The spin state of Fe$^{3+}$ in lower mantle bridgmanite

Ryosuke Sinmyo*, Catherine McCammon, Leonid Dubrovinsky

Bayerisches Geoinstitut, Universitaet Bayreuth, D-95440 Bayreuth, Germany

*Corresponding author. (E-mail: ryosuke.sinmyo@elsi.jp) Now at Earth-Life Science Institute, Tokyo Institute of Technology

Abstract

Iron- and aluminum-bearing MgSiO$_3$ bridgmanite is the most abundant mineral in the Earth’s interior; hence its crystal chemistry is fundamental to expanding our knowledge of the deep Earth and its evolution. In this study, the valence and spin state of iron in well characterized Al-free Fe$^{3+}$-rich bridgmanite were investigated by means of Mössbauer spectroscopy to understand the effect of ferric iron on the spin state. We found that a minor amount of Fe$^{3+}$ is in the low spin state above 36 GPa and that its proportion does not increase substantially with pressure up to 83 GPa. This observation is consistent with recent experimental studies that used Mössbauer and X-ray emission spectroscopy. In the Earth’s deep lower mantle, Fe$^{3+}$ spin crossover may take place at depths below 900 and 1200 km in pyrolite and MORB, respectively. However, the effect of spin crossover on physical properties may be small due to the limited amount...
of Fe$^{3+}$ in the low spin state.

Introduction

The crystal chemistry of terrestrial minerals is fundamental to understanding the Earth’s interior and its evolution. Iron- and aluminum-bearing MgSiO$_3$ bridgmanite (Bdg) is the most abundant mineral in the Earth’s interior and contains a substantial (up to about 20 at. %) amount of iron, which is the fourth most abundant element in the mantle. Bdg can incorporate a substantial amount of Fe$^{3+}$ (e.g., McCammon 1997; Frost et al. 2004), while olivine, the dominant mineral in the upper mantle, accommodates essentially no Fe$^{3+}$ (e.g., McCammon 2005). The substitution of Fe$^{3+}$ for Fe$^{2+}$ has a large influence on physical and chemical properties of Bdg such as elastic constants, iron partition coefficients and electrical/thermal conductivity (Ohta et al. 2010; 2014; Boffa Ballaran et al. 2012; Sinmyo and Hirose 2013; Sinmyo et al. 2014a; Wolf et al. 2015; Yoshino et al. 2016). Moreover, both experiments and theoretical calculations suggest that iron in Bdg undergoes spin crossover under deep mantle conditions (Badro et al. 2004; Lin et al. 2012; Potapkin et al. 2013; Mashino et al. 2014). Although iron spin crossover can strongly influence the physical properties of lower mantle minerals, e.g., elastic constants and thermal/electrical conductivity (Lundin et al. 2008; Keppler et
al. 2008; Ohta et al. 2010; Catalli et al. 2011), the pressure of spin crossover in Bdg is not well constrained (see reviews by Lin et al. 2013; McCammon et al. 2013 and references therein). Challenges arise due mainly to the presence of iron in two different valence states (Fe$^{2+}$ and Fe$^{3+}$), and two different sites in the perovskite structure (8-12 coordinated A-site and octahedral B-site). Fe$^{2+}$, which is observed to occupy the A-site, undergoes spin crossover from high spin to intermediate spin (McCammon et al. 2008; Lin et al. 2008; Potapkin et al. 2013), although theoretical calculations do not support the existence of the intermediate spin state of Fe$^{2+}$ (Hsu et al. 2011; Metsue and Tsuchiya 2012). There is general consensus that Fe$^{3+}$ remains in the high spin state to at least 100 GPa when it occupies the A-site (Catalli et al. 2010, 2011; Fujino et al. 2012; Lin et al. 2012; Potapkin et al. 2013; Glazyrin et al. 2014; Kupenko et al. 2014), but undergoes spin crossover from high spin to low spin at 20~60 GPa when it occupies the B-site (Catalli et al. 2010; 2011; Fujino et al. 2012; Lin et al. 2012; Kupenko et al. 2015). These observations strongly suggest that the spin crossover pressure is dominantly controlled by Fe$^{3+}$ in the B-site. It has been reported that Fe$^{3+}$ occupies the A-site of Bdg regardless of the oxidation state concentration, Al content and pressure (Kudoh et al. 1990; Vanpeteghem et al. 2006; Glazyrin et al. 2014), while some recent studies have reported that Al-free and Fe$^{3+}$-bearing Bdg accommodate a detectable
amount of Fe$^{3+}$ in the B-site (Catalli et al. 2011; Lin et al. 2012; Hummer and Fei 2012; Kupenko et al. 2015). Since previous studies have investigated Bdg with a limited amount of Fe$^{3+}$, the electronic state of Fe$^{3+}$ is not well understood, even though the electronic state of iron in Al-free Fe$^{3+}$-rich Bdg may have a significant effect on the physical/chemical properties of subducted depleted lithospheric mantle with harzburgitic bulk composition (Ringwood 1991). Furthermore, it is recognized that sample synthesis in the diamond anvil cell by laser heating may cause heterogeneity in chemical composition and/or redox state of the sample (e.g., Fialin et al. 2008; Sinmyo and Hirose 2010). Therefore, to minimize the experimental uncertainty, the Fe$^{3+}$/ΣFe ratio of samples pre-synthesized using a large volume press should be characterized before the sample is compressed with a diamond anvil cell. Here, our study aims to explore the spin state of iron under lower mantle conditions by investigating the rarely studied, but well defined Al-free Fe$^{3+}$-rich Bdg, which provides insight into the complex effects of Al$^{3+}$ and Fe$^{3+}$ on the spin state.

