1 REVISION 1

2 Sub-Micron-Scale Spatial Heterogeneity in Silicate Glasses Using Aberration-Corrected

3 Scanning Transmission Electron Microscopy

- 4 Katherine D. Burgess¹, Rhonda M. Stroud², M. Darby Dyar³, and Molly C. McCanta⁴
- ⁵ ¹ASEE Postdoctoral Fellow, U.S. Naval Research Laboratory, Washington, DC 20375
- 6 (kate.burgess.ctr@nrl.navy.mil)
- ⁷²U.S. Naval Research Laboratory, Washington, DC 20375
- ⁸ ³Mount Holyoke College, South Hadley, MA 01075
- ⁹ ⁴Tufts University, Medford, MA 02155
- 10

Abstract

Experimental silicate glasses are often used as analog and calibration material for 11 terrestrial and planetary materials. Measurements of Fe oxidation state using electron energy loss 12 spectroscopy (EELS) in an aberration-corrected scanning transmission electron microscope (ac-13 STEM) show that a suite of experimental silicate (e.g., basaltic, andesitic, rhyolitic) glasses have 14 spatially heterogeneous oxidation states at scales of 10s of nanometers. Nano-crystals are 15 observed in several of the glasses, indicating nucleation and incipient crystallization not seen at 16 the scale of electron microprobe analysis (EMPA). Glasses prepared in air are uniformly 17 oxidized while glasses prepared at the iron-wustite (IW) or quartz-favalite-magnetite (QFM) 18 buffers range from reduced to highly oxidized. EELS spectral shapes indicate that oxidized 19 glasses have tetrahedral Fe^{3+} . The nano-scale compositional and structural heterogeneities 20 present in the experimental glasses mean that the suitability of such glasses as analogs for natural 21 materials and calibration standards depends strongly on the scale of the measurements being 22 done. The electron beam quickly damages silicate glass, but data showing changes in oxidation 23

24	state among and within samples can be obtained with careful control of the beam current and
25	dwell time. Determination of oxidation state in silicate glasses via STEM-EELS is very
26	challenging, and accurate and reliable measurements of $Fe^{3+}/\Sigma Fe$ require careful sample
27	preparation and control of microscope conditions and benefit from comparison to
28	complementary techniques.
29	
30	Keywords: iron oxidation; silicate glass; transmission electron microscopy (TEM); electron
31	energy loss spectroscopy (EELS); beam damage
32	Introduction
33	Motivation
34	Nano-scale measurements of terrestrial and planetary materials can provide unique
35	information about formation and alteration processes. Variations in structure and chemistry at
36	this scale are inherent to some alteration processes and important in dynamics of initial
37	crystallization and phase changes. Micro-X-ray absorption near-edge spectroscopy (μ -XANES)
38	has been used to map redox and speciation of Fe at $\sim 10 \ \mu m$ scales in a variety of minerals,
39	glasses, and metamorphic rocks (Dyar et al., 2002; Dyar et al., 2016a; Dyar et al., 2016b; Muñoz
40	et al., 2006), while scanning transmission X-ray microscopy (STXM) has been used to map
41	$Fe^{3+}/\Sigma Fe$ at finer spatial scales (~20 nm) (Bourdelle et al., 2013a; Bourdelle et al., 2013b;
42	Elmaleh et al., 2015; Le Guillou et al., 2015). Energy-filtered imaging in conventional
43	transmission electron microscopy (EFTEM) has also been used to map changes in valence state
44	with a spatial resolution of a few nanometers (Golla and Putnis, 2001). For example, the nano-
45	scale analyses of Fe oxidation state lend insights to studies of aqueous alteration processes in
46	CAIs in carbonaceous chondrites (Elmaleh et al., 2015), alteration during capture of comet Wild
47	2 grains and variability in precursor phases for Stardust tracks (Stodolna et al., 2013), and Fe^{2+}

2

3

48	and Fe ³⁺ partitioning behavior in diamond anvil cell experiments (Prescher et al., 2014). The
49	development of electron energy-loss spectroscopy (EELS) in the aberration-corrected scanning
50	transmission electron microscope (ac-STEM) is leading to significant improvement in both the
51	spatial and energy resolution available for the analysis of such materials, as illustrated by recent
52	measurements of nano-phase Fe-rich grains in space-weathered rims of lunar soil showing that
53	individual Fe particles can vary significantly in their level of oxidation (Thompson et al., 2016).
54	The present work illustrates both the power and challenges of using very-high resolution,
55	sub-nanometer analysis techniques to relate bulk material properties to nano-scale features. The
56	homogeneity of silicate glasses at the micrometer-scale make them ideal for many
57	characterization methods with beam sizes down to ${\sim}1~\mu\text{m},$ but the non-random structure and
58	compositional variations at smaller length scales becomes apparent in STEM measurements.
59	Additionally, sensitivity to the electron beam leads to changes in composition and oxidation state
60	that can be difficult to detangle from the inherent variability of the glass. Even so, EELS and
61	EDS measurements in silicate glasses enable detection of nano-crystals and dynamic changes in
62	glass structure not seen by other means.

63 Background

64 Synthetic and experimentally-equilibrated glasses are among the standards used in many 65 analytical techniques and are generally confirmed to be homogenous at the scales of the 66 measurements for which they are used. While glasses lack the long-range order seen in crystals, 67 measurements of the short- and medium-range ordering up to ~1-2 nm in silicate glasses show 68 that glasses are not always random mixtures of components and structurally and can be quite 69 varied (Mysen and Richet, 2005). Short-range order in silicate melts and glasses, encompassing 70 nearest-neighbors and ion coordination, closely resembles that of crystalline silicates, with

71	networks of SiO_4 -tetrahedra in which Si^{4+} may be replaced by cations of similar ionic radius and
72	charge (e.g., Al^{3+} , Fe^{3+} , Ti^{4+} , P^{5+}). Intermediate- or medium-range order, which includes the
73	arrangement of the tetrahedral structural units such as in rings, chains, and sheets, has been
74	shown to depend on quench rate and composition (Stebbins, 1987, 1988; Virgo et al., 1980).
75	Other cations in the glass serve to either charge balance tetrahedra or as network-modifiers and
76	may show preference for bonding to specific types of tetrahedral units (Lee et al., 2003; Lee et
77	al., 2005). The ordering of the constitutive structural units and inherent non-randomness of melts
78	and glasses is important in volume nucleation (Deubener, 2005).
79	Measurements of Fe ³⁺ / Σ Fe in terrestrial and planetary materials have been carried out
80	using a variety of measurement techniques that sample materials at a range of spatial scales. In
81	order of decreasing sample size, these include wet chemical methods (e.g., Christie et al., 1986),
82	Mössbauer spectroscopy (e.g., Bancroft et al., 1967; Jayasuriya et al., 2004), x-ray absorption
83	spectroscopy (XAS) (e.g., Bajt et al., 1994; Cottrell and Kelley, 2011; Dyar et al., 1998; Dyar et
84	al., 2016b), electron microprobe (e.g., Herd et al., 2001), Raman (e.g., Roskosz et al., 2008), and
85	EELS or EFTEM (e.g., Garvie and Buseck, 1998; Golla and Putnis, 2001; Van Aken et al., 1998;
86	Van Aken and Liebscher, 2002). Of these techniques, EELS in a TEM provides the highest
87	spatial resolution, and thus the best chance of observing fine-scale variations due to structural
88	changes. It is unclear how the non-random structure of glasses and possible preferential bonding
89	to specific structural units is exhibited in Fe ³⁺ / Σ Fe at sub-nanometer scales, although there is
90	evidence of Fe clustering depending on coordination and possibly valence (Weigel et al., 2008).
91	Quench rate affects both the iron valence and coordination in glasses (Dyar, 1984; Dyar and
92	Birnie, 1984) in addition to the over-all glass structure (Stebbins, 1988), suggesting that local
93	variations in Fe ³⁺ / Σ Fe can occur.

94	When EELS is used as part of a STEM, in which a highly-focused electron beam is
95	rastered across a portion of the sample, very-high-resolution images are obtained at the atom-
96	scale. The combination of spatially resolved information on composition (using energy-
97	dispersive X-ray spectroscopy or EDS) and local bonding and coordination (through EELS),
98	makes STEM-EELS a powerful tool for determining oxidation state in materials at the sub-
99	nanometer scale. An open question is the extent to which Fe^{3+} and Fe^{2+} are distributed randomly
100	or locally within a glass structure, and STEM-EELS has the capability of addressing this.
101	The high brightness and focused probe of the aberration-corrected STEM enable fast
102	acquisition of data and low detection limits in EELS. However, the highly focused beam can
103	cause significant damage to sensitive samples, including loss of material or breaking of bonds,
104	which can change valence or coordination states of atoms (Egerton, 2011). Glasses and other
105	amorphous silicates are known to be highly susceptible to damage caused by the electron beam
106	during microscopy measurements. Mechanisms of both oxidation (Garvie et al., 2004;
107	Lauterbach et al., 2000; Van Aken et al., 1998) and reduction (McCartney et al., 1991; Smith et
108	al., 1987) due to effects of the electron beam have been measured in transition metal-bearing
109	materials. Jiang and co-workers (Jiang and Spence, 2010; Jiang, 2013) have shown that the
110	induced electric field created by the uncompensated emission of secondary and Auger electrons
111	in insulating materials (Cazaux, 1995) drives diffusion of cations from an area much larger than
112	the probe. Diffusion of network-modifying cations (mono- and divalent species) in silicate
113	glasses is relatively fast compared to what is observed in many crystalline materials, and it is
114	more easily charge compensated, with no crystal-chemical constraints to overcome (Zhang et al.,
115	2010). Thus the effects of beam damage on glass structure, composition, and oxidation state are

