1	Revision 1 (correction date April 15, 2017)
2	
3	Synthesis and crystal structure of LiNbO ₃ -type Mg ₃ Al ₂ Sl ₃ O ₁₂ : A possible indicator of shock conditions of
4	meteorites
5	Takayuki Ishii ^{1, 2} , Ryosuke Sinmyo ³ , Tetsuya Komabayashi ⁴ , Tiziana Boffa Ballaran ¹ , Takaaki Kawazoe ¹ ,
6	Nobuyoshi Miyajima ¹ , Kei Hirose ³ , Tomoo Katsura ¹
7	
8	¹ Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany
9	² Geodynamics Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
10	³ Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
11	⁴ School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh
12	EH9 3FE, U.K.
13	
14	Abstract
15	LiNbO ₃ -type Mg _{2.98(2)} Al _{1.99(2)} Si _{3.02(2)} O ₁₂ (py-LN) was synthesized by recovering a run product from
16	2000 K and 45 GPa to ambient conditions using a large volume press. Rietveld structural refinements were
17	carried out using the one-dimensional synchrotron XRD pattern collected at ambient conditions. The unit-cell
18	lattice parameters were determined to be $a = 4.8194(3)$ Å, $c = 12.6885(8)$ Å, $V = 255.23(3)$ Å ³ with $Z = 6$
19	(Hexagonal, $R3c$). The average A-O and B-O distances of the AO_6 and BO_6 octahedra have values similar to

20	those that can be obtained from the sum of the ionic radii of the averaged A- and B-site cations and oxygen
21	(2.073 and 1.833 Å, respectively). The present compound has the <i>B</i> -site cations at the octahedral site largely
22	shifted along the c axis compared with other LiNbO ₃ -type phases formed by back-transition from perovskite
23	(Pv)-structure, and as a result, the coordination number of this site is better described as $3 + 3$. It appears
24	therefore that the B-site cation in the octahedral position cannot be completely preserved during the back-
25	transition because of the small size of Si and Al, which occupy usually a tetrahedral site at ambient conditions.
26	The formation of py-LN can be explained by the tilting of BO_6 octahedra of the perovskite structure having the
27	pyrope composition and formed at high P - T conditions. The tilting is driven by the decrease in ionic radius
28	ratio between the A-site cation and oxygen during decompression. This also explains why there is no back-
29	transition from the Pv-structure to the ilmenite-structure during decompression, since this is a reconstructive
30	phase transition whose activation energy cannot be overcome at room temperature. Py-LN may be formed in
31	shocked meteorites by the back-transformation after the garnet-bridgmanite transition, and will indicate shock
32	conditions around 45 GPa and 2000 K.
33	Key words: bridgmanite, large volume press, Rietveld analysis, LiNbO ₃ , high pressure
34	
35	Introduction

LiNbO₃ (LN)-structure (space group No. 161: R3c) crystallizes in the trigonal system and is very similar to the ilmenite (Ilm)-structure (space group: $R\overline{3}$), which has the same crystal system. LN- and Ilm-type *ABO*₃ compounds consist of two kinds of octahedra, referred as AO_6 and BO_6 in this paper. The larger cations

39	are stored in the AO_6 octahedra, whereas the smaller ones are in the BO_6 octahedra. The two structures can be
40	distinguished by the different arrangement of the AO ₆ and BO ₆ octahedra. The Ilm-structure has alternating
41	layers of edge-sharing AO_6 and BO_6 octahedra normal to the c axis. On the other hand, each layer in the LN-
42	structure consists of alternating edge-sharing AO ₆ and BO ₆ octahedra. The majority of LN-type ABO ₃
43	compounds result from the back-transformation of perovskite (Pv)-type high-pressure polymorphs during
44	decompression. The LN-type structure is non-centrosymmetric and therefore this kind of compounds is used as
45	functional materials of nonlinear optics and piezoelectricity. Recently, it was suggested that the degree of
46	polarity increases with the distortion of the BO ₆ octahedra (Inaguma et al., 2012). Therefore, efforts have been
47	made to synthesize novel LN-type compounds, sometimes by applying high-pressure techniques, and to
48	analyze their structures. Leinenweber et al. (1991) reported that MnSnO3 and FeTiO3 with the Ilm-type
49	structure transform to the Pv-type structure at high pressure and temperature, and back-transform to the LN-
50	type structure during decompression at room temperature. They interpreted this back-transition based on the
51	tolerance factor for the Pv-structure, t, which is defined as $t = (r_A + r_O)/\sqrt{2}(r_B + r_O)$, where r_A , r_B , and r_O are the
52	ionic radii of the A- and B-site cations and oxygen, respectively, and concluded that Pv-structured compounds
53	with $t < 0.84$ transform to the LN-structure by pressure release.