Experimental procedure

The sample was synthesized using a multi anvil apparatus. A mixture of fine grained SiO$_2$ [55.23 wt %] + MgO [37.05 wt %] + 57Fe$_2$O$_3$ (90% enriched) [7.72 wt %]
was ground well for about one hour, and then dried at 1273 K in a furnace for one day.

We used Fe₂O₃ as a starting material to maximize Fe³⁺ content in the sample. The final mix was loaded into a gold capsule and then packed into a MgO container. The multi-anvil synthesis used LaCrO₃ for the heater, and was run for 45 minutes at pressure and temperature conditions of 26 GPa and 1973 K, respectively. The synthesized sample was examined using a field-emission-type scanning electron microscope (SEM) (Leo Gemini 1530) and the chemical composition was determined using an electron microprobe (JEOL JXA-8200) operated at 15 kV and 15 nA. Phase identification was performed by powder X-ray diffraction (XRD) using a FR-D high-brilliance Rigaku X-ray diffractometer with Mo-Kα radiation operated at 55 kV and 60 mA.

The high-pressure Mössbauer spectroscopic study was conducted using a diamond anvil cell. Diamonds with 250 µm diameter culets were used as anvils. The polycrystalline sample from the multianvil synthesis was loaded into a hole drilled in a rhenium gasket. Mössbauer spectroscopy was conducted using a nominal 370 MBq ⁵⁷Co high specific activity source in a rhodium matrix. The velocity scale was calibrated relative to ⁵⁷Fe foil. Mössbauer spectra were analyzed using the MossA software package (Prescher et al. 2012). Mössbauer spectra were collected with increasing pressure up to 83 GPa, and then the pressure was gradually decreased toward ambient
conditions.