116	important consequences of measurement. This paper seeks to shed light on these issues, while
117	also informing the question of long vs. short-range ordering of Fe^{3+} and Fe^{2+} in glasses.
118	Methods
119	Homogenous, synthetic glasses of basaltic, andesitic and rhyolitic composition were
120	prepared for EELS measurements. Synthetic glass starting compositions were generated for a
121	wide range of geologically-relevant compositions. The iron contents of the samples range from
122	1.7-3.7 wt% FeO in rhyolitic to 7-12 wt% FeO in andesitc and basaltic compositions (Table 1).
123	Syntheses
124	Starting compositions were produced by weighing out appropriate amounts of Alfa Aesar
125	Puratronic oxide and carbonate powders, and then grinding the mixtures by hand in an agate
126	mortar under ethanol for one hour, followed by decarbonating (if carbonates are present) at
127	800°C for 2 hours. Oxide mixes were used directly in the experiments without a glassing step. A
128	mixture of sample powder (~100 mg) and polyvinyl alcohol was used to adhere the sample to the
129	wire loop.
130	Equilibration experiments were run in a vertical 1-atm gas mixing furnace at Tufts
131	University using the Pt (or Re) wire-loop technique (Presnall and Brenner, 1974). Re loops were
132	used for low f_{O2} runs ($f_{O2} < QFM$ [quartz-fayalite-magnetite]). Fe solubility in the Re is low
133	under the conditions of these experiments (Borisov and Jones, 1999). Pt-loops were pre-doped
134	using powders of the identical starting composition for 6 hours at T_{max} and the f_{O2} intended for

- the experiment. Glassy material was dissolved off the Pt-loop using a 50:50 mixture of heated
- 136 HF and HNO₃ and the loop was then used for an experiment. These procedures were followed to
- reduce but, generally, not eliminate Fe losses to the wire during an experiment.

_	

138	The f_{O2} was measured using an SIRO ₂ yttria-doped zirconia oxygen sensor located
139	adjacent to the sample and temperatures were measured using a type S thermocouple. Oxygen
140	fugacities were fixed either by flowing air or an H ₂ -CO ₂ gas mixture corresponding to the QFM
141	or IW (iron-wüstite) buffer for the maximum temperature of an experiment. The gas composition
142	was held constant during cooling. For H ₂ -CO ₂ gas mixtures, the gas becomes more reducing than
143	QFM during cooling because T-log f_{O2} relationships for the constant composition H ₂ -CO ₂ gas
144	and the QFM buffer are different. Based on the Deines et al. (1974) tables, this effect should be
145	no greater than 0.23 log units for our experiments. Each glass composition was run under all
146	three f_{O2} conditions, producing a range of Fe ³⁺ concentrations in the melt for use in calibration.
147	All experiments were initiated by inserting the sample into the hot spot under the desired
148	gas mixture at ~1000°C, followed by ramping to the composition-dependent peak temperature at
149	500°C/hr. These glass equilibration experiments remained at this peak temperature for the
150	duration of the run necessary to ensure melt homogenization, usually 1-24 hours. Samples were
151	then drop-quenched into deionized water. Using the calculations of Birnie and Dyar (1986) for
152	quenching into water from 1400°C, this would result in an average quench rate of \sim 247°C/s.
153	Recovered run products were prepared for Mössbauer and EELS analyses. Mössbauer mounts
154	were prepared using the entire volume of one-half of one bead, whereas EELS fragments were
155	extracted by gently crushing the other half-bead and removing a few of the resultant grains. Thus
156	the portion of the sample used for the EELS analysis may not reflect the average cooling rate as
157	its precise location within the bead was unknown.

158 Independent Quantification of Fe³⁺

Mössbauer spectra of the samples were acquired with a WEB Research Co. constant
 acceleration MB spectrometer equipped with a Janis Research Co. model 850 closed-cycle He

161	refrigerator at Mount Holyoke College. A ~50-100 mCi ⁵⁷ Co in Pd source and 24-hour
162	acquisition times were used, and the data were referenced to the midpoint of an α -Fe foil
163	spectrum (6 μ m thickness and 99% purity). Roughly half of the material from each glass bead
164	was lightly ground under acetone with sugar to reduce particle size, reduce the angularity of
165	particles by coating them with sucrose, and distribute the absorber evenly over the sample holder
166	to optimize signal to noise; the powder mixture was mounted in a sample holder confined by
167	cellophane tape. The resultant sample thickness was less than 1 mg Fe/cm ² , below the thin
168	absorber thickness approximation of Long et al. (1983).
169	Mössbauer data were modeled using an in-house program from the University of Ghent,
170	in Belgium called DIST_3E, which uses model-independent quadrupole splitting distributions
171	for which the subspectra are constituted by Lorentzian shaped lines. This program does not
172	presume any particular shape of the distribution. Fe^{3+} and Fe^{2+} doublet areas were discriminated
173	on the basis of their hyperfine parameters (Dyar et al., 2006). In the absence of data on recoil-
174	free fractions for Fe in glasses, peak areas were assumed to correspond directly to the abundance
175	of the species in the samples (Dingwell, 1991; Mysen et al., 1985). It is recognized that this
176	assumption may unavoidably contribute to the errors on the Fe^{3+} and Fe^{2+} distributions in this
177	sample. Thus, the errors on %Fe ³⁺ from Mössbauer are estimated to be roughly $\pm 1-3\%$ (Dyar,
178	Melinda Darby, 1984). The Mössbauer results are used to compare with the redox ratios
179	determined by EELS.

The samples in the entire suite were also analyzed by x-ray absorption spectroscopy as reported in Dyar et al. (2016b). In that study, a focused synchrotron beam of 1-10 μ m² was used with samples ~30 μ m thick, and the Fe³⁺ contents were found to be strikingly homogeneous within each glass. The electron microprobe results of studies of these beads show standard

9

deviations (Table 1) that also indicate homogeneity at the scale of the electron microprobe (<1 µm). Thus, the previous work establishes that the Fe redox state in the samples in the present study is homogeneous at scales of 1-10 µm, an area roughly three orders of magnitude larger than the EELS technique used here.

STEM Measurements

Small pieces of each sample were embedded in epoxy and microtomed, then placed on Quantifoil carbon support film TEM grids. The samples vary in thickness due to chattering of the microtome blade; measurements were constrained to regions where the thickness t was less than the electron mean free path λ (e.g., $t/\lambda < 1$). Samples are stored under nitrogen and baked under vacuum at 140°C for 8 hours to drive off adsorbed water before analysis in the microscope. One sample was baked and analyzed on several different occasions, but no systematic differences were seen when comparing data collected on different days.

EELS and EDS data were collected on PRISM, the NION UltraSTEM200 at the U.S. 196 Naval Research Laboratory, equipped with a Gatan Enfinium ER EEL spectrometer and a 197 windowless, 0.7 sr Bruker SSD-EDS detector. Measurements were done at a 60 kV and 200 kV 198 and 12-150 pA with an electron probe size of 0.1-0.2 nm. Due to beam broadening effects, the 199 200 diameter of the cone containing 90% of emerging electrons at 200 kV is \sim 1.5 nm for a sample \sim 50 nm thick (Williams and Carter, 1996); the diameter of the cone depends on the sample 201 202 thickness and most of the intensity is focused within a narrower volume. Spectra were collected 203 as spectrum images (SI), with a spectrum collected for each spatial pixel to map possible variations in thickness, composition, and oxidation state. SIs were generally $\sim 5 \times 10^3 - 10^4$ nm², 204 limited by the need to use only relatively thin regions of the glass. Pixel sizes varied depending 205 on the size of the SI and chosen pixel density; in some cases the pixel size was smaller than the 206

207	beam interaction diameter, affecting the total dose to each pixel. In order to keep doses low while
208	still acquiring some signal, the beam is stationary in each pixel for a set period of time (0.01-
209	0.5s), and thus individual spectra are quite noisy and must be summed over several pixels. The
210	energy dispersion is 0.05-0.1 eV/channel, and SIs were collected separately for Fe L-edges and
211	zero-loss peaks (ZLP). Energy resolution, measured from the ZLP, is 0.4-0.45 eV. In many
212	regions, O K-edge measurements were also obtained. EDS data were also acquired as spectral
213	maps; the beam was scanned at a rate of 16 μ s/pixel for 230-500 frames. Quantification was
214	done using the Cliff-Lorimer method with default k-factors; samples were thin enough to not
215	require absorption correction.
216	Peak alignment to compensate for energy drift during SI acquisition was carried out using
217	Gatan Digital Micrograph software to first align the zero-loss peak then apply the same shift at
218	each pixel in the related core-loss SI. This does not correct energy shifts that affect the entire SI

equally, but fitting methods described later were used to account for small shifts.

220 Quantification of EELS Results

Iron L-edges in EEL spectra are caused by the excitation of inner shell (2p) electrons to 221 the unoccupied 3d orbitals. There are two distinct edges or "white lines", L_3 and L_2 . EEL spectra 222 of Fe^{2+} and Fe^{3+} bearing minerals show distinct edge shapes and chemical shifts that depend on 223 the oxidation state and the symmetry and coordination of the atom site. Excitations from both 224 Fe^{2+} and Fe^{3+} contribute to the shapes and intensities of L_3 and L_2 but at slightly different 225 energies. Published methods for quantifying EELS-based $Fe^{3+}/\Sigma Fe$ include variations of three 226 basic methods: ratios of the integral in two different energy regions (e.g., Cavé et al., 2006; 227 Schmid and Mader, 2006; Tan et al., 2012; Van Aken et al., 1998; Van Aken and Liebscher, 228 2002); ratios of intensity or integral of Gaussian, Lorentzian or Voight peaks fitted to the L₃ peak 229

(e.g., Calvert et al., 2005; Van Aken and Liebscher, 2002); and linear least-squares fitting of two

Burgess: Silicate glass oxidation state using STEM-EELS

230

or more end-member spectra to the unknown (e.g., Deboudt et al., 2012; Garvie and Buseck, 1998; Thompson et al., 2016). Several workers have noted that white-line window ratios are not applicable for samples with <10 at% Fe, below which the L_2 peak becomes small relative to the noise (Calvert et al., 2005; Cavé et al., 2006), whereas end-member mixing requires >~6 at% Fe (Calvert et al., 2005).