In the field of Earth science, various kinds of ABO_3 compounds have been investigated as analogue materials of MgSiO₃ with the orthorhombic Pv-structure (bridgmanite, Brg), because Brg is considered to be the most abundant mineral in the Earth's lower mantle. Brg can incorporate Al³⁺ by two possible substitution mechanisms (a charge-coupled substitution (Mg + Si for 2Al) and an oxygen vacancy substitution (2Si + O for

58	2Al + one oxygen vacancy)). This incorporation shifts the stability field of Brg to higher pressures and changes
59	its physical properties. For example, rigidity decreases and electrical conductivity increases (e.g. Kesson et al.,
60	1995; Irifune et al., 1996; Xu et al., 1998; Walter et al., 2004; Murakami et al., 2012). It was also pointed out
61	that the oxygen vacancy substitution may allow water incorporation (Navrotsky, 1999) although it is still
62	unclear whether aluminous Brg can incorporate significant amounts of water. Therefore, understanding the
63	stability and Al-substitution mechanism in Brg is one of the important subjects in Earth science.
64	Funamori et al. (1997) using a laser-heated diamond-anvil cell (LH-DAC) discovered that
65	(Mg,Fe,Ca,Mn) ₃ Al ₂ Si ₃ O ₁₂ natural garnet directly transforms to the Pv-structure at high pressures, and then
66	transforms to a metastable phase with the LN-structure during decompression. Miyajima et al. (1999)
67	examined the Pv-LN transition using natural garnets with various compositions also using a LH-DAC. These
68	authors suggested that Brg with Al ₂ O ₃ contents larger than 25 mol% transforms to the LN-structure during
69	decompression. However, the structures of these LN-type compounds were not analyzed in detail because only
70	small amount of the LN-type material was obtained together with amorphous phases, which were also formed
71	by back-transformations in DACs. Recently, Ishii et al. (2016) succeeded in synthesizing a bulk sample of the
72	LN-type phase with the pyrope composition $(Mg_3Al_2Si_3O_{12})$ at pressures over 40 GPa using a multi-anvil
73	press. Since this product is almost completely composed of the LN-type phase, it is suitable for the structural
74	analysis by the Rietveld method.

In this paper, we report the crystal structure of the LN-type Mg₃Al₂Si₃O₁₂ determined by X-ray
 powder diffraction and Rietveld analysis. The transformation mechanism of the Pv-LN back-transition and

⁷⁷ implications for a possible natural occurrence of this compound are discussed.

- 78
- 79

Experimental methods

80 1. Sample synthesis and characterization

81	The Mg ₃ Al ₂ Si ₃ O ₁₂ with LN-type structure was synthesized via the following three steps. Firstly, a
82	glass with a nominal composition of Mg ₃ Al ₂ Si ₃ O ₁₂ (py-glass) was produced by quenching in water a mixture
83	of MgO, Al ₂ O ₃ and SiO ₂ with a 3:1:3 molar ratio melted at 1950 K for 1 h. The py-glass was then converted to
84	a sintered aggregate of Ilm-type Mg ₃ Al ₂ Si ₃ O ₁₂ (py-Ak) at 27 GPa and 1170 K for 1 h. The sintered py-Ak
85	aggregate was then subjected to a press load of 15 MN and 2000 K for 3 h, quenched to ambient temperature,
86	and then decompressed to ambient pressure. The recovered sample consisted of a sintered aggregate of LN-
87	type Mg ₃ Al ₂ Si ₃ O ₁₂ (py-LN) compound. The high <i>P</i> - <i>T</i> syntheses were conducted using a multi-anvil apparatus
88	for ultra-high pressure generation, IRIS-15, at the Bayerisches Geoinstitut, University of Bayreuth, Germany.
89	Details of the experimental setup are described in Ishii et al. (2016). Liu et al. (2016) reported that Brg with a
90	pyrope composition (py-Brg) is stabilized at 45 GPa and 2000 K, and that py-LN formed by back-transition
91	from py-Brg during decompression in a multi-anvil press installed at the BL04B1 in the synchrotron facility,
92	Spring-8. Therefore, py-LN obtained in this study also has been likely formed by the back-transition from py-
93	Brg during decompression from at least 45 GPa.

94 The phases present in the synthesis run products recovered from the second and the third final steps 95 were identified using a laboratory micro-focused X-ray diffractometer (MF-XRD) (Bruker, D8 DISCOVER)

96	with a two-dimensional solid-state detector (VÅNTEC500) and a micro-focus source (I μ S) of Co-K α radiation
97	operated at 40 kV and 500 μ A. The X-ray beam was focused to 50 μ m beam using a IFG polycapillary X-ray
98	mini-lens. The run products were also examined in back-scattered electron (BSE) images by means of scanning
99	electron microscopy (SEM) in order to determine whether minor phases were present. Compositional analysis
L00	was carried out using an electron microprobe with wavelength-dispersive spectrometers (JEOL, JXA-8200)
101	and an accelerated voltage and probe current of 15 kV and 15 nA, respectively. Natural pyrope was used as
102	standard material for Mg, Al and Si.