Results

The sample synthesized using the multianvil press was characterized by XRD, Mössbauer spectroscopy and electron microprobe analysis. The electron microprobe analysis yielded a chemical composition of $\text{Mg}_{0.971(1)}\text{Fe}_{0.064(4)}\text{Si}_{0.979(7)}\text{O}_3$. The grain size was around 50 µm in diameter. Although a trace amount of quenched liquid material was observed at the very edge of the sample, it was easily removed from the capsule before selecting the Bdg sample for diamond anvil cell experiments. Most likely due to the partitioning of iron between liquid and Bdg, the iron content in the Bdg was depleted in comparison to the starting material. XRD measurements showed that the obtained sample was a single phase of Bdg. The $\text{Fe}^{3+}/\Sigma\text{Fe}$ ratio of the perovskite was determined to be 0.53(6) according to Mössbauer measurements at ambient conditions. Based on this result, the chemical composition can be described as $\text{Mg}_{0.971}\text{Fe}^{2+}_{0.030}\text{Fe}^{3+}_{0.034}\text{Si}_{0.979}\text{O}_3$. The total charge of the cations slightly exceeds six (6.02), which may be due to vacancies in the crystal lattice (Hummer and Fei 2012). A quantitative discussion is not possible, however, since the excess amount ($\pm 0.3 \%$) is smaller than the uncertainty in the measurements ($\sim 1 \%$).
Mössbauer spectra were collected up to 83 GPa at 15 pressure points in total (Fig. 1). The pressure variation of the obtained hyperfine parameters center shift (CS) and quadrupole splitting (QS) are summarized in Figure 2 and Table 1. The spectra at ambient conditions are composed of two components corresponding to Fe$^{2+}$ with higher CS and QS values (hereafter Fe$^{2+}$ #1) and Fe$^{3+}$ with lower CS and QS values (Fe$^{3+}$ #1). The QS values of Fe$^{2+}$ #1 and Fe$^{3+}$ #1 slightly increase with increasing pressure, while their CS values are almost constant (Fig. 2). Above 12 GPa, we observed a component with a high QS value (Fe$^{2+}$ #2), which corresponds to Fe$^{2+}$ in the distorted A-site of Bdg (McCammon et al. 2008; Kupenko et al. 2014). The abundance of Fe$^{2+}$ #2 does not change substantially from 12 to 83 GPa (Fig. 3). At higher pressure, an additional component was observed above 36 GPa (Fe$^{3+}$ #2). This new component exhibits almost zero CS and QS similar to the value for Fe$^{3+}$ #1. These hyperfine parameters are comparable to those of the Fe$^{3+}$ component found in Al, Fe-bearing Bdg at around 40 GPa after laser heating (Kupenko et al. 2015). As in the case of the Fe$^{2+}$ #1 and Fe$^{3+}$ #1 components, the QS values of Fe$^{2+}$ #2 and Fe$^{3+}$ #2 slightly increase with pressure, in contrast to the constant CS value (Fig. 2). Parallel to the slight increase in abundance of Fe$^{3+}$ #2 with increasing pressure from 40 to 53 GPa, the abundance of Fe$^{3+}$ #1 decreases to compensate, maintaining an essentially constant amount of Fe$^{3+}$ (Fig. 3).
hyperfine parameters vary with pressure in a highly consistent way during compression and decompression (Fig. 2), and the Fe$^{3+}/\Sigma$Fe ratio refined independently at each data point remains nearly constant throughout the experiment (Fig. 3).