Our samples have Fe < 5 at% (FeO < 10.5 mol%), which means the peak fitting method 236 is the most accurate (Calvert et al., 2005). The Gaussian fit method (GM) quantification requires 237 isolation of the white lines from the background (Calvert et al., 2005; Van Aken et al., 1998). 238 Spectra are summed over regions of interest within spectrum images to increase signal-to-noise, 239 and only regions with relative thickness $t/\lambda < 0.9$, where t is the absolute thickness of the sample 240 and λ is the mean free path (~130 nm in basaltic glass at 200 kV (Egerton, 2011)), are used in 241 order to reduce multiple-scattering effects. The background intensity is removed using a power-242 law fit to the pre-edge region extrapolated over the full energy range, then a multiple arctangent 243 background is fit following Calvert et al. (2005), such that the inflection point is aligned with 244 each peak maximum in an iterative process. Three peaks are then fitted to the L_3 white line, 245 constraining them to center at 707.8±1 eV (P1), attributed primarily to Fe^{2+} , 709.5±1 eV (P2) for 246 Fe^{3+} , and a high-energy shoulder at 712±1.5 eV not attributed to a specific valence state (Calvert 247 et al., 2005; Van Aken and Liebscher, 2002). Many Fe³⁺-bearing minerals with octahedral 248 coordination also have a peak at \sim 707.8 eV (Garvie and Buseck, 1998); Fe³⁺ in tetrahedral 249 coordination has a single peak at slightly lower energy than the octahedral Fe^{3+} when seen in the 250 same crystal (Haruta et al., 2011). However, the possible energy shift due to coordination could 251 also be affected by distortion of the tetrahedra and octahedra, so we use only a single peak to fit 252

253	the Fe ³⁺ component and allow the peak center energy to vary slightly. To account for possible
254	energy drift during scanning and acquisition, peak energy is allowed to vary slightly from
255	published values, but P1 and P2 are constrained to be no more than 2.2 eV apart. Fig. 1 shows
256	fits to a number of standard and glass spectra. We calculate the integral intensity of the peak
257	centered at 709.5 eV (P2) relative to the summed integral intensity of P1 and P2, $I_{P2}/(I_{P1}+I_{P2})$, to
258	give us a relative measure of oxidation state (Rox). Higher-energy peaks are also fit but not
259	included in the quantification; including peak 3 (cyan in Fig. 1) in the ratio calculation alters the
260	precise value but does not significantly change the Rox of individual samples relative to each
261	other. Using similar approaches, Van Aken and Liebscher (2002) and Calvert et al. (2005) find a
262	linear relationship between this value and Fe ³⁺ / Σ Fe with no orientation effects. Errors for the
263	Rox are determined from the residual of the fitted curves.

264

Results

A number of sample Fe L-edge spectra are presented in Fig. 1. Spectra from San Carlos 265 olivine $({}^{[6]}Fe^{2+})$ and hematite $({}^{[6]}Fe^{3+})$ are also shown for comparison. The experimental spectra 266 in Fig. 1 were all collected from IW-basalt3 during the same session. The spectra in Fig. 1 show 267 a large range of intensity variations for the \sim 708 eV and \sim 709.5 eV peaks, indicating they cover 268 almost the full range of possible oxidation states. Additionally, although hematite and silicate 269 minerals with ${}^{[6]}$ Fe³⁺ have a small peak near 708 eV, this shoulder is much smaller in the 270 271 oxidized glass indicating structural differences rather than valence state differences and leading to Rox higher than that calculated for hematite. Rox values calculated from the GM fit compared 272 with Mössbauer data are shown in Fig. 2. Glass equilibrated at IW is expected to have $Fe^{3+}/\Sigma Fe$ 273 ~0.1 based on Mössbauer measurements, and glass equilibrated in air has $Fe^{3+}/\Sigma Fe = 0.9-1.0$. 274 The Mössbauer data is consistent with ${}^{[6]}$ Fe³⁺ and ${}^{[4]}$ Fe³⁺ being present in all glasses; there does 275

276	not appear to be a systematic difference in ${}^{[6]}Fe^{3+}/{}^{[4]}Fe^{3+}$ in oxidized versus reduced glasses. The
277	reduced samples measured using EELS, including two IW-basalts, four QFM-basalts, and one
278	IW-andesite, show a large range in Fe oxidation states based on the EELS data. Samples
279	equilibrated in air and CO ₂ are oxidized, with much less variation in relative peak intensities.
280	Rhyolite samples are very low in Fe (<1% of total ions), and spectra can be quite noisy.
281	In measurements with signal-to-noise (SNR) above ~3, Fe appears quite oxidized; lower SNR is
282	not trusted to provide robust results. The dose and dose rate are both quite high compared to
283	what was used in measurements of basalt and andesite samples, and the large error bars on Rox
284	prevent strong conclusions about the oxidation state or the intra-sample variability. Rhyolite
285	samples are not considered further.
286	Beam damage is known to cause oxidation in silicates (Garvie et al., 2004). While data at
287	moderately high doses and dose rates are on average more oxidized than the full dataset for a
288	reduced sample (Fig. 3), both oxidized and reduced regions are present in the lower-dose
289	measurements (Fig. 3a inset). Where measurements were repeated on the same sample region,

the repeat measurements were often more oxidized than the initial measurement. Fig. 4 shows

how Rox changes as dose (D) increases; most of the data plot above zero, indicating an increase

in oxidation. However, neither dose nor dose rate is consistently related to the change in

293 oxidation state between different regions of the same sample, and a simple relationship cannot be

determined. Only a few spectra were acquired at very high doses because damage becomes

apparent in images at these conditions. Fig. 5 shows a high-angle annular dark field (HAADF)

image of QFM-basalt6 after acquisition of an EELS SI. HAADF images are sensitive to the

density and composition of the material, and the rectangular mottled region where the SI was

14

acquired shows local variation induced by the beam. The three spots in the upper right of theimage are also beam damage.

A stationary electron beam on the silicate glass samples dwelling for several seconds 300 (never used for the oxidation state measurements) leads to the creation of dark "spots" (or lines 301 where the sample has drifted) ~10 nm across in HAADF (z-contrast) images (Fig. 6a). EDS 302 measurements of glass with no visible damage compare well with the nominal glass composition, 303 although some Na and possibly Mg has been lost (Table 2, Fig. 6b). However, where the beam 304 has dwelled for several seconds, the sample is highly depleted in all cations other than Si. The 305 bright rim surrounding the dark spots is slightly enriched in Al and Ca relative to the undamaged 306 glass. In low-loss EELS measurements, the main plasmon peak, $\sim 22 \text{ eV}$, associated with Si-O, is 307 slightly broader inside the dark spot, and small shoulders at \sim 35 eV and 55eV (Fe) are no longer 308 visible (Fig. 6c). 309

There is no overall relationship between thickness and Rox in any of the samples (Fig. 7a). Data filtered to show only samples with small thickness variations and low doses show a smaller range in oxidation states than the full dataset, but at the scales of these measurements, there is still both significant variation in the QFM- and IW-buffered samples and no trend pointing to a specific experimental cause of the variation, indicating it is likely inherent to the sample.

Within individual SIs, there is evidence of oxidation state variation on the scale of 10s of nanometers and of crystalline or nano-crystalline regions in the glass that have different oxidation state from their surroundings. Fig. 8a shows two regions in QFM-basalt6 within 50 nm of each other with visible lattice fringes and different oxidation states, as demonstrated by the EEL spectra in Fig. 8b. Magnetite grains 50-100 nm across have also been identified (Fig. 8c and

15

- d), although magnetite is not detected in Mossbauer measurements (detection limit $\sim 0.5\%$) or the electron microprobe measurements using a 500-1000 nm beam.
- 323

Discussion

Quantification of EELS data relies on relationships with standards, whether to create 324 curves relating window or peak intensity ratios to $Fe^{3+}/\Sigma Fe$ or to fit end-member spectra. The 325 high values of Rox = $I_{P2}/(I_{P1}+I_{P2})$ measured here in the oxidized glasses, higher than that in 326 hematite following the same fitting procedure, indicate that a significant portion of the Fe^{3+} 327 measured in those samples is in tetrahedral coordination. Silicate crystals such as ^[6]Fe³⁺-bearing 328 garnet have smaller \sim 708 eV peaks than oxides such as hematite, while the low energy L₃ peak 329 virtually disappears in minerals with ^[4]Fe³⁺ (Calvert et al., 2005; Garvie et al., 1994; Van Aken 330 and Liebscher, 2002). A 0.5 eV shift between ${}^{[4]}Fe^{3+}$ and ${}^{[6]}Fe^{3+}$ has been shown in 331 brownmillerite (CaFeO_{2.5}) (Haruta et al., 2011), but such a shift, if it occurs in silicate glasses, is 332 not observable consistently in our data. The multiple coordination sites available to Fe in glasses, 333 including ^[5]Fe (Farges et al., 2004), also complicate quantification of the oxidation state. 334 However, even given the relatively high error in Rox due to structural complexities and low Fe 335 content, the EELS and EDS measurements contribute to our understanding of silicate glass 336 structure, beam sensitivity, and alteration during sample preparation. 337

338 Sample Damage

It is clear that exposure to the beam leads to significant changes in both Fe oxidation state and overall composition within short periods of time, and in many cases, reduced samples become oxidized with increasing dose. For repeat measurements made sequentially in the same location, there is often a relationship between dose and increasing oxidation state (Fig. 4). The slope of the trend is not consistent, but the many contributing factors (e.g., initial oxidation state,

344	thickness, dose rate, intermediate-range structure) are difficult to separate. However, it is also the
345	case that the most reduced spectra for each sample do not come from either the thickest regions
346	or the lowest-dose measurements. For most samples, filtering out data from the highest doses
347	does not significantly decrease the spread in oxidation states, and even then, reduced samples are
348	still measured at relatively high doses (see IW-andesite4 in Fig. 3). At the highest doses used in
349	this study, there is the suggestion that oxidation state of the samples becomes more reduced
350	again. In Fig. 4, multiple points of the same glass plot at exactly the same thickness, which
351	indicates more than two SIs were repeated in the same region; in several cases, these plot both
352	above and below zero, indicating Rox first increases then decreases with subsequent
353	measurements.