103

104 2. Synchrotron X-ray diffraction and Rietveld refinement

Angle-dispersive powder X-ray diffraction was conducted at the beam line BL10XU of the synchrotron 105 radiation facility SPring-8, Japan. The py-LN aggregate was crushed to a powder. The powdered sample was 106 loaded into a hole with a diameter of 300 µm in a rhenium plate with a thickness of 20 µm. X-ray beams 107 monochromatized with a Si double monochromator were collimated to 10-20 µm in diameter to irradiate the 108 sample. The two-dimensional diffraction patterns were collected for 1 s on a flat panel detector (PerkinElmer). 109 The X-ray wavelength ($\lambda = 0.41429$ Å) and detector distance from the sample were calibrated using a CeO₂ 110 standard. Five one-dimensional diffraction profiles of the sample were obtained by integrating the two-111 dimensional profile at different azimuth angles using the software "IPAnalyzer" (Seto et al., 2010). The five 112 one-dimensional diffraction patterns were combined for the Rietveld refinement. 113

114

Rietveld analysis was performed using the RIETAN-FP/VENUS package (Izumi and Momma, 2007).

115	The VESTA software (Momma and Izumi, 2011) was used to draw crystal structures. The structure parameters
116	of LN-type FeTiO ₃ (Leinenweber et al., 1991) were used as an initial structure model. Unit-cell lattice
117	parameters, scale factor, atomic coordinates and isotropic atomic displacement parameters (Table 1), and a
118	split-type pseudo-Voigt profile fitting function formulated by Toraya (1990) were refined simultaneously. Since
119	peaks of SiO ₂ stishovite (St) were present in the synchrotron XRD, this phase was included in the Rietveld
120	analysis, and the lattice parameters, the scale factor and the atomic coordinates were refined. A Legendre
121	polynomial function with 12 parameters was used for fitting of the XRD background.
122	

123

Results and Discussion

124 **1.** Phase identification and sample composition

The compositions of py-glass, py-Ak, and py-LN were found to be $Mg_{2.93(2)}Al_{2.00(2)}Si_{3.04(2)}O_{12}$, Mg_{2.99(2)}Al_{2.01(2)}Si_{3.01(1)}O₁₂, and Mg_{2.98(2)}Al_{1.99(2)}Si_{3.02(2)}O₁₂, respectively, in agreement with the nominal composition and confirming that the high-pressure phases have a pyrope composition.

The MF-XRD patterns of py-Ak and py-LN are shown in Fig. 1. Although both phases have similar structural features, their diffraction patterns show clear differences. For instance, the 003 peak is present in the pattern of py-Ak but it is absent in the py-LN pattern, as required by the reflections conditions of the two different space groups ($R\overline{3}$ and R3c, respectively) in which these two materials crystallize. All peaks can be identified as belonging to py-Ak (Fig. 1, bottom) or to py-LN (Fig. 1, top); however, some St and very small amounts of Al₂O₃ corundum (Crn) grains were identified in the BSE images taken for py-LN. The amounts of

134 these minor phases appear to be below the detection limit of the Bruker diffractometer. These trace phases may have formed during heating to 2000 K for the synthesis of py-Brg. As mentioned in the experimental session, in 135 the synchrotron XRD pattern of py-LN, only St was present but no peaks of Crn were observed. 136

137

2. Rietveld refinement of LiNbO₃-type Mg₃Al₂Si₃O₁₂ 138

The results of Rietveld refinements of the synchrotron XRD pattern of py-LN are shown in Fig. 2. 139 Because the X-ray scattering factors of Mg, Al and Si atoms are very similar, it is practically impossible to 140 determine their site occupancies at the A and B sites. Thus, these were fixed by assuming 25% of Al at each 141 site based on the compositional analysis and complete order of Mg-Si resulting in the following occupancies: 142 $Mg_{0.75}Al_{0.25}$ at the A site and $Si_{0.75}Al_{0.25}$ at the B site. This assumption is based on the fact that no cation 143 disorder has been reported either for Fe-bearing, Al-free or Fe-Al-bearing bridgmanites (e.g. Horiuchi et al., 144 1987; Vanpeteghem et al., 2006), thus the same cation distribution is likely retained in py-LN since it is formed 145 by the back-transformation of py-Brg. During refinement, the isotropic atomic displacement parameter (U_{iso}) of 146 oxygen converged towards a much larger value than the one generally observed for several structures (i.e. 147 $<\sim 0.013$ Å²) (see Table 1). Therefore, we also performed refinements with the U_{iso} of oxygen fixed to the value 148 obtained for LiNbO₃ by means of single-crystal structural refinement (Hsu et al., 1997). Both refinement 149 strategies, i.e. with oxygen U_{iso} fixed or free to vary resulted in very similar crystal structures (see Table 1 and 150 3). In both cases, the discrepancy indexes converged to satisfactory values of less than 5% (Table 1) 151 152