Discussion

Fe$^{3+}$ in Al-free Bdg

It is well known that the Fe$^{3+}/\Sigma$Fe ratio in Al-bearing Bdg is remarkably high (about 0.5) even under low oxygen fugacity conditions (e.g., McCammon 2005). The high Fe$^{3+}/\Sigma$Fe ratio can be explained by a coupled substitution mechanism involving Fe$^{3+}$-Al to Mg-Si in Bdg (Frost et al. 2004; McCammon et al. 2004). In this study, the Fe$^{3+}/\Sigma$Fe ratio was about 0.5 in the Al-free Bdg synthesized from Fe$^{3+}$-rich starting material, which is considerably higher than that for Al-free Bdg synthesized from Fe$^{2+}$-dominant material (Frost et al. 2004 McCammon et al. 2004; Sinmyo et al. 2008). This observation suggests that Fe$^{3+}/\Sigma$Fe of Al-free Bdg depends on oxygen fugacity as suggested by McCammon et al. (2004). Indeed, Hummer and Fei (2012) and Mashino et al. (2014) reported a Fe$^{3+}/\Sigma$Fe ratio close to one in Bdg synthesized from Fe$^{3+}$-rich material. Fe$^{3+}$ #1 most likely occupies the A-site of Bdg because ferric iron mostly occupies the A-site of Bdg at ambient conditions when the ferric iron concentration is <
0.04 per formula unit (Hummer and Fei 2012; Sinmyo et al. 2014b). The Fe$^{3+}$ component shows moderate QS ~ 1 and low CS ~ 0 (Table 1). These values are consistent with low spin Fe$^{3+}$ in the octahedral sites of the high-pressure phase of FeOOH (Xu et al. 2013), CaFe$_2$O$_4$ (Greenberg et al. 2013), rare earth orthoferrites with the perovskite structure (Rozenberg et al. 2005), and Al,Fe-bearing Bdg (Kupenko et al. 2015). This observation strongly supports the theoretical work of Hsu et al. (2011), who suggested that Fe$^{3+}$ is in the low-spin state in the B-site of Bdg.

Pioneering work by Fujino et al. (2012) reported that an equilibrium site distribution of iron may be difficult to achieve, even with annealing by laser heating. However, more recent work showed that the site distribution does not change substantially before and after annealing (Glazyrin et al. 2014; Kupenko et al. 2015; Lin et al. 2016). Also, in situ single crystal XRD measurements at high pressure demonstrated that the site occupancy of iron did not change remarkably before, during and after laser heating (Glazyrin et al. 2014). Lin et al. (2016) also showed that the site distribution does not change after annealing, although X-ray emission spectra became sharp after heating. Generally, annealing is important to achieving equilibrium; however at the same time laser heating may cause undesired chemical heterogeneity in the sample (e.g., Sinmyo and Hirose 2010), which can lead to a large uncertainty in
property measurements. For more detailed knowledge in the future, it is necessary to develop a heating technique with smaller temperature gradient in the sample, such as externally/internally resistive heating.

It is notable that independent studies agree that Fe$^{3+}$ mainly occupies the A-site of Al-free Bdg with moderate Fe$^{3+}$ content (< 0.04 per formula unit) (Lin et al. 2012; Sinmyo et al., 2014b; this study) for samples synthesized at ~25 GPa in a large volume press. Our current results strongly support a small amount of Fe$^{3+}$ distributed onto the B-site of Bdg under pressure. This suggests that A-site of Bdg is more compressible than the B-site, although it should be examined by a future study.

Fe$^{3+}$ in the low-spin state

The new component observed above 36 GPa (Fe$^{3+}$ #2) can be assigned to low spin Fe$^{3+}$ in the B site based on hyperfine parameters reported by Kupenko et al. (2015). Fe$^{3+}$ may have been in the low-spin state when it was distributed onto the B-site of bridgmanite as reported by Kupenko et al. (2015). This inference is consistent with theoretical predictions (e.g., Hsu et al. 2011). Our results show that Fe$^{3+}$ in the low-spin state never exceeds ~18 % of total iron (Fig. 3). This value corresponds to 0.01 cations per formula unit of Fe in the low-spin state in the chemical formula $Mg_{0.971}Fe_{0.064}Si_{0.979}O_3$. Such a minor amount of low-spin iron is consistent with recent
experimental studies (Fujino et al. 2012; Lin et al. 2012; Kupenko et al. 2015). It is known that spin crossover can induce pronounced anomalies in the compressibility of minerals (e.g., Fei et al. 2007; Bykova et al. 2016). However, such an anomaly in Bdg compression has hardly been observed, even with single crystal XRD measurements using a soft pressure medium (Boffa Ballaran et al. 2012; Mao et al. 2015). This behavior is possibly due to the limited amount of ferric iron undergoing spin crossover at high pressure. Caracas et al. (2014) showed that spin crossover can be detected by fine analysis of XRD patterns collected for iron-rich Mg_{0.5}Fe_{0.5}SiO_{3} Bdg. Although Mössbauer spectroscopy is sensitive to the electronic state of iron, a minor amount of Fe^{3+} may not be recognized during analysis of a Fe^{2+}-rich sample. Previous disagreement among studies using XRD, Mössbauer, and X-ray emission spectroscopy (XES) can be explained by the low amount of low-spin Fe^{3+}. Notably, the obtained proportion of low-spin Fe^{3+} is consistent between XES measurements (Fujino et al. 2012) and Mössbauer spectroscopy results (Lin et al. 2012; Kupenko et al. 2015; this study) for Bdg synthesized in the multi-anvil press.