Jiang (2013) has shown that damage due to the electric field created by the beam and 354 secondary electron emission should be independent of sample thickness. The size of the spot 355 created by a stationary beam and the diffusion of cations away from this spot, as indicated by the 356 EDS measurements, is consistent with this type of damage. Activation energy for diffusion in 357 silicate glasses follows the order Ca ~ Mg ~ $Fe^{2+} < Fe^{3+} < Al < Si ~ O$ (Zhang et al., 2010). 358 Although Al and Fe³⁺ are network formers in the glass and therefore somewhat less mobile than 359 network modifying cations (i.e., Mg, Ca, Fe^{2+}), the energy of the electron beam is clearly enough 360 to drive diffusion of these components also. 361

³⁶² During repeated measurements, there is no change in t/ λ , which indicates that material is ³⁶³ not being lost due to sputtering knock-on damage. Relative t/ λ does change for the highly altered ³⁶⁴ regions in the dark beam spots (Fig. 6), but this change is related to the difference in density of ³⁶⁵ amorphous silica versus that of basaltic or andesitic glasses (~2.8 g/cc for basaltic glass at room ³⁶⁶ temperature versus ~2.2 g/cc for fused silica), which changes the mean free path λ of the

material. Although the signal-to-noise ratio for the Fe L-edge becomes too low to determine the
oxidation state in the highly damaged regions because of the loss of Fe, the low-loss spectrum
(Fig. 6c) does show changes from loss of Fe, and a small change in the main peak related to Si-O
bonding. Similar localized damage related to the beam spot is apparent in measurements done at
60 kV as well as 200 kV.

Electron beam damage can occur by several different mechanisms, including both elastic 372 and inelastic interactions between the electrons and the material. Inelastic interactions, such as 373 radiolysis and electrostatic charging, generally have threshold energies much lower than those 374 used in TEM, and dose or dose rate thresholds instead determine the degree of damage in a 375 material (Jiang and Spence, 2012). Elastic interactions become important at higher beam 376 energies, where the incident electron energy is high enough that collision with a nucleus causes 377 displacement within the lattice (knock-on damage) or sputtering from the surface. Bulk 378 displacement via this mechanism has the largest effect on light elements; the knock-on threshold 379 for oxygen in silicates is below 200 keV. However, the similarity in beam damage features when 380 samples are viewed using both 60 kV and 200 kV indicates that no advantage is gained by using 381 the lower accelerating voltage for silicate glasses. Rather, at higher accelerating voltage, thicker 382 specimens can be used for spectroscopy due to the longer mean free path of the higher energy 383 electrons (Egerton, 2011), and the dose can therefore possibly be spread through a slightly larger 384 385 volume of material.

For the lower dose oxidation state measurements (Fig. 3a inset region), the electron beam does not dwell long enough to create visible damage in the glass. However, the semiconducting nature of basaltic glass (Jurado-Egea et al., 1987) promotes electron-hopping between neighboring Fe^{3+} and Fe^{2+} , as well as less localized charge transport away from the beam. Thus,

Burgess: Silicate glass oxidation state using STEM-EELS

changes in the electronic structure of the glass could be very rapid and contribute to the apparent 390 oxidation state of the glass (Weigel et al., 2008). Thermally activated electron localization has 391 392 been observed in crystalline silicates with mixed-valence Fe (Fei et al., 1994), indicating beam heating may play a role here, as well as in facilitating cation diffusion. Limited cation motion 393 may take place, even given low doses and short dwell times, which could lead to increased 394 395 oxidation state. The electric field created by the net emission of secondary electrons and 396 ionization of the glass causes cations to diffuse away from a dwelling beam, increasing the oxygen/cation ration and "oxidizing" the sample. The small beam and relatively high mobility of 397 cations in glasses means that only a very short time would be required for cations to move a very 398 399 short distance out of the volume measured by the beam. Based on glass density and composition, \sim 100 Fe ions are expected within the beam interaction cone in a 50 nm thick wedge, and 400 diffusion of just a few ions could alter the local $Fe^{3+}/\Sigma Fe$. Additionally, Fe^{2+} is going to be much 401 more mobile than Fe^{3+} because of its position in the glass as a network modifier, whereas Fe^{3+} is 402 403 often a network former.

We searched for a relationship between the slope of the change in oxidation state with 404 dose and either the thickness or dose rate, as well as total dose (Fig. 4). While the slope of the 405 406 change is similar for many samples, the variation in slope is not related to any obvious property. The local thermal conductivity is unknown, and heating could play a role in the rate of damage. 407 All measurements were done on glass suspended over a hole, but distance from the amorphous 408 carbon substrate and the size of the glass shard could lead to undetermined variations. Where 409 more than two measurements were done sequentially on the same region, the rate of change 410 between the second and third measurements is almost always less than between the first and 411

18

second, which could be due to the change in concentration in the region or structural changesdecreasing the diffusivity.

414 **Surface Oxidation**

Oxidation by the electron beam affects both thick and thin areas of the sample. However, 415 in several locations, thin regions are more oxidized than the spatially closely related relatively 416 thick regions, independent of actual thickness. Both thick and thin regions of the same SI show 417 similar changes in oxidation state upon subsequent measurements. This indicates that some 418 surface oxidation takes place during sample preparation and insertion in the microscope; a thin 419 uniform layer of glass that is highly oxidized relative to the bulk glass in that region would have 420 a larger relative effect on thin regions compared to thicker regions where the oxidized layer is a 421 smaller percentage of the total. Oxidized coatings on metals several nanometers thick are known 422 to form in seconds to minutes of exposure to ambient air (Suzuki et al., 1997), but the thickness 423 of such layers are highly material dependent. 424

Surface oxidation effects are not uniform, however. For 20 different SI that were noted to 425 have thickness variations over 20%, four show no change in oxidation state with thickness above 426 the error of the GM fit, two have thin regions that are actually more reduced than the thick 427 regions, and the remaining 14 measurements have a range of slopes for the change in oxidation 428 state with the relative change in thickness, $(Rox_1-Rox_2)/(t_1-t_2)$ where $t_1 > t_2$ (Fig. 9a). The change 429 in oxidation state per thickness change indicates that the oxidized surface layer of the glass 430 varies with the initial oxidation state of the glass, if we assume that the altered film is uniformly 431 oxidized (Fig. 9b). Using the thickness of the oxidized film on the glasses calculated to initially 432 be fully reduced (~20 nm, assuming mean free path λ ~ 130 nm for silicate glass(Egerton, 433 2011)), and assuming the samples were exposed to oxidizing conditions for 100 s, from the 434

approximation $D = x^2/t$, we find $D \sim 10^{-18} \text{ m}^2/\text{s}$, which is consistent with polaron mobility based 435 on extrapolation of basaltic glass electrical conductivity measurements to room temperature 436 (Presnall et al., 1972). Variation in both altered layer thickness and unaltered oxidation state is 437 seen in calculations for regions in the same sample. In glasses that are initially more oxidized, 438 there is much smaller driving force for the formation of such a film, as evidenced by the thinner 439 oxidized film. The samples were stored in dry N₂, baked overnight under vacuum, measured 440 usually within several days of microtoming. The rate of H₂O diffusion in silica at the bake 441 temperature is fast enough to affect up to 10s of nanometers of material at high vapor pressure 442 (Doremus, 1995). However, our samples are baked at very low vapor pressure, and diffusion at 443 room temperature, where again, vapor pressure of water around the samples was kept very low, 444 is several orders of magnitude slower. Thus the notable effect of surface oxidation in these 445 samples indicates that possible alteration effects cannot be disregarded even in very carefully 446 prepared samples. The rate of oxidation with damage due to the electron beam is consistent 447 between thick and thin regions, again supporting diffusion away from the beam as the main 448 mechanism by which beam damage occurs. 449

450 Sample Heterogeneity

The glass samples are inhomogeneous at the nanometer scales applicable to TEM measurements. This variability cannot be accounted for solely by beam damage and surface oxidation; the calculated initial Rox, which should account for any oxidized surface layer, exhibits almost the full range shown in Fig. 9b when filtered to show only low doses. Additionally, nano-crystalline regions are identified in the samples, including grains of magnetite that are present at concentrations too low to be detected using Mössbauer spectroscopy. Incomplete equilibration of the samples during synthesis could lead to these signals, as well as

1.

Burgess: Silicate glass oxidation state using STEM-EELS

0.1

21

c

. 1 .1.