153	(Funamori et al. 1997). The ranges of c/a ratios of Ilm- and LN-type phases are 2.76-2.87 and 2.58-2.69,
154	respectively (e.g. Ko and Prewitt, 1988; Leinenweber et al., 1991; Funamori et al., 1997; Hsu et al., 1997;
155	Inaguma et al., 2010; Akaogi et al., 2002). The present py-LN has a <i>c/a</i> ratio of 2.63, which is within the range
156	of the LN-type phases defined by Funamori et al. (1997), and is smaller than that of py-Ak reported by Akaogi
157	et al. (2002) ($c/a = 2.80$). The unit-cell volumes and densities of the Mg ₃ Al ₂ Si ₃ O ₁₂ compounds are summarized
158	in Table 2. There is a volume increase for the py-Brg to py-LN transition at ambient conditions of \sim 3.0% and
159	this value is in the range obtained for MnTiO ₃ , MnSnO ₃ , FeTiO ₃ , ZnGeO ₃ and MgGeO ₃ compounds (2.7-
160	3.6%) (Leinenweber et al., 1991). The density of py-LN lies between those of py-Ak and py-Brg, which may
161	explain the formation of py-LN and not py-Ak by back-transformation from py-Brg.
162	The crystal structure of py-LN is shown in Fig. 3. The bond length, bond angles, and bond valence sum
163	(BVS) (Brown and Altermatt, 1985) and effective coordination numbers (n_c) (Hoppe, 1979) calculated from
164	the bond lengths of the py-LN are summarized in Table 3. Neighboring AO_6 octahedra ($A = Mg_{0.75}Al_{0.25}$) and
165	neighboring BO_6 octahedra ($B = Si_{0.75}Al_{0.25}$) are corner-sharing, whereas AO_6 and BO_6 octahedra are edge-
166	sharing in the <i>ab</i> -plane and share a face along the <i>c</i> -axis, resulting in <i>A</i> - <i>B</i> -empty site periodicity along the <i>c</i> -
167	axis (Fig. 3). The average A-O and B-O distances of the AO ₆ and BO ₆ octahedra are 2.033-2.043 Å and 1.840-
168	1.843 Å, respectively. The ionic radii of Mg ²⁺ , Al ³⁺ , Si ⁴⁺ , and O ²⁻ in six-fold coordination are $r_{Mg} = 0.72$, $r_{Al} =$
169	0.535, $r_{Si} = 0.4$ and $r_{O} = 1.40$ Å, respectively (Shannon, 1976). The average A-O and B-O distances calculated
170	using these ionic radii for $0.75r_{Mg} + 0.25r_{Al} + r_{O}(2.073 \text{ Å})$ and $0.75r_{Si} + 0.25r_{Al} + r_{O}(1.833 \text{ Å})$, respectivly, are
171	very similar to those obtained from the structural refinement, hence supporting the assumption of complete

172	order of Mg^{2+} and Si^{4+} . The BVS value of the <i>A</i> site (Table 3) is slightly larger than 2 as expected due to the Al
173	substitution, whereas the BVS value of the <i>B</i> site is still close to the value of 4 inspite of the presence of Al^{3+} ,
174	which has a lower valence than Si^{4+} . Moreover, the n_c value of the <i>B</i> -site cation (3.13-3.40) is much smaller
175	than 6 (Table 3); this derives from the large difference between the two non-equilvalent B -O lengths (0.427-
176	0.505). The B-site cation is largely shifted from the position at the center of the octahedron along the c axis,
177	reducing the coordination number to almost three. The n_c values of Ti ⁴⁺ cations in LN-type FeTiO ₃ and
178	$MnTiO_3$ compounds (5.0-5.2) which formed by back-transition from the corresponding Pv-type phases are
179	significantly larger (e.g. Ko and Prewitt, 1988; Leinenweber et al., 1991; Hsu et al. 1997). This suggests that
180	during the back-transformation from the py-Brg to the py-LN, the Si and Al cations tend to shift toward a
181	tetrahedral coordination, given that this is their preferred coordination at ambient conditions. However, a
182	complete reversion to such coordination is likely not possible at room temperature and the B site can therefore
183	be seen as a $3 + 3$ coordination site. The large off-set of the <i>B</i> atoms from the center of the octahedra is likely
184	favoured by the acentric space group in which the py-LN phase crystallizes. However, additional property tests
185	(e.g. ferroelectric hysterisis measurement) need to be conducted to characterise the dielectric properties of py-
186	LN phase which likely may not present the ferroelectric behaviour of many other LN-type structures.

187

188 3. Back-transformation mechanism from py-Brg to py-LN

This study shows that the investigated compound has the LN-type structure. Liu et al. (2016) reported
that Brg with 25 mol% Al₂O₃ transforms to py-LN during decompression, whereas Brg with a lower Al₂O₃