Figure 4 summarizes the CS and QS values obtained in this study. Fe^{2+} #1 is high spin Fe^{2+} in the A-site (e.g., McCammon et al. 2013). Based on the hyperfine parameters, Fe^{2+} #2 is intermediate spin Fe^{2+} in the A-site (McCammon et al. 2008), or
high-spin Fe$^{2+}$ in the A-site with a high QS value (Hsu et al. 2010). CS and QS values of Fe$^{3+}$ #1 are generally similar to Fe$^{3+}$ in the A-site of Al-free Bdg reported at ambient conditions ("M2" and "M3" components in Hummer and Fei 2012). Hyperfine parameters of Fe$^{3+}$ #2 are similar to those for low-spin Fe$^{3+}$ reported in a previous study of Bdg (Kupenko et al. 2015). We note that all of the data by Hummer and Fei (2012) were measured at ambient conditions. It is thus likely that all iron in their study is in the high-spin state, while in our high-pressure study we suggest that the Fe$^{3+}$ #2 component is in the low-spin state. Moreover, the parameters are also quite similar to recently observed values for low-spin Fe$^{3+}$ in Fe$_2$O$_3$ at high pressure (Bykova et al. 2016). Theoretical calculations predicted a high QS value (about 2-3 mm/s) for low-spin Fe$^{3+}$ in Bdg (e.g., Hsu et al. 2011). However, our results in relation to Fe$^{3+}$ in Bdg do not show a QS value higher than 1.5 mm/s regardless of the pressure, consistent with results of Lin et al. (2012) and Kupenko et al. (2015). Although the source of this inconsistency is unclear, the results of theoretical calculations may be affected by iron concentration and structural/magnetic configuration (Umemoto et al. 2008).