1 11

458	nucleation during quench. Other micro-analytical techniques have shown that the suitability of
459	many standard materials depends on the scale of measurements being done and that materials
460	that are homogenous optically or at low resolution in the microprobe may have spatially-varying
461	compositions when measured using SIMS, for example. The EMPA, XANES, and Mössbauer
462	measurements completed on these glasses (Dyar et al., 2016b) were done using orders of
463	magnitude larger volumes of material (Table 3). Measurements of oxidation state at the
464	micrometer scale suggest that the redox ratio is constant throughout a millimeter-sized basaltic
465	glass sample, even when the sample is not fully equilibrated with the environment (Roskosz et
466	al., 2008). It is possible that while electron transfer in Fe-bearing silicate glasses is fast enough to
467	be fully homogenized, the interaction of the electron beam with the non-random structure of the
468	glass causes fine-scale EELS measurements to reflect the effect of the glass structure on the
469	stabilization of certain electronic configurations rather than the initial or bulk oxidation state.
470	Thus even though some damage is occurring very rapidly in the sample, the data are useful in
471	interrogating the initial variability in the glass.

In addition to having complicated oxygen coordination, with both Fe^{2+} and Fe^{3+} possible 472 in four-, five- and six-fold coordination (e.g., Mysen and Richet, 2005; Weigel et al., 2008), 473 clustering of at least two and possibly more Fe ions in known to occur in a number of glasses 474 with $Fe_2O_3 > 1 \mod \%$ (Bingham et al., 1999; Rüssel, 1993; Weigel et al., 2008). Some evidence 475 indicates iron-rich structural units within the silicate glass may resemble magnetite (Virgo and 476 Mysen, 1985), although other work suggests clusters of ^[5]Fe are present in iron-bearing alkali-477 silicate glasses (Weigel et al., 2008). The presence of nano-crystalline magnetite in the glass 478 here, and its ease of nucleation in basalt glasses (Beall and Rittler, 1976) support the segregation 479 of Fe in some regions. Alkalis and alkaline-earths have different effects on the presence, 480

22

stabilization, and clustering of Fe^{3+} in tetrahedral coordination depending on cation size and concentration ratio when several cations are present (Bingham et al., 2002, 2007; Vercamer et al., 2015). Such clusters could exacerbate beam effects in certain regions of the glass relative to others and could explain the spread in oxidation states even in air- and CO₂-equilibrated samples that would not otherwise be expected to have significant Fe^{2+} . Fe^{3+}/Fe^{2+} is known to vary in alkali-silicate glasses with composition even when prepared under the same conditions (Mysen et al., 1980).

Molecular dynamics simulations examining dynamic heterogeneities in amorphous 488 calcium aluminosilicates find regions of ~ 100 atoms with higher or lower concentrations of Ca 489 490 and Al relative to Si (Vargheese et al., 2010). Network modifying cations in aluminosilicate glasses have been shown to bond preferentially with SiO₄-tetrahedra as opposed to AlO₄-491 tetrahedra, but the strength of the preference depends strongly on the cation field strength (Lee et 492 al., 2005). Similarly, Fe^{2+} and Fe^{3+} may exhibit preference in a melt (or glass) and become 493 494 segregated. Measurements of relaxation times in ternary silicate glasses have also found two distinct structural domains (Zhang et al., 2013). The short- and intermediate-range ordering in 495 the glass and difference in both coordination and mobility between Fe^{2+} and Fe^{3+} mean that 496 497 variations in oxidation state measured over the scale of 10s of cubic nanometers are consistent with previous data and ideas of glass structure. The total amount of material measured in all 498 analyses presented here, much less any single sample, while including many individual 499 measurements, is smaller than the volume encompassed by a single microprobe measurement at 500 5 kV, which is ~0.5 μ m³. The volumes sampled by other techniques that do not see heterogeneity 501 in the glass are also considerably larger than that in STEM (Table 3). 502

503	Glass preparation techniques such as pulsed laser deposition and chemical vapor
504	deposition (CVD) are known to produce amorphous thin films with very different structure from
505	melt-quenched glasses due to the much faster quench rate and differences in precursor structure.
506	These differences are reflected in the glasses having less short- and medium-range structural and
507	compositional ordering than glass quenched from a melt (i.e., more "defects") (Lee and Ahn,
508	2014). Such glasses may be more fitting for use as standards in nano-scale measurement
509	techniques, although direct links to other measurements techniques would be difficult due to the
510	sample sizes. They would be poor representations of the structure of terrestrial magmatic glasses
511	but they could serve as analogs for amorphous materials condensed in interstellar medium or
512	during solar system formation (Speck et al., 2011).
513	Implications
514	EELS and EDS in ac-STEM are powerful techniques for measuring volumes of material

inaccessible to other measurements. Synthetic basaltic, and esitic, and rhyolitic glasses, which are 515 often used as analogs for natural materials and calibration standards for many techniques, show 516 nano-scale compositional and structural heterogeneities not detected using other techniques. This 517 heterogeneity is evidence of nucleation and crystallization processes that can often only be 518 inferred from bulk measurements. Careful measurements of analog materials at the same scales 519 as those done in natural materials provide necessary context for expectations of variability and 520 rates of nucleation or alteration. In many geological contexts, length-scales can be a proxy for 521 time-scales and observations at the nano-scale allow for study of processes occurring over very 522 short periods of time during quench or condensation. Nano-scale oxidation measurements in 523 planetary materials, for instance, have the potential to provide constraints on environments 524 during solar system formation. However, it is important to note that ac-STEM analyses may not 525

526	provide reliable measurements of "bulk" silicate glass composition or oxidation state if thin
527	sample regions are too small, which makes direct linkage to other measurements and properties
528	challenging. Alternative sample preparation techniques that produce large areas of uniform
529	thickness, such as use of focused ion beam (FIB) microscopy, could provide a way to avoid this
530	limitation. Our results show that amorphous material can be quickly damaged and oxidized by
531	the electron beam, but changes in material composition induced by the electron beam can be
532	used to make inferences about structure and diffusion in glasses.
533	Acknowledgements
534	This work was supported by the RIS ⁴ E node of NASA's Solar System Exploration
535	Research Virtual Institute. It is SSERVI publication number SSERVI-2016-031. We thank A.
536	Brearly, F. Langenhorst, and B. Mysen for thorough and constructive reviews.
537	References
538	Bajt, S., S. Sutton, and J. Delaney (1994) X-ray microprobe analysis of iron oxidation states in
539	silicates and oxides using X-ray absorption near edge structure (XANES). Geochimica et
540	Cosmochimica Acta, 58, 5209-5214, doi: 10.1016/0016-7037(94)90305-0.
541	Bancroft, G.M., A.G. Maddock, and R.G. Burns (1967) Applications of the Mössbauer effect to
542	silicate mineralogy-I. Iron silicates of known crystal structure. Geochimica et
543	Cosmochimica Acta, 31, 2219-2246, doi: 10.1016/0016-7037(67)90062-2.
544	Beall, G.H., and H.L. Rittler (1976) Basalt glass ceramics. The American Ceramic Society
545	Bulletin, 35, 579-582.
546	Bingham, P.A., J.M. Parker, T. Searle, J.M. Williams, and K. Fyles (1999) Redox and clustering
547	of iron in silicate glasses. Journal of Non-Crystalline Solids, 253, 203-209, doi:
548	10.1016/S0022-3093(99)00361-0.

548

24

549	Bingham, P.A., J.M. Parker, T.M. Searle, J.M. Williams, and I. Smith (2002) Novel structural
550	behaviour of iron in alkali-alkaline-earth-silica glasses. Comptes Rendus Chimie, 5, 787-
551	796, doi: 10.1016/S1631-0748(02)01444-3.
552	Bingham, P.A., J.M. Parker, T.M. Searle, and I. Smith (2007) Local structure and medium range
553	ordering of tetrahedrally coordinated Fe ³⁺ ions in alkali–alkaline earth–silica glasses.
554	Journal of Non-Crystalline Solids, 353, 2479-2494, doi:
555	10.1016/j.jnoncrysol.2007.03.017.
556	Birnie, D.P., and M.D. Dyar (1986) Cooling rate calculations for silicate glasses. Journal of
557	Geophysical Research, 91, 509-513, doi: 10.1029/JB091iB04p0D509.
558	Borisov, A., and J.H. Jones (1999) An evaluation of Re, as an alternative to Pt, for the 1 bar loop
559	technique: An experimental study at 1400° C. American Mineralogist, 84, 1528-1534,
560	doi: 10.2138/am-1999-1006.
561	Bourdelle, F., K. Benzerara, O. Beyssac, J. Cosmidis, D. Neuville, G. Brown, Jr., and E. Paineau
562	(2013a) Quantification of the ferric/ferrous iron ratio in silicates by scanning
563	transmission X-ray microscopy at the Fe $L_{2,3}$ edges. Contributions to Mineralogy and
564	Petrology, 166, 423-434, doi: 10.1007/s00410-013-0883-4.
565	Bourdelle, F., T. Parra, O. Beyssac, C. Chopin, and O. Vidal (2013b) Clay minerals as geo-
566	thermometer: A comparative study based on high spatial resolution analyses of illite and
567	chlorite in Gulf Coast sandstones (Texas, U.S.A.). American Mineralogist, 98, 914-926,
568	doi: 10.2138/am.2013.4238.
569	Calvert, C.C., A. Brown, and R. Brydson (2005) Determination of the local chemistry of iron in
570	inorganic and organic materials. Journal of Electron Spectroscopy and Related
571	Phenomena, 143, 173-187, doi: 10.1016/j.elspec.2004.03.012.