191	content can be recovered. Bridgmanite has the orthorhombic perovskite structure which can be view as a result
192	from the distortion of the cubic Pv-structure due to the too small ratio in ionic radii between the A-site cation
193	and the 12-coordinated anion. The ionic radius of the Mg^{2+} is too small for the oxygen packing in the ideal
194	cubic Pv-structure. Distortion to the orthorhombic symmetry decreases the actual coordination number from
195	twelve to eight + four, which changes the AO_{12} dodecahedral site to a AO_6 prism site with two longer A-site
196	cation-oxygen bonds (bicapped prism site) with consequent reduction of the polyhedral volume. The substition
197	of Mg ²⁺ by Al ³⁺ makes the average ionic radius of the A-site cation even smaller. Accordingly, bridgmanite
198	with pyrope composition has likely a much more distorted orthorhombic structure than pure MgSiO ₃
199	bridgmanite and can be stabilized only at higher pressures, because at these conditions the relatively larger
200	compressibility of the oxygen anions with respect to the cations favor the substitution of smaller atoms at the A
201	site. By decreasing pressure, the oxygen atoms expand more than the A-site cations and the resulting A-site
202	volume becomes too large for the small Mg and Al cations. This likely hinders the possibility of recovering the
203	orthorhombic Pv-structure containing a large amount of Al (25 mol%) outside its stability field and favors the
204	transformation to the LN-structure because of the reduction of the coordination number of the A-site cation to
205	six.

A comparison among the orthorhombic Pv-structure (MgSiO₃ Brg), the LN-structure with pyrope composition and MgSiO₃ akimotoite is given in Figs. 4a, 4b and 4c, respectively. The Pv- and LN-structures have a very similar BO_6 octahedral framework. The transformation from the orthorhombic Pv-structure to the LN-structure is caused by the change in the tilting of the BO_6 octahedra and by the shift of the *A*-site cations, as

210	shown by the thick yellow and thin red arrows in Fig. 4a. These changes correspond to the transformation from
211	the [111] cubic closed-packing layer composed of oxygen and A-site cations in the orthorhombic Pv-structure
212	to the [001] hexagonal closed-packing layer of oxygen with an interstitial A-site cations between two oxygen
213	layers in the LN-structure. Red balls in Figs. 4a and 4b represent the oxygen atoms coordinating the A-site
214	cation in the Pv- and LN-structures. Due to the back-transformation, the A-site cation shifts closer to the
215	octahedral framework giving rise to the octahedral coordination observed in the LN-structure (Fig. 4b).
216	The octahedral tilting can be described for the two structures in terms of B -O- B angles. These angles
217	are all the same in the LN-structure and their value (143.0-143.3°, Table 3) is smaller than the two B-O-B
218	angles (146.5° in the c direction and 147.0° in the b direction) of the MgSiO ₃ Brg structure (Horiuchi et al.,
219	1982). However, as already mentioned, the Al substitution in bridgmanite may give rise to a larger
220	orthorhombic distortion (similar to what observed for Fe-Al-bearing bridgmanites, Vanpeteghem et al., 2006),
221	resulting in <i>B</i> -O- <i>B</i> angles smaller than those observed for pure MgSiO ₃ bridgmanite. It is very likely, therefore,
222	that the Brg to LN transformation results in an increase of the B-O-B angle and hence a smaller octahedral
223	tilting.
224	Py-Brg does not transform to py-Ak, but to py-LN, even though the Ilm- and LN-structures are very
225	similar. As shown in Fig. 4c, the Ilm-structure has alternating layers of corner-sharing AO_6 and BO_6 octahedra.
226	This arrangement cannot be obtained simply by tilting of BO_6 octahedra and displacement of the A-site cations
227	of the Pv-structure, but requires a reconstructive transition whose activation energy cannot be overcome during
228	the pressure release at room temperature.

229

230

Implication

231 Possible existence of py-LN in shocked meteorites

232	A natural LN-type FeTiO ₃ compound was recently discovered in a shocked gneiss from the Ries Crater,
233	Germany (e.g. Dubrovinsky et al. 2009). Akaogi et al. (2016) constrained the shock pressure needed to obtain
234	such material in the range of 14-28 GPa, based on the stability field of Pv-type FeTiO3 which likely was
235	formed during the shocking event and then back-transformed to the LN-type FeTiO ₃ structure after the shock
236	relaxation. Similarly, py-LN phases might form after quenching in shocked meteorites where the pressures
237	may rich the values needed for the transition from garnet to Brg. The recovery of such phase after a shock
238	event depends on its thermal stability, however the py-LN phase may be also a good indicator of the formation
239	of the Brg phase with pyrope garnet composition and can be used to constrain the P-T conditions of the
240	relatively heavy shock event around 45 GPa and 2000 K at least in a similar manner as amorphous phases with
241	the (Mg,Fe)SiO ₃ Brg composition have been used as evidence of the formation of Brg in meteorites (Sharp et
242	al., 1997; Tomioka and Fujino, 1997).

243

Acknowledgement

We thank the associate editor and reviewers for constructive comments and valuable suggestions. The synchrotron XRD measurements were carried out at the BL10XU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2015B0080 and 2016A1172). This study is also supported by the research grants approved by DFG to T. Katsura (INST 91/291-1, KA3434-9/1) and by the Research Fellowship from the Scientific Research of the Japan Society for the Promotion of Science (JSPS)
for Young Scientists to T. I.