Implications

Figure 5 summarizes the relation between the concentration of Fe$^{3+}$ and the pressure at which the fraction of low-spin iron is saturated in Bdg. We have fitted the
saturation pressure empirically as a function of Fe\(^{3+}\) content using an exponential curve. We used data for Bdg synthesized using a large volume press and with known Fe\(^{3+}/\Sigma\text{Fe}\) ratio (Jackson et al. 2005; Li et al. 2006; Fujino et al. 2012; Lin et al. 2012; Kupenko et al. 2015). As the Fe\(^{3+}\) content increases, the pressure of saturation increases (Fig. 5). This behavior is similar to the previously reported relation between Fe\(^{2+}\) content and spin-crossover pressure in (Mg,Fe\(^{2+}\))O ferropericlase (Fei et al. 2007; Yoshino et al. 2011). Such a similarity may be due to the general relation between the spin state of iron and the lattice volume altered by the impurity. The amount of Fe\(^{3+}\) in the deep Earth depends on the bulk composition of the rock assemblage in the lower mantle, since it is sensitive to Al content and bulk iron content (Nakajima et al. 2012). The concentration of Fe\(^{3+}\) in Bdg is reported to be 0.01 - 0.04, 0.04 - 0.06 and 0.15 - 0.30 cations pfu in the harzburgite, pyrolite and MORB bulk compositions, respectively (Sinmyo et al. 2011; Nakajima et al. 2012). Spin crossover of Fe\(^{3+}\) may take place at a depth of about 900 km (35 GPa) in pyrolite and 1200 km (50 GPa) in MORB composition according to this study (Fig. 5). It should be deeper in the hotter mantle, since the spin crossover occurs at a higher and wider pressure range at high temperature (Wentzcovitch et al. 2009; Wang et al. 2015). Boffa Ballaran et al. (2012) and Mao et al. (2015) suggested that the elastic properties of Bdg are not substantially altered by iron
spin crossover. Moreover, as shown in this study, low-spin Fe$^{3+}$ is a minor component throughout the lower mantle; thus the effect on elasticity is not likely to be visible in seismic observations. However, since electrical conductivity is sensitive to the spin state (Ohta et al. 2010; Yoshino et al. 2011), spin crossover may be detected in geomagnetic observations. Additionally, even though the amount of low-spin Fe$^{3+}$ may be small, spin crossover can have a non-negligible effect on the partition coefficient of iron between Bdg and ferropericlase (e.g., Lin et al., 2013), which can strongly influence the structure and dynamics of the lower mantle. The plot shown in Fig. 5 suggests that spin crossover in Fe$^{3+}$ may take place at a depth of about 900 and 1200 km in pyrolite an MORB composition, respectively. Electrical conductivity and the iron partition coefficient could change at such depths due to spin crossover, although available data are currently limited to Fe$^{3+}$-bearing bulk compositions such as pyrolite (Ohta et al. 2010; Irifune et al. 2010; Sinmyo and Hirose 2013; Prescher et al. 2014). Recent studies have reported that the redox state of the Earth’s mantle may be more heterogeneous than previously thought (Frost and McCammon 2008; Stagno et al., 2013; Kaminsky et al., 2015). Nakajima et al. (2012) showed that the Fe$^{3+}$ content is 0.02 per formula unit higher in Bdg synthesized in a rhenium capsule compared to a diamond capsule. This implies that the spin crossover pressure may differ by ~10 GPa between the rhenium-rhenium oxide
buffer and the CCO buffer, since the crossover pressure significantly increases with increasing Fe$^{3+}$ content in Bdg (Fig. 5). Redox heterogeneities may be detectable by precise magnetotelluric measurements at lower mantle depths.

Acknowledgments

R.S. was supported by a Research Fellowship for Postdoctoral Researchers awarded by the Alexander von Humboldt Foundation. We appreciate the constructive review comments of two anonymous reviewers and the editor.

References cited

Bykova, E., Dubrovinsky, L., Dubrovinskaia, N., Bykov, M., McCammon, C.,

Hummer, D.R., and Fei, Y. (2012) Synthesis and crystal chemistry of Fe\(^{3+}\)-bearing (Mg,Fe\(^{3+}\))(Si,Fe\(^{3+}\))O\(_3\) perovskite. American Mineralogist, 97(11-12), 1915-1921.

Kaminsky, F.V., Rybachikov, I.D., McCammon, C.A., Longo, M., Abakumov, A. M.,

(Mg,Fe)(Si,Al)O₃ perovskite: a combined synchrotron Mossbauer and X-ray emission spectroscopy study up to 100 GPa. Physics and Chemistry of Minerals, 33(8-9), 575-585.

lower mantle containing ferric iron. Nature Geoscience, 8(7), 556-559.

Yoshino, T., Kamada, S., Zhao, C., Ohtani, E., Hirao, N. (2016) Electrical conductivity model of Al-bearing bridgmanite with implications for the electrical structure of

Figure captions

Figure 1. Selected Mössbauer spectra of Al-free Fe$^{3+}$-rich Bdg at different pressures and room temperature. Experimental data are indicated by solid circles while the fitted curve is shown by the thick solid line. Components are shaded as indicated in part (c) and the fitting residual is shown beneath each spectrum.