26

572	Cavé, L., T. Al, D. Loomer, S. Cogswell, and L. Weaver (2006) A STEM/EELS method for
573	mapping iron valence ratios in oxide minerals. Micron, 37, 301-309, doi:
574	10.1016/j.micron.2005.10.006.
575	Cazaux, J. (1995) Correlations between ionization radiation damage and charging effects in
576	transmission electron microscopy. Ultramicroscopy, 60, 411-425, doi: 10.1016/0304-
577	3991(95)00077-1.
578	Christie, D.M., I.S.E. Carmichael, and C.H. Langmuir (1986) Oxidation states of mid-ocean
579	ridge basalt glasses. Earth and Planetary Science Letters, 79, 397-411, doi: 10.1016/0012-
580	821X(86)90195-0.
581	Cottrell, E., and K.A. Kelley (2011) The oxidation state of Fe in MORB glasses and the oxygen
582	fugacity of the upper mantle. Earth and Planetary Science Letters, 305, 270-282, doi:
583	10.1016/j.epsl.2011.03.014.
584	Deboudt, K., A. Gloter, A. Mussi, and P. Flament (2012) Red-ox speciation and mixing state of
585	iron in individual African dust particles. Journal of Geophysical Research: Atmospheres,
586	117, doi: 10.1029/2011JD017298.
587	Deines, P., R.H. Nafziger, G.C. Ulmer, and E. Woermann (1974) Temperature-oxygen fugacity
588	tables for selected gas mixtures in the system C-H-O at one atmosphere total pressure,
589	129 pp., College of Earth and Mineral Sciences, Pennsylvania State University.
590	Deubener, J. (2005) Structural aspects of volume nucleation in silicate glasses. Journal of Non-
591	Crystalline Solids, 351, 1500-1511, doi: 10.1016/j.jnoncrysol.2004.04.028.
592	Dingwell, D.B. (1991) Redox viscometry of some Fe-bearing silicate melts. American
593	Mineralogist, 76, 1560-1562.

- 594 Doremus, R.H. (1995) Diffusion of water in silica glass. Journal of Materials Research, 10,
- 595 2379-2389, doi: 10.1557/JMR.1995.2379.
- 596 Dyar, M.D. (1984) Precision and interlaboratory reproducibility of measurements of the

597 Moessbauer effect in minerals. American Mineralogist, 69, 1127-1144.

- 598 Dyar, M.D. (1984) Experimental methods for quenching structures in lunar-analog silicate melts:
- Variations as a function of quench media and composition. Journal of Geophysical
 Research, 89, C233-C239, doi: 10.1029/JB089iS01p0C233.
- Dyar, M.D., and D.P. Birnie (1984) Quench media effects on iron partitioning and ordering in a
- lunar glass. Journal of Non-Crystalline Solids, 67, 397-412, doi: 10.1016/0022-
- 603 **3093(84)90165-0**.
- ⁶⁰⁴ Dyar, M.D., J.S. Delaney, S.R. Sutton, and M. Schaefer (1998) Fe³⁺ distribution in oxidized
- olivine: A synchrotron micro-XANES study. American Mineralogist, 83, 1361-1361, doi:
 10.2138/am-1998-1227.
- ⁶⁰⁷ Dyar, M.D., E.W. Lowe, C.V. Guidotti, and J.S. Delaney (2002) Fe³⁺ and Fe²⁺ partitioning
- among silicates in metapelites: A synchrotron micro-XANES study. American
- 609 Mineralogist, 87, 514-522, doi: 10.2138/am-2002-0414.
- ⁶¹⁰ Dyar, M.D., D.G. Agresti, M.W. Schaefer, C.A. Grant, and E.C. Sklute (2006) Mössbauer
- spectroscopy of earth and planetary materials. Annual Review of Earth and Planetary
 Sciences, 34, 83-125, doi: 10.1146/annurev.earth.34.031405.125049.
- Dyar, M.D., E.A. Breves, M.E. Gunter, A. Lanzirotti, J.M. Tucker, C.J. Carey, S.E. Peel, E.B.
- Brown, R. Oberti, M. Lerotic, and J.S. Delaney (2016a) Use of multivariate analysis for
- 615 synchrotron micro-XANES analysis of iron valence state in amphiboles. American
- 616 Mineralogist, 101, 1171-1189, doi: 10.2183/am-2016-5556.

617	Dyar, M.D., M. McCanta, E. Breves, C.J. Carey, and A. Lanzirotti (2016b) Accurate predictions
618	of iron redox state in silicate glasses: A multivariate approach using x-ray absorption
619	spectroscopy. American Mineralogist, 101, 744-747, doi: 10.2138/am-2016-5555.
620	Egerton, R.F. (2011) Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed.,
621	491 p., Springer, New York.
622	Elmaleh, A., F. Bourdelle, F. Caste, K. Benzerara, H. Leroux, and B. Devouard (2015)
623	Formation and transformations of Fe-rich serpentines by asteroidal aqueous alteration
624	processes: A nanoscale study of the Murray chondrite. Geochimica et Cosmochimica
625	Acta, 158, 162-178, doi: 10.1016/j.gca.2015.03.007.
626	Farges, F., Y. Lefrère, S. Rossano, A. Berthereau, G. Calas, and G.E. Brown Jr (2004) The effect
627	of redox state on the local structural environment of iron in silicate glasses: a combined
628	XAFS spectroscopy, molecular dynamics, and bond valence study. Journal of Non-
629	Crystalline Solids, 344, 176-188, doi: 10.1016/j.jnoncrysol.2004.07.050.
630	Fei, Y., D. Virgo, B.O. Mysen, Y. Wang, and H.K. Mao (1994) Temperature-dependent electron
631	delocalization in (Mg,Fe)SiO ₃ perovskite. American Mineralogist, 79, 826-837.
632	Garvie, L.A.J., A.J. Craven, and R. Brydson (1994) Use of electron-energy loss near-edge fine
633	structure in the study of minerals. American Mineralogist, 79, 411-425.
634	Garvie, L.A.J., and P.R. Buseck (1998) Ratios of ferrous to ferric iron from nanometre-sized
635	areas in minerals. Nature, 396, 667-670, doi: 10.1038/25334.
636	Garvie, L.A.J., T.J. Zega, P. Rez, and P.R. Buseck (2004) Nanometer-scale measurements of
637	$Fe^{3+}/\Sigma Fe$ by electron energy-loss spectroscopy: A cautionary note. American
638	Mineralogist, 89, 1610-1616, doi: 10.2138/am-2004-11-1204.

639	Golla, U., and A. Putnis (2001) Valence state mapping and quantitative electron spectroscopic
640	imaging of exsolution in titanohematite by energy-filtered TEM. Physics and Chemistry
641	of Minerals, 28, 119-129, doi: 10.1007/s002690000136.
642	Haruta, M., H. Kurata, K. Matsumoto, S. Inoue, Y. Shimakawa, and S. Isoda (2011) Local
643	electronic structure analysis for brownmillerite Ca(Sr)FeO _{2.5} using site-resolved energy-
644	loss near-edge structures. Journal of Applied Physics, 110, 033708, doi:
645	10.1063/1.3610526.
646	Herd, C.D.K., J.J. Papike, and A.J. Brearley (2001) Oxygen fugacity of martian basalts from
647	electron microprobe oxygen and TEM-EELS analyses of Fe-Ti oxides. American
648	Mineralogist, 86, 1015-1024, doi: 10.2138/am-2001-8-908.
649	Jayasuriya, K.D., H.S.C. O'Neill, A.J. Berry, and S.J. Campbell (2004) A Mössbauer study of
650	the oxidation state of Fe in silicate melts. American Mineralogist, 89, 1597-1609, doi:
651	10.2138/am-2004-11-1203.
652	Jiang, N., and J.C.H. Spence (2010) Electronic ionization induced atom migration in spinel
653	MgAl ₂ O ₄ . Journal of Nuclear Materials, 403, 147-151, doi:
654	10.1016/j.jnucmat.2010.06.013.
655	Jiang, N., and J.C.H. Spence (2012) On the dose-rate threshold of beam damage in TEM.
656	Ultramicroscopy, 113, 77-82, doi: 10.1016/j.ultramic.2011.11.016.
657	Jiang, N. (2013) Damage mechanisms in electron microscopy of insulating materials. Journal of
658	Physics D: Applied Physics, 46, 305502, doi: 10.1088/0022-3727/46/30/305502.
659	Jurado-Egea, J.R., A.E. Owen, and A.K. Bandyopadhyay (1987) Electronic conduction in basalt
660	glass and glass-ceramics - correlation with magnetite crystallization. Journal of Materials
661	Science, 22, 3602-3606, doi: 10.1007/BF01161466.

