 1/233 (0.43 wt%, 47 ppm of 13C), 1/310 (0.32 wt%, 35 ppm of 13C)]. (Bottom) Variation of peak intensity in the ADM-SiO$_2$ mixture as a function of 13C abundance (in ppm) calculated from nominal X_{ADM} ratio and peak area of carbon species in 13C MAS NMR spectra. Diamonds and circles refer to the amounts of 13C estimated from nominal X_{ADM} ratio with and without proton decoupling, respectively. Their peak areas were retrieved from 13C MAS NMR results for ADM-SiO$_2$ mixtures. Rectangles refer to the amounts of 13C species in carbon-bearing enstatite estimated from 13C MAS NMR spectra for carbon-bearing enstatite.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Kim, Fei, and Lee

1045
Table 1. 13C NMR chemical shift for various crystalline and amorphous carbon materials.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Carbon species</th>
<th>Peak position (ppm)</th>
<th>FWHM (ppm)</th>
<th>B_0 (T)</th>
<th>Spin rate (kHz)</th>
<th>Ref.†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amorphous carbon (rf sputtering)</td>
<td>sp^2-like carbon</td>
<td>130</td>
<td>200</td>
<td>2.35</td>
<td>4.4</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>sp^3-like carbon</td>
<td>62</td>
<td>~ 26.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amorphous carbon (PLD)</td>
<td>sp^2-like carbon</td>
<td>137.8</td>
<td>41.3</td>
<td>9.4</td>
<td>15</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>sp^3-like carbon</td>
<td>67.5</td>
<td>49.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon nanotubes</td>
<td>single-walled nanotubes</td>
<td>124</td>
<td>9.4</td>
<td>11.7</td>
<td></td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td>with 2.4 at% Rh/Pd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>single-walled nanotubes</td>
<td>118.8</td>
<td>4.7</td>
<td></td>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>(pure)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>single-walled nanotubes</td>
<td>123.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(with adsorbed CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>double-walled nanotubes</td>
<td>116.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>multi-walled nanotubes</td>
<td>106.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(15±5 walls)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>multi-walled nanotubes</td>
<td>102.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(60±10 walls)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphene</td>
<td>graphene</td>
<td>123</td>
<td>8.46</td>
<td>9.4</td>
<td></td>
<td>(5)</td>
</tr>
<tr>
<td>Fullerene black + C$_{60}$</td>
<td>C$_{60}$</td>
<td>142.6</td>
<td>0.7</td>
<td>7.05</td>
<td>5</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>C$_{70}$</td>
<td>129.9, 144.7, 149.7</td>
<td></td>
<td></td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>polyynic carbon chain</td>
<td>~ 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon black</td>
<td>aromatic C=C</td>
<td>126</td>
<td>6.35</td>
<td>5.3</td>
<td></td>
<td>(7)</td>
</tr>
<tr>
<td></td>
<td>C=O</td>
<td>167</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>aliphatic C-C</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† (1) Pan et al. (1991); (2) Alam et al. (2003); (3) Tang et al. (2000); (4) Abou-Hamad et al. (2011); (5) Si and Samulski (2008); (6) Kanowski et al. (1997); (7) Jäger et al. (1999)
A1. Solubility of carbon into crystalline silicates at high pressure up to 25 GPa

The solubility and detailed structure around carbon species in crystalline silicates are often difficult to probe. This is partly because the solubility of the carbon species is relatively low, on the order of 0.01 to 10 ppm (Keppler et al., 2003; Shcheka et al., 2006), and suitable probes are limited. Furthermore, the solubility measurement is often complicated by several extrinsic factors including presence of excess carbon in the grain boundary; the resulting carbon solubility in silicate crystals varied from the order of 0.01 ppm to 2500 ppm (Freund et al., 1980; Keppler et al., 2003; Mathez et al., 1984; Shcheka et al., 2006; Tingle and Aines, 1988; Tsong and Knipping, 1986; Tsong et al., 1985).