250

251

References cited

- Akaogi, M., Abe, K., Yusa, H., Ishii, T., Tajima, T., Kojitani, H., Mori, D., and Inaguma, Y. (2016). High-
- pressure high-temperature phase relations in FeTiO₃ up to 35 GPa and 1600°C. Physics and Chemistry of
 Minerals, 1-11.
- Akaogi, M., Tanaka, A., and Ito, E. (2002). Garnet-ilmenite-perovskite transitions in the system Mg₄Si₄O₁₂-
- Mg₃Al₂Si₃O₁₂ at high pressures and high temperatures: phase equilibria, calorimetry and implications for
- 257 mantle structure. Physics of the Earth and Planetary Interiors, 132, 303-324.
- Brown, I.D., and Altermatt, D. (1985). Bond-valence parameters obtained from a systematic analysis of the
- inorganic crystal structure database. Acta Crystallographica Section B: Structural Science, 41, 244-247.
- 260 Dubrovinsky, L.S., El Goresy, A., Gillet, P., Wu, X., and Simionivici, A. (2009). A Novel Natural Shock-
- induced High-Pressure Polymorph of FeTiO₃ with the Li-Niobate Structure from the Ries Crater, Germany.
- 262 Meteoritics and Planetary Science Supplement, 72, 5094.
- 263 Funamori, N., Yagi, T., Miyajima, N., and Fujino, K. (1997) Transformation in garnet from orthorhombic
- perovskite to LiNbO₃ phase on release of pressure. Science, 275, 513-515.

- 265 Geiger, C.A., Newton, R.C., and Kleppa, O.J. (1987). Enthalpy of mixing of synthetic almandine-grossular and
- almandine-pyrope garnets from high-temperature solution calorimetry. Geochimica et Cosmochimica Acta,
 51, 1755-1763.
- Hoppe, R. (1979). Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR). Zeitschrift
- für Kristallographie-Crystalline Materials, 150, 23-52.
- 270 Horiuchi, H., Ito, E., and Weidner, D.J. (1987) Perovskite-type MgSiO₃: single-crystal X-ray diffraction study.
- American Mineralogist, 72, 357–360.
- Hsu, R., Maslen, E.N., Du Boulay, D., and Ishizawa, N. (1997) Synchrotron X-ray studies of LiNbO3 and
- LiTaO₃. Acta Crystallographica Section B: Structural Science, 53, 420-428.
- Inaguma, Y., Yoshida, M., Tsuchiya, T., Aimi, A., Tanaka, K., Katsumata, T., and Mori, D. (2010) High-
- pressure synthesis of novel lithium niobate-type oxides. In Journal of Physics: Conference Series, 215,

012131.

- 277 Inaguma, Y., Sakurai, D., Aimi, A., Yoshida, M., Katsumata, T., Mori, D., Yeon, J., and Halasyamani, P.S.
- 278 (2012) Dielectric properties of a polar ZnSnO₃ with LiNbO₃-type structure. Journal of Solid State
- 279 Chemistry, 195, 115-119.
- 280 Irifune, T., Koizumi, T., and Ando, J.I. (1996) An experimental study of the garnet-perovskite transformation
- in the system $MgSiO_3-Mg_3Al_2Si_3O_{12}$. Physics of the Earth and Planetary Interiors, 96, 147-157.
- Ishii, T., Shi, L., Huang, R., Tsujino, N., Druzhbin, D., Myhill, R., Li, Y., Wang, L., Yamamoto, T., Miyajima,
- N., Kawazoe, T., Nishiyama, N., Higo, Y., Tange, Y., and Katsura, T. (2016) Generation of pressures over

- 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils. Review of Scientific Instruments,
- **285** 87, 024501.
- 286 Izumi, F., and Momma, K. (2007) Three-dimensional visualization in powder diffraction. Solid State
- 287 Phenomena, 130, 15-20.
- Kesson, S.E., Gerald, J.F., Shelley, J.M.G., and Withers, R.L. (1995) Phase relations, structure and crystal
- chemistry of some aluminous silicate perovskites. Earth and Planetary Science Letters, 134, 187-201.
- Ko, J., and Prewitt, C.T. (1988) High-pressure phase transition in MnTiO₃ from the ilmenite to the LiNbO₃
- structure. Physics and Chemistry of Minerals, 15, 355-362.
- Leinenweber, K., Utsumi, W., Tsuchida, Y., Yagi, T., and Kurita, K. (1991) Unquenchable high-pressure
- 293 perovskite polymorphs of MnSnO₃ and FeTiO₃. Physics and Chemistry of Minerals, 18, 244-250.
- Liu, Z., Irifune, T., Nishi, M., Tange, Y., Arimoto, T., and Shinmei, T. (2016) Phase relations in the system
- MgSiO₃-Al₂O₃ up to 52GPa and 2000K. Physics of the Earth and Planetary Interiors, 257, 18-27.
- 296 Miyajima, N., Fujino, K., Funamori, N., Kondo, T., and Yagi, T. (1999) Garnet-perovskite transformation
- under conditions of the Earth's lower mantle: an analytical transmission electron microscopy study. Physics
- of the Earth and Planetary Interiors, 116, 117-131.
- 299 Momma, K., and Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and
- morphology data. Journal of Applied Crystallography, 44, 1272-1276.
- 301 Murakami, M., Ohishi, Y., Hirao, N., and Hirose, K. (2012) A perovskitic lower mantle inferred from high-
- pressure, high-temperature sound velocity data. Nature, 485, 90-94.