662	Lauterbach, S., A.C. McCammon, P. van Aken, F. Langenhorst, and F. Seifert (2000) Mössbauer
663	and ELNES spectroscopy of (Mg,Fe)(Si,Al)O3 perovskite: a highly oxidised component
664	of the lower mantle. Contributions to Mineralogy and Petrology, 138, 17-26, doi:
665	10.1007/pl00007658.
666	Le Guillou, C., H.G. Changela, and A.J. Brearley (2015) Widespread oxidized and hydrated
667	amorphous silicates in CR chondrites matrices: Implications for alteration conditions and
668	H ₂ degassing of asteroids. Earth and Planetary Science Letters, 420, 162-173, doi:
669	10.1016/j.epsl.2015.02.031.
670	Lee, S.K., B.O. Mysen, and G.D. Cody (2003) Chemical order in mixed-cation silicate glasses
671	and melts. Physical Review B, 68, 214206, doi: 10.1103/PhysRevB.68.214206.
672	Lee, S.K., G.D. Cody, and B.O. Mysen (2005) Structure and the extent of disorder in quaternary
673	(Ca-Mg and Ca-Na) aluminosilicate glasses and melts. American Mineralogist, 90, 1393-
674	1401, doi: 10.2138/am.2005.1843.
675	Lee, S.K., and C.W. Ahn (2014) Probing of 2-dimensional confinement-induced structural
676	transitions in amorphous oxide thin film. Scientific Reports, 4, 4200, doi:
677	10.1038/srep04200.
678	Long, G.J., T. Cranshaw, and G. Longworth (1983) The ideal Mössbauer effect absorber
679	thickness. Mössbauer Effect Reference and Data Journal, 6, 42-49.
680	McCartney, M.R., P.A. Crozier, J.K. Weiss, and D.J. Smith (1991) Electron-beam-induced
681	reactions at transition-metal oxide surfaces. Vacuum, 42, 301-308, doi: 10.1016/0042-
682	207Х(91)90042-Н.
683	Muñoz, M., V. De Andrade, O. Vidal, E. Lewin, S. Pascarelli, and J. Susini (2006) Redox and

685	iron in chlorite mineral of a metamorphic rock thin section. Geochemistry Geophysics
686	Geosystems, 7, Q11020, doi: 10.1029/2006GC001381.
687	Mysen, B.O., D. Virgo, and C.M. Scarfe (1980) Relations between the anionic structure and
688	viscosity of silicate melts-a Raman spectroscopic study. American Mineralogist, 65,
689	690-710.
690	Mysen, B.O., I.S.E. Carmichael, and D. Virgo (1985) A comparison of iron redox ratios in
691	silicate glasses determined by wet-chemical and ⁵⁷ Fe Mössbauer resonant absorption
692	methods. Contributions to Mineralogy and Petrology, 90, 101-106, doi:
693	10.1007/bf00378253.
694	Mysen, B.O., and P. Richet (2005) Silicate Glasses and Melts: Properties and Structure, Elsevier
695	Inc., San Diego.
696	Prescher, C., F. Langenhorst, L.S. Dubrovinsky, V.B. Prakapenka, and N. Miyajima (2014) The
697	effect of Fe spin crossovers on its partitioning behavior and oxidation state in a pyrolitic
698	Earth's lower mantle system. Earth and Planetary Science Letters, 399, 86-91, doi:
699	10.1016/j.epsl.2014.05.011.
700	Presnall, D.C., C.L. Simmons, and H. Porath (1972) Changes in electrical conductivity of a
701	synthetic basalt during melting. Journal of Geophysical Research, 77, 5665-5672, doi:
702	10.1029/JB077i029p05665.
703	Presnall, D.C., and N.L. Brenner (1974) A method for studying iron silicate liquids under
704	reducing conditions with negligible iron loss. Geochimica et Cosmochimica Acta, 38,
705	1785-1788, doi: 10.1016/0016-7037(74)90161-6.

706	Roskosz, M., M.J. Toplis, D.R. Neuville, and B.O. Mysen (2008) Quantification of the kinetics
707	of iron oxidation in silicate melts using Raman spectroscopy and assessment of the role
708	of oxygen diffusion. American Mineralogist, 93, 1749-1759, doi: 10.2138/am.2008.2861.
709	Rüssel, C. (1993) Iron oxide-doped alkali-lime-silica glasses II: Voltammetric studies. Glastech.
710	Ber., 66, 68-74.
711	Schmid, H.K., and W. Mader (2006) Oxidation states of Mn and Fe in various compound oxide
712	systems. Micron, 37, 426-432, doi: 10.1016/j.micron.2005.12.004.
713	Smith, D.J., M.R. McCartney, and L.A. Bursill (1987) The electron-beam-induced reduction of
714	transition metal oxide surfaces to metallic lower oxides. Ultramicroscopy, 23, 299-303,
715	doi: 10.1016/0304-3991(87)90239-7.
716	Speck, A.K., A.G. Whittington, and A.M. Hofmeister (2011) Disordered silicates in space: A
717	study of laboratory spectra of "amorphous" silicates. The Astrophysical Journal, 740, 93,
718	doi: 10.1088/0004-637X/740/2/93.
719	Stebbins, J.F. (1987) Identification of multiple structural species in silicate glasses by ²⁹ Si NMR.
720	Nature, 330, 465-467, doi: 10.1038/330465a0.
721	Stebbins, J.F. (1988) Effects of temperature and composition on silicate glass structure and
722	dynamics: SI-29 NMR results. Journal of Non-Crystalline Solids, 106, 359-369, doi:
723	10.1016/0022-3093(88)90289-X.
724	Stodolna, J., Z. Gainsforth, H. Leroux, A.L. Butterworth, T. Tyliszczak, D. Jacob, and A.J.
725	Westphal (2013) Iron valence state of fine-grained material from the Jupiter family comet
726	81P/Wild 2 – A coordinated TEM/STEM EDS/STXM study. Geochimica et
727	Cosmochimica Acta, 122, 1-16, doi: 10.1016/j.gca.2013.08.006.

728	Suzuki, S., Y. Ishikawa, M. Isshiki, and Y. Waseda (1997) Native oxide layers formed on the
729	surface of ultra high-purity iron and copper investigated by angle resolved XPS.
730	Materials Transactions, JIM, 38, 1004-1009, doi: 10.2320/matertrans1989.38.1004.
731	Tan, H., J. Verbeeck, A. Abakumov, and G. Van Tendeloo (2012) Oxidation state and chemical
732	shift investigation in transition metal oxides by EELS. Ultramicroscopy, 116, 24-33, doi:
733	10.1016/j.ultramic.2012.03.002.
734	Thompson, M.S., T.J. Zega, P. Becerra, J.T. Keane, and S. Byrne (2016) The oxidation state of
735	nanophase Fe particles in lunar soil: Implications for space weathering. Meteoritics &
736	Planetary Science, 51, 1082-1095, doi: 10.1111/maps.12646.
737	Van Aken, P., B. Liebscher, and V. Styrsa (1998) Quantitative determination of iron oxidation
738	states in minerals using Fe $L_{2,3}$ -edge electron energy-loss near-edge structure
739	spectroscopy. Physics and Chemistry of Minerals, 25, 323-327, doi:
740	10.1007/s002690050122.
741	Van Aken, P., and B. Liebscher (2002) Quantification of ferrous/ferric ratios in minerals: new
742	evaluation schemes of Fe $L_{2,3}$ electron energy-loss near-edge spectra. Physics and
743	Chemistry of Minerals, 29, 188-200, doi: 10.1007/s00269-001-0222-6.
744	Vargheese, K.D., A. Tandia, and J.C. Mauro (2010) Origin of dynamical heterogeneities in
745	calcium aluminosilicate liquids. The Journal of Chemical Physics, 132, 194501, doi:
746	10.1063/1.3429880.
747	Vercamer, V., G. Lelong, H. Hijiya, Y. Kondo, L. Galoisy, and G. Calas (2015) Diluted Fe ³⁺ in
748	silicate glasses: Structural effects of Fe-redox state and matrix composition. An optical
749	absorption and X-band/Q-band EPR study. Journal of Non-Crystalline Solids, 428, 138-
750	145, doi: 10.1016/j.jnoncrysol.2015.08.010.

Burgess:	Silicate glass	oxidation state	using ST	EM-EELS
0				

751	Virgo, D., B.O. Mysen, and I. Kushiro (1980) Anionic constitution of 1-atmosphere silicate
752	melts: Implications for the structure of igneous melts. Science, 208, 1371-1373, doi:
753	10.1126/science.208.4450.1371.
754	Virgo, D., and B.O. Mysen (1985) The structural state of iron in oxidized vs. Reduced glasses at
755	1 atm: A ⁵⁷ Fe Mossbauer study. Physics and Chemistry of Minerals, 12, 65-76, doi:
756	10.1007/BF01046829.
757	Weigel, C., L. Cormier, G. Calas, L. Galoisy, and D.T. Bowron (2008) Nature and distribution of
758	iron sites in a sodium silicate glass investigated by neutron diffraction and EPSR
759	simulation. Journal of Non-Crystalline Solids, 354, 5378-5385, doi:
760	10.1016/j.jnoncrysol.2008.09.030.
761	Williams, D.B., and B. Carter (1996) Transmission Electron Microscopy: A Textbook for
762	Materials Science, 729 p., Springer, New York.
763	Zhang, Y., H. Ni, and Y. Chen (2010) Diffusion data in silicate melts. Reviews in Mineralogy
764	and Geochemistry, 72, 311-408, doi: 10.2138/rmg.2010.72.8.
765	Zhang, Y., G. Yang, and Y. Yue (2013) Calorimetric signature of structural heterogeneity in a
766	ternary silicate glass. Journal of the American Ceramic Society, 96, 3035-3037, doi:
767	10.1111/jace.12562.
768 769	

34

770 Figure Captions

- **Figure 1.** Fe L-edge EEL spectra from IW-basalt3 illustrating a range of oxidation states within
- a single sample. Gaussian fits area shown for each spectra. Fe^{2+} mostly contributes to peak 1 (P1)
- while peak 2 (P2) is due to Fe³⁺; the ratio of the integrals $I_{P2}/(I_{P1}+I_{P2})$ is used to calculated the
- relative oxidation state Rox. San Carlos olivine ($^{[6]}Fe^{2+}$) and hematite ($^{[6]}Fe^{3+}$) are shown for
- 775 comparison.
- **Figure 2.** Quantification of data using Gaussian fits to L₃ peak, calculated from the ratio of the

⁷⁷⁷ integral of peak 2 to the sum of peaks 1 and 2 (Rox = $I_{P2}/(I_{P1}+I_{P2})$) as illustrated in Fig. 1, plotted ⁷⁷⁸ against Fe³⁺/ Σ Fe for each glass determined by Mössbauer. IW and QFM samples all show a large ⁷⁷⁹ range in oxidation states, and some spectra in all samples have higher apparent oxidation state ⁷⁸⁰ than hematite due to Fe coordination differences.