Despite the challenge, previous efforts have provided some insights into carbon species in various silicate crystals at pressures up to 26 GPa (Keppler et al., 2003; Taylor et al., 1990) (Keppler et al., 2003; Shcheka et al., 2006). The carbon solubility in the silicates does not show a great variation depending on the types and composition of the crystals. The estimated total carbon content in the Mg-silicates apparently increases with increasing pressure, but the formation of Mg-perovskite phase leads to a reduction in the carbon solubility in silicate (Keppler et al., 2003; Shcheka et al., 2006). Table A1 summarizes the estimated carbon solubility in the various silicate polymorphs in a pressure range of 1–26 GPa (Keppler et al., 2003; Shcheka et al., 2006). The solubility of carbon in enstatite at 1.5 GPa varies from 0.05 ppm to 4.7 ppm, which may reside from the carbon contents in the grain boundaries.
Table A1 | Solubility of carbon species in crystalline silicates with varying composition, pressure, and temperature, as reported in previous studies.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Pressure (GPa)</th>
<th>Temperature (°C)</th>
<th>Duration (h)</th>
<th>Solubility (wt ppm)</th>
<th>Ref.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enstatite (MgSiO₃)</td>
<td>1.5</td>
<td>900–1100</td>
<td>96–168</td>
<td>0.05(1)–0.19(4)</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>900</td>
<td>96</td>
<td>3.0–4.7</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1100</td>
<td>5</td>
<td>0.38(3)–0.44(3)</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1400</td>
<td>10</td>
<td>0.69(6)–0.80(6)</td>
<td></td>
</tr>
<tr>
<td>Olivine [(Mg,Fe)₂SiO₄]</td>
<td>1.5</td>
<td>900–1100</td>
<td>144–168</td>
<td><0.09–0.38(9)</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1200</td>
<td>68</td>
<td>0.14(2)–0.25(2)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1200</td>
<td>71</td>
<td>0.34(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>1200</td>
<td>71</td>
<td>0.29(4)–0.54(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1200</td>
<td>10</td>
<td>3.27(29)–3.90(68)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1200</td>
<td>10</td>
<td>11.57(34)–12.75(53)</td>
<td></td>
</tr>
<tr>
<td>Diopside (CaMgSi₂O₆)</td>
<td>1.5</td>
<td>900–1100</td>
<td>96–168</td>
<td><0.01–0.16(2)</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>900</td>
<td>168</td>
<td>0.4–0.5</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1100</td>
<td>8</td>
<td>1.45(7)–1.60(6)</td>
<td>(1)</td>
</tr>
<tr>
<td>Pyrope (Mg₃Al₂Si₃O₁₂)</td>
<td>6</td>
<td>1300</td>
<td>10</td>
<td>0.85(5)–0.87(5)</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1300</td>
<td>10</td>
<td>1.9–2.1</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1300</td>
<td>6</td>
<td>0.82(4)–0.96(5)</td>
<td></td>
</tr>
<tr>
<td>Spinel (MgAl₂O₄)</td>
<td>1.5</td>
<td>1100</td>
<td>168</td>
<td><0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1100</td>
<td>168</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Wadsleyite [(Mg,Fe)₂SiO₄]</td>
<td>16</td>
<td>1400</td>
<td>10</td>
<td><0.04–0.04(1)</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1400</td>
<td>4</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>Ringwoodite [(Mg,Fe)₂SiO₄]</td>
<td>21</td>
<td>1200</td>
<td>10</td>
<td>0.04(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1200</td>
<td>4</td>
<td><0.07–0.10(2)</td>
<td></td>
</tr>
<tr>
<td>Ilmenite (MgSiO₃)</td>
<td>25</td>
<td>1400</td>
<td>10</td>
<td><0.08</td>
<td>(1)</td>
</tr>
<tr>
<td>Bridgmanite (Perovskite) (MgSiO₃)</td>
<td>25</td>
<td>1400</td>
<td>10</td>
<td><0.07</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1400</td>
<td>3</td>
<td><0.05</td>
<td></td>
</tr>
</tbody>
</table>

* (1) Shcheka et al. (2006); (2) Keppler et al. (2003)
A2. The presence of 13CH$_4$ in carbon-bearing enstatite by using proton decoupling

Figure A1 shows 13C MAS NMR spectrum for carbon-bearing enstatite with decoupling power of 33 kHz and spinning speed at 11 kHz. Any decrease in the peak width for the peak \sim -9 ppm in Fig. 3 has not been observed. The result may indicate that the small feature at \sim -9 ppm is from background signal.

![Figure A1](image)

Figure A1 | 13C MAS NMR spectrum for carbon-bearing enstatite under proton decoupling with an applied Lorentzian broadening factor of 40.
A3. Effect of residual H in the pressure-induced carbon peak shifts in the amorphous carbon