- Navrotsky, A. (1999) A lesson from ceramics. Science, 284, 1788-1789.
- 304 Seto, Y., Nishio-Hamane, D., Nagai, T., and Sata, N. (2010) Development of a software suite on X-ray
- diffraction experiments. Review of High Pressure Science and Technology, 20(3).
- 306 Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides
- and chalcogenides. Acta Crystallographica, A32, 751-767.
- Sharp, T.G., Lingemann, C.M., Dupas, C., and Stöffler, D. (1997) Natural occurrence of MgSiO₃-ilmenite and
 evidence for MgSiO₃-perovskite in a shocked L chondrite. Science, 277, 352-355.
- Tomioka, N., Fujino, K. (1997) Natural (Mg,Fe)SiO₃-ilmenite and-perovskite in the Tenham meteorite.
 Science, 277, 1084-1086.
- Toraya, H. (1990). Array-type universal profile function for powder pattern fitting. Journal of applied crystallography, 23, 485-491.
- Vanpeteghem, C.B., Angel, R.J., Ross, N.L., Jacobsen, S.D., Dobson, D.P., Litasov, K.D., and Ohtani, E.
- 315 (2006) Al, Fe substitution in the MgSiO₃ perovskite structure: a single-crystal X-ray diffraction study.
- 316 Physics of the Earth and Planetary Interiors, 155, 96-103.
- 317 Walter, M.J., Kubo, A., Yoshino, T., Brodholt, J., Koga, K.T., and Ohishi, Y. (2004) Phase relations and
- equation-of-state of aluminous Mg-silicate perovskite and implications for Earth's lower mantle. Earth and
- Planetary Science Letters, 222, 501-516.
- 320 Xu, Y., McCammon, C., and Poe, B.T. (1998) The effect of alumina on the electrical conductivity of silicate
- 321 perovskite. Science, 282, 922-924.
- 322
- 323

Figure captions

Figure 1. MF-XRD patterns of akimotoite (bottom) with the pyrope composition (py-Ak) synthesized at 27 GPa and 1170 K and LiNbO₃-type phase (top) also with the pyrope composition (py-LN) obtained from recovering a sample from 2000 K and 45 GPa.

327

328	Figure 2. Rietveld refinement of LiNbO ₃ -type Mg ₃ Al ₂ Si ₃ O ₁₂ . The XRD pattern was collected at atmospheric
329	pressure and room temperature. Data points and solid lines represent the observed and the calculated profiles,
330	respectively, and the residual curve is shown at the bottom. Bragg peak positions are shown by small ticks. The

upper and lower ticks are for LiNbO₃-type $Mg_3Al_2Si_3O_{12}$ and rutile-type SiO_2 (stishovite), respectively.

332

Figure 3. Crystal structure of LiNbO₃-type Mg₃Al₂Si₃O₁₂ obtained using the oxygen- U_{iso} -fixed model (note that this structure is identical to that obtained from the oxygen- U_{iso} -free model). The solid line is the unit-cell. Occupancies of Mg and Al at the *A* site and Si and Al at the *B* site are shown with areas of different colors in each sphere. Smaller spheres are oxygen. BVS and n_c represent the bond valence sum values and effective coordination numbers of each site, respectively (Table 3).

338

Figure 4. Structural relationship among (a) orthorhombic Pv-type MgSiO₃ (Brg), (b) LN-type Mg₃Al₂Si₃O₁₂ (py-LN) and (c) Ilm-type MgSiO₃ (Ak). Thick yellow and thin red arrows indicate the tilting directions of the octahedra and the shifting directions of the *A*-site cations during the Brg to LN transition, respectively. The structure of Brg is viewed down the *a* direction, whereas, for comparison, py-LN and Ak are viewed in the

- $[1\overline{12}]_{hex}$ and $[012]_{hex}$ plane. Red balls represent the oxygen atoms bonded to the A-site cations in Brg and py-LN.
- 344 The two dashed white lines in Brg represent the two longer A-site cation-oxygen bonds of the AO_8 polyhedron.
- AO_6 and BO_6 octahedra are shown for Ak. Dashed lines in Ak indicate the directions of the alternating AO_6 and
- BO_6 layers.
- 347

Table 1. Structural parameters of LiNbO₃ (LN)-type Mg_{2.98(2)}Al_{1.99(2)}Si_{3.02(2)}O₁₂ refined in space group R3c (No.