Figure 3. Oxidation state versus (a) dose and (b) dose rate. Inset is low-dose region of (a). At 781 high doses and dose rates, reduced areas were not seen. However, both reduced and oxidized 782 regions were measured at low doses, indicating beam damage may contribute to, but not 783 completely explain, highly oxidized IW- and QFM-buffered glasses. Symbols are as in Fig. 2. 784 Figure 4. Change in relative oxidation state (Rox) per increasing electron dose (D) plotted 785 against thickness for repeat measurements of the exact same region. An increase in Rox in 786 second or third scans leads to a positive value here. Matching symbols plotting at the same 787 thickness indicate multiple measurements and often show first increasing then decreasing Rox 788 upon additional scanning. No clear trends are seen to relate the experimental conditions or 789 known material properties to the change in oxidation state. Symbols are as in Fig. 2. 790 791 Figure 5. High-angle annular dark field (HAADF) image of QFM-basalt6 after 60 kV acquisition of three EELS SIs in the same region-of-interest (ROI) with 0.05s/pixel dwell time 792

each. The rectangular mottled region where the SI was acquired shows local variation induced by
the beam. The three spots in the upper right of the image are also beam damage.
Figure 6. (a) HAADF image and (b) EDS map from region where the beam dwelled for several
seconds at 200 kV. Cations other than Si diffuse away from the spot which is $\sim 100x$ the probe
size. Al and Ca are concentrated in the bright rings around the beam spots relative to the other
cations. (c) Low-loss spectrum from undamaged (black) and damaged (red) regions showing
different plasmon shape and loss of Fe.
Figure 7. Oxidation state versus relative thickness shows no clear relationship. Symbols are as in
Fig. 2.
Figure 8. (a) HAADF of shard from QFM-basalt6 showing lattice fringes from nano-crystalline
regions with different oxidation states. (b) EEL spectra showing difference in shape of Fe L-edge
between left and right regions of (a). (c) Image and (d) EEL spectra from QFM-basalt6.
Magnetite grains are identified in the glass, having both a distinct Fe L-edge shape and rich in Fe
relative to the surrounding glass. The identification of magnetite is clear in EELS O-K data also.
Two small grains are clearly visualized in a map of the ratio of two different energy windows
(inset).
Figure 9. (a) When specific sub-regions are analyzed within single SIs, generally thinner regions
are more oxidized, so that $(Rox_1-Rox_2)/(t_1-t_2)$ where $t_1 > t_2$, is negative, but the change in
oxidation state with change in thickness between regions is not consistent. (b) Thickness of the
oxidized film versus calculated initial Rox, calculated using data in (a). The thickness of the film
in a single SI region is inversely related to the initial oxidation state, with thicker films forming

on more reduced glass. The dotted line shows a quadratic fit to the dataset. Symbols are as in 814

Fig. 2. 815

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

Burgess: Silicate glass oxidation state using STEM-EELS

37

Table 1. Composition from microprobe measurements (wt%) and measured $%Fe^{3+}$ of silicate glasses. Numbers in parentheses indicate

817 standard deviation of measurements.

818

	BAS-1	BAS-2	BAS-2	BAS-3	BAS-3	BAS-4	BAS-6	AND-4	AND-4	RHY-2	RHY-3	RHY-3	RHY-5
	(n=8)	(n=7)	(n=6)	(n=10)	(n=8)	(n=6)	(n=8)	(n=8)	(n=9)	(n=7)	(n=7)	(n=7)	(n=8)
f _{O2}	QFM	CO ₂	QFM	QFM	IW	air	QFM	air	IW	CO ₂	CO ₂	IW	IW
SiO ₂	49.81	49.42	49.73	48.42	51.53	50.96	51.15	55.61	61.97	69.35	70.85	73.21	71.19
	(0.86)	(0.43)	(0.35)	(0.22)	(0.15)	(0.53)	(0.26)	(1.02)	(0.31)	(3.58)	(3.28)	(1.22)	(2.31)
TiO ₂	1.07	1.60	1.55	2.84	2.72	0.82	2.66	0.66	0.66	0.33	0.15	0.28	0.23
	(0.02)	(0.03)	(0.03)	(0.06)	(0.04)	(0.03)	(0.06)	(0.02)	(0.04)	(0.12)	(0.03)	(0.08)	(0.06)
AI_2O_3	17.94	15.62	15.51	17.15	17.90	17.58	13.79	18.19	18.10	17.56	15.81	16.07	14.39
	(0.33)	(0.11)	(0.19)	(0.18)	(0.08)	(0.26)	(0.13)	(0.44)	(0.10)	(2.51)	(2.02)	(0.71)	(1.58)
FeO	7.03	10.56	9.67	10.85	11.93	9.96	10.16	7.62	7.06	3.29	1.73	1.83	3.63
	(0.20)	(0.36)	(0.43)	(0.40)	(0.31)	(0.34)	(0.37)	(0.26)	(0.23)	(0.56)	(0.43)	(0.30)	(0.13)
MgO	9.14	7.03	7.10	5.62	5.77	6.09	7.10	4.15	3.78	0.37	0.25	0.22	0.04
	(0.10)	(0.09)	(0.08)	(0.07)	(0.03)	(0.03)	(0.05)	(0.25)	(0.04)	(0.08)	(0.07)	(0.04)	(0.01)
CaO	10.94	11.60	11.48	8.97	9.23	11.35	11.71	8.14	7.61	3.19	1.20	1.09	0.25
	(0.16)	(0.05)	(0.07)	(0.12)	(0.05)	(0.04)	(0.06)	(0.39)	(0.06)	(0.80)	(0.32)	(0.15)	(0.04)
MnO	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.01
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.02)	(0.01)	(0.01)	(0.01)	(0.00)	(0.01)	(0.01)
Na ₂ O	2.96	2.59	2.66	3.08	0.68	2.16	2.30	3.64	1.01	5.46	3.76	3.31	6.07
	(0.16)	(0.11)	(0.07)	(0.08)	(0.08)	(0.09)	(0.14)	(0.19)	(0.08)	(0.28)	(0.41)	(0.09)	(0.54)
K ₂ O	0.27	0.15	0.19	1.06	0.07	0.44	0.59	1.09	0.06	1.53	4.44	4.01	4.84
	(0.02)	(0.01)	(0.02)	(0.04)	(0.02)	(0.04)	(0.03)	(0.07)	(0.01)	(0.06)	(0.26)	(0.06)	(0.16)
Total	99.15	98.60	97.89	97.99	99.84	99.35	99.46	99.11	100.25	101.09	98.18	100.03	100.65
Fe ³⁺ / ΣFe ^a	10	80	12	22	16	89	17	100	12		71	16	30

819

820 ^a Mossbauer, error $\pm 1-3\%$

- Table 2. Composition of glass before and after beam damage from EDS (1σ error on counting
- statistics).
- 823

Wt%	bottom	top spot	"un-damaged"	QFM-	QFM-	
	spot			basalt3	basalt3	
				EMPA	nominal	
SiO ₂	95.2(6.1)	88.3(4.1)	48.7(0.9)	48.42(0.22)	50.13	
Al_2O_3	1.9(0.8)	3.4(0.6)	17.2(0.7)	17.15(0.18)	16.74	
MgO	0.3(0.2)	0.00	5.8(0.3)	5.62(0.07)	5.71	
CaO	0.8(0.5)	1.3(0.3)	11.2(0.5)	8.97(0.12)	8.73	
FeO	0.0	0.3(0.1)	4.4(0.2) ^a	10.85(0.40)	9.07 ^b	
Fe ₂ O ₃	0.0	0.7(0.3)	9.7(0.5) ^a		2.85 ^b	
Na ₂ O	0.0	0.0	0.0	3.08(08)	3.01	
K ₂ O	0.0	0.0	0.0	1.06(04)	1.15	
O ₂ excess ^c	1.8	6.1	3.2		0.00	

824 825	^a Calculated using Fe ³⁺ / Σ Fe determined by EELS data for region.
826	^b Calculated using Fe ³⁺ / Σ Fe determined by Mössbauer data for sample.
827 828 829	^c Calculated based on atomic concentration and assumed stoichiometry for oxides.
830	

831

Table 3. Comparison of measured volume in various techniques with commonly used
spot sizes and energies.

834

Technique	Energy	Sample	Probe	Interaction/		
		Thickness/Depth	Size ^a	Measured		
		Resolution		Volume		
ac-STEM	200 kV	20-100 nm	0.1-0.2 nm	$\sim 10^{-7} \mu m^3$	-	
STEM	200 kV	20-100 nm	1-5 nm	$>10^{-6} \mu m^3$		
EMPA	5 kV	5 kV ~0.5 μm		$\sim 0.5 \ \mu m^3$		
	25 kV	~2.5 µm	$\sim 1 \ \mu m$	$\sim 5 \ \mu m^3$		
XANES	Hard X-ray					
GSECARS 13 ID-E		$\sim \! 10 \ \mu m^b$	1 µm	$10 \ \mu m^3$		
STXM	Soft X-ray	100 nm	25 nm	$6.25 \times 10^{-5} \ \mu m^3$		
Raman		1-2 μm	~0.5-1 µm	$1 \ \mu m^3$		
NanoSIMS		10 nm	50 nm	$2.5 \times 10^{-5} \ \mu m^3$		

835

⁸³⁶ ^a Before beam broadening effects

^b Sample thickness used for XANES is strongly dependent on concentration of element of

interest and geometry (fluorescence versus transmission).

839

840

39

Figure 1

Figure 2

Figure 3

Figure 5

Figure 6.

730 730 righi magnetite grain lefi 710 715 720 725 725 700 705 710 715 720 7 Energy Loss (eV) Energy Loss (eV) glass 705 variatised Counts 700 0 0 0.8 0.6 0.4 0.2 σ Normalized Counts ^o È 6 50

υ

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

g

Figure 8

Figure 9