Figure 2. Pressure dependence of center shift (CS) and quadrupole splitting (QS) for (a) Fe$^{2+}$ and (b) Fe$^{3+}$ in Al-free Bdg. Right and left pointing triangles indicate data taken during compression and decompression, respectively. Our results are largely consistent with previously reported values for Al-free Bdg (Potapkin et al. 2013).

Figure 3. Relative abundance of components fitted to Mössbauer spectra of Al-free Bdg: (a) Fe$^{2+}$; (b) Fe$^{3+}$. The dashed line shows the initial abundance of Fe$^{2+}$ and Fe$^{3+}$.

Figure 4. Variation of CS and QS values for Bdg. Circles, this study; squares, Al-free Bdg at ambient conditions (Hummer and Fei 2012); diamonds, Al-bearing Bdg under 12
- 77 GPa (Kupenko et al. 2015). The diameters of the circles are proportional to the pressure at which the values were obtained (i.e., larger diameters correspond to higher pressures).

Figure 5. Relation between Fe$^{3+}$ concentration (in cations per formula unit) and the saturation pressure of low-spin Fe$^{3+}$ in Bdg (see text for details). The grey line is an empirical fit to the data for Bdg samples synthesized using a large volume press where Fe$^{3+}$/ΣFe ratios were experimentally determined. Red symbols, Al-free Bdg; blue symbols, Al-bearing Bdg. Filled symbols indicate the data used for fitting (Color online). “Harzburgite”, “Pyrolite” and “MORB” denote possible concentrations of Fe$^{3+}$ in Bdg in harzburgitic, pyrolitic and basaltic rock, respectively (see text for details).
Figure 1
This study (Fe$^{2+}$ #1)
Potapkin et al. 2013
This study (Fe$^{2+}$ #2)

(a)

Fe$^{3+}$ parameter (mm/s)

Pressure (GPa)

QS
CS

This study (Fe$^{3+}$ #1)
This study (Fe$^{3+}$ #2)
Potapkin et al. 2013

(b)

Fe$^{3+}$ parameter (mm/s)

Pressure (GPa)

QS
CS

Figure 2
Figure 3
Figure 4
Figure 5
Table 1. Hyperfine parameters of Fe$^{3+}$-rich bridgmanite determined from room temperature Mössbauer spectra.