Protonation into carbon could also affect the observed change in peak position of amorphous carbon under compression. We collected 1H MAS NMR spectra for the compressed and uncompressed amorphous carbon in order to identify whether there would be any 1H reservoir and potential protonation of the sample. The spectra were collected on a Varian NMR system (9.4 T) at a Larmor frequency of 400.01 MHz (3.2 mm double-resonance Varian probe). Single-pulse acquisition with a pulse length of 1.6 μs (radio frequency tip angle of about 30° for solids) was used with a recycle delay of 5 s and spinning speeds of 14 kHz. The potential results would allow us to confirm whether the observed changes in the peak shift is due to residual proton from the H$_2$O added during the sample synthesis. Figure A1 shows the 1H MAS NMR spectra for 13C-enriched uncompressed and compressed amorphous carbon and those for rotor and stator backgrounds. 1H MAS NMR spectra for rotor and stator background show a broad peak at ~ 7 ppm. The shoulder at ~ -1 ppm is observed for uncompressed amorphous carbon. The assignment of the feature is not trivial, yet previous 1H NMR study for the amorphous carbon under milling showed a broad feature near ~ -1 ppm, assigned to hydrogenated amorphous carbon (Shindo et al., 2011). No noticeable proton peak is observed for compressed amorphous carbon, suggesting the absence of proton reservoir in compressed amorphous carbon. The result confirms that the proton signal from rotor and stator background is far much greater than those from the amorphous carbon and there is no noticeable proton reservoir for the compressed carbon. Taking into consideration negligible H content in the compressed amorphous carbon, it is expected that 1H-13C cross-polarization NMR does not probe the H-C interaction within the amorphous carbon. Indeed, our preliminary 1H-13C cross-polarization NMR spectra for the
sample and rotor showed that the most of the signals are from the rotor and stator. The current results again confirm the pressure-induced peak shift were not affected by the proton in the sample.

Figure A2] (A) 1H MAS NMR spectra for compressed amorphous carbon, amorphous carbon, and rotor-stator background. Asterisks denotes spinning sidebands. (B) Expanded 1H MAS NMR spectra for the samples as labeled.
A4. Detection limit on 13C MAS NMR under proton decoupling

Figure A3 shows the 13C MAS NMR spectra for ADM-SiO$_2$ mixtures with varying X_{ADM} ratio with decoupling power of 33 kHz. The spectra show that proton decoupling indeed improves signal-to-noise ratio and 13C MAS NMR spectrum for the sample with $X_{ADM} = 1/259$, ~ 43 ppm can be obtained. See Figure 7 for the calibration results based on the decoupling experiments.

![Figure A3](image-url)
A5. The characteristics of the 13C peak width of various carbonate species

Figure A4 shows the 13C static NMR spectra of 1 M Na$_2$CO$_3$(aq) and 1 M (Na$_2^{13}$CO$_3$+NaHCO$_3$)(aq), and 13C MAS NMR spectra of calcite and natrite to explore the characteristics of their peak shape in the 13C NMR spectra. The spinning speed for calcite and natrite is 14.7 kHz. The FWHM of calcite and natrite peak in 13C MAS NMR spectra are 0.48 and 0.42 ppm with an employed Lorentzian broadening factor of 10, respectively. The FWHM of 1 M Na$_2^{13}$CO$_3$(aq) and 1 M (Na$_2^{13}$CO$_3$+NaHCO$_3$)(aq) in 13C MAS NMR spectra are 0.48 and 0.48 ppm with an employed Lorentzian broadening factor of 10, respectively. The FWHM of carbonates peaks in the carbon-bearing enstatite at 161.2, 170.9, and 173.3 ppm are 0.29, 0.37, and 0.35 ppm with a Lorentzian broadening factor of 10, respectively. Therefore, it is difficult to identify their phases (either solid or liquid) based only on their peak widths due to the similarity in FWHM of carbonate minerals and carbonate ions in aqueous solution. Although spectra for aqueous solution collected without spinning at the magic angle, we note that 13C liquid-state NMR under MAS may not reduce the FWHM of the carbonate species in aqueous solution.

Figure A4 13C NMR spectra for 1 M Na$_2^{13}$CO$_3$(aq), 1 M (Na$_2^{13}$CO$_3$+NaHCO$_3$)(aq), calcite, and natrite.
natrite with an employed Lorentzian broadening factor of 10.
A6. Estimation of the detection limit of carbonate phase in the enstatite-calcite mixture using conventional XRD

In order to test the detectability of carbonate species in the silicate matrix, we collected XRD patterns from enstatite-calcite mixture with varying concentration of carbonate phase (on Rigaku MiniFlex600, using CuKα X-rays, voltage of 40 kV, current of 15 mA, a 2θ range of 10°–60°, a step width of 0.01°, and scan rate of 0.4 s/point). Figure A5 shows the XRD patterns of enstatite-calcite mixture with varying X_{calcite} from 0 to 1/32. The calcite (104) peak (red line at 29.4°) intensity can be seen up to X_{calcite}=1/256 (∼0.39 wt%) sample, which is the detection limit with the employed instrument and conditions used in the study. The estimated carbonate concentration is much smaller than the current detection limit of XRD.

Figure A5| XRD patterns of enstatite-calcite mixture with varying X_{calcite} from 0 to 1/32. Blue and red lines on the top of the figure refer to XRD patterns of enstatite and calcite, respectively. A red area show the decrease of calcite intensity with decreasing X_{calcite} in the sample.