<table>
<thead>
<tr>
<th>Pressure (GPa)</th>
<th>Component</th>
<th>CS (mm/s)</th>
<th>FWHM (mm/s)</th>
<th>Area (%)</th>
<th>QS (mm/s)</th>
<th>Fe$^{3+}$/total Fe (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Fe$^{3+}$ #1</td>
<td>1.00(5)</td>
<td>0.75(15)</td>
<td>47(6)</td>
<td>2.00(9)</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ #1</td>
<td>0.53(4)</td>
<td>0.66(13)</td>
<td>53(6)</td>
<td>0.63(6)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Fe$^{2+}$ #1</td>
<td>1.06(5)</td>
<td>0.77(13)</td>
<td>40(5)</td>
<td>1.91(10)</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ #1</td>
<td>0.40(4)</td>
<td>0.92(13)</td>
<td>60(5)</td>
<td>0.94(9)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Fe$^{2+}$ #1</td>
<td>0.93(5)</td>
<td>0.64(21)</td>
<td>32(10)</td>
<td>2.05(10)</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ #1</td>
<td>1.05(6)</td>
<td>0.55(26)</td>
<td>14(9)</td>
<td>2.86(16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ #1</td>
<td>0.50(4)</td>
<td>0.79(13)</td>
<td>54(10)</td>
<td>0.78(6)</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Fe$^{2+}$ #1</td>
<td>1.01(4)</td>
<td>0.46(15)</td>
<td>14(5)</td>
<td>1.85(9)</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ #1</td>
<td>0.32(3)</td>
<td>0.95(11)</td>
<td>68(5)</td>
<td>1.09(5)</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Fe$^{2+}$ #1</td>
<td>0.89(11)</td>
<td>0.92(42)</td>
<td>25(11)</td>
<td>2.36(24)</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ #1</td>
<td>0.40(3)</td>
<td>0.67(11)</td>
<td>54(10)</td>
<td>1.07(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ #2</td>
<td>0.00(8)</td>
<td>0.19(41)</td>
<td>2(5)</td>
<td>1.12(16)</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Fe$^{2+}$ #1</td>
<td>0.88</td>
<td>0.93(40)</td>
<td>26(11)</td>
<td>2.30(22)</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ #2</td>
<td>1.01</td>
<td>0.47(12)</td>
<td>19(6)</td>
<td>3.87(7)</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Fe$^{2+}$ #1</td>
<td>0.88</td>
<td>0.67(27)</td>
<td>20(6)</td>
<td>2.96(15)</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ #2</td>
<td>1.01</td>
<td>0.37(10)</td>
<td>16(5)</td>
<td>4.03(6)</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Fe$^{2+}$ #1</td>
<td>0.88</td>
<td>1.06(60)</td>
<td>28(13)</td>
<td>2.79(34)</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ #1</td>
<td>0.40(3)</td>
<td>0.50(12)</td>
<td>37(11)</td>
<td>1.21(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ #2</td>
<td>0.03(5)</td>
<td>0.43(17)</td>
<td>18(9)</td>
<td>1.46(9)</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Fe$^{2+}$ #1</td>
<td>0.88</td>
<td>0.85(38)</td>
<td>19(7)</td>
<td>2.63(19)</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ #2</td>
<td>1.01(2)</td>
<td>0.37(6)</td>
<td>20(4)</td>
<td>4.03(4)</td>
<td></td>
</tr>
<tr>
<td>Decompression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Fe$^{2+}$ #1</td>
<td>0.98(24)</td>
<td>0.77(41)</td>
<td>20(10)</td>
<td>2.76(48)</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ #2</td>
<td>1.02(3)</td>
<td>0.38(10)</td>
<td>17(6)</td>
<td>4.12(6)</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Fe$^{2+}$ #1</td>
<td>0.39</td>
<td>0.70(12)</td>
<td>48(13)</td>
<td>1.30(13)</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ #2</td>
<td>0.01(6)</td>
<td>0.37(21)</td>
<td>15(14)</td>
<td>1.54(6)</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Fe$^{2+}$ #1</td>
<td>0.88</td>
<td>0.82(38)</td>
<td>20(12)</td>
<td>2.56(78)</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ #2</td>
<td>1.04(4)</td>
<td>0.37(6)</td>
<td>18(9)</td>
<td>3.94(8)</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Fe$^{2+}$ #1</td>
<td>0.42(3)</td>
<td>0.62(9)</td>
<td>44(21)</td>
<td>1.19(15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ #2</td>
<td>0.06(6)</td>
<td>0.40(10)</td>
<td>18(24)</td>
<td>1.43(9)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Fe$^{2+}$ #1</td>
<td>0.88</td>
<td>0.68(27)</td>
<td>23(9)</td>
<td>2.22(15)</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ #2</td>
<td>1.01</td>
<td>0.56(21)</td>
<td>17(7)</td>
<td>3.43(13)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Fe$^{2+}$ #1</td>
<td>0.39</td>
<td>0.65(10)</td>
<td>59(11)</td>
<td>0.99(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ #2</td>
<td>0.01</td>
<td>0.64(456)</td>
<td>1(10)</td>
<td>1.12</td>
<td></td>
</tr>
</tbody>
</table>

Values in italics were held fixed during fitting.