349 161)

350	Site	Wyckoff site	g(Mg or Si)	g(Al)	X	у	Z	$U_{iso}({ m \AA}^2)$
351	A^{a}	6 <i>a</i>	0.75 ^b	0.25 ^b	0	0	0	0.0089(7)
352			0.75 ^b	0.25 ^b	0	0	0	0.0160(8)
353	B^{a}	6 <i>a</i>	0.75 ^b	0.25 ^b	0	0	0.2154(1)	0.0038(8)
354			0.75 ^b	0.25 ^b	0	0	0.2145(1)	0.0113(9)
355	0	18 <i>b</i>	-	-	0.3473(5)	0.0681(4)	0.1035(3)	0.0067 ^c
356			-	-	0.3430(5)	0.0613(4)	0.1060(3)	0.0242(8)

For each atom the values obtained from the oxygen- U_{iso} -fixed refinements are reported in the upper lines,

whereas those obtained from the oxygen- U_{iso} -free refinements are reported in the lower line.

For the oxygen- U_{iso} -fixed refinements we obtained unit-cell lattice parameters: a = 4.8194(3) Å, c =

360 12.6885(8) Å, V = 255.23(3) Å³, Z = 6, V_m (molar volume) = 25.617(3) cm³/mol and D = 3.934(1) g/cm³.

- 361 Discrepancy factors: $R_{wp} = 4.108\%$, $R_e = 3.253\%$
- 362 LN phase: $R_{\rm B} = 1.188\%$, $R_{\rm F} = 0.506\%$
- 363 SiO₂ stishovite: $R_{\rm B} = 1.420\%$, $R_{\rm F} = 1.020\%$

For the oxygen- U_{iso} -free refinements we obtained unit-cell lattice parameters: a = 4.8194(3) Å, c = 12.6887(8)

365 Å, V = 255.24(3) Å³, Z = 6, $V_m = 25.618(5)$ cm³/mol and D = 3.934(1) g/cm³.

366 Discrepancy factors: $R_{wp} = 3.615\%$, $R_e = 3.255\%$

367 LN phase: $R_{\rm B} = 0.838\%$, $R_{\rm F} = 0.396\%$

368 SiO₂ stishovite: $R_{\rm B} = 3.693\%$, $R_{\rm F} = 1.274\%$

369
$$R_{\rm wp} = \left\{ \frac{\sum_{i} w_{i} [y_{i} - f_{i}(x)]^{2}}{\sum_{i} w_{i} y_{i}^{2}} \right\}^{1/2}, R_{\rm B} = \frac{\sum_{K} |I_{0}(\boldsymbol{h}_{K}) - I(\boldsymbol{h}_{K})|}{\sum_{K} I_{0}(\boldsymbol{h}_{K})}, R_{\rm F} = \frac{\sum_{K} |F_{0}(\boldsymbol{h}_{K})| - |F(\boldsymbol{h}_{K})||}{\sum_{K} |F_{0}(\boldsymbol{h}_{K})|}, R_{\rm e} = \left\{ \frac{N - P}{\sum_{i} w_{i} y_{i}^{2}} \right\}^{1/2}$$

where y_i , w_i and $f_i(x)$ are the intensity observed at step *i*, the statistical weight and theory intensity, respectively.

371 $I_0(\mathbf{h}_K)$, $I(\mathbf{h}_K)$, $F_0(\mathbf{h}_K)$ and $F(\mathbf{h}_K)$ are the observed and calculated intensities and structure factors for reflection K,

respectively. *N* and *P* are number of all data points and refined parameters, respectively.

373 g(M): site occupancy of M.

- ^a*A* and *B* atom positions are occupied by Mg or Al and Si or Al, respectively.
- ^bSite occupancies are fixed.
- ^cIsotropic atom displacement parameter of oxygen is fixed to that of LiNbO₃ reported by Hsu et al. (1997).

377

379		$V_{\rm m}$ (cm ³ /mol)	V (Å ³ /formula unit)	$D (g/cm^3)$	Reference
380	Pyrope	113.13(3)	46.959(3)	3.564(1)	Geiger et al. (1987)
381	py-Ak	104.63(5)	43.437(5)	3.853(1)	Akaogi et al. (2002)
382	py-LN	102.47(5)	42.538(5)	3.934(1)	This study
383	py-Brg ^a	99.5(7)	41.3(7)	4.06(3)	Liu et al. (2016)

Table 2. Volumes and densities of $Mg_3Al_2Si_3O_{12}$ compounds.

Py-Ak, py-LN and py-Brg represent ilmenite, LiNbO₃ and perovskite phases with pyrope composition,
repectively.

^aUnit-cell lattice parameters of Brg with Al₂O₃ content (\sim 29±5 mol%) from Liu et al. (2016).

387

388

390	Bond length (Å)					
391	$A - O^i \times 3$	2.021(3)	$B-O^{iii} \times 3$	1.587(2)		
392		2.031(3)		1.629(3)		
393	$A - O^{ii} \times 3$	2.064(2)	$B-O^{vi} \times 3$	2.092(2)		
394		2.035(3)		2.056(3)		
395	Average	2.043	Average	1.840		
396		2.033		1.843		
397	BVS (A)	2.27	BVS (B)	4.23		
398		2.33		3.96		
399			^{IV} BVS $(B)^{a}$	3.66		
400				3.33		
401	$n_{c,A}$	5.98	п _{с, В}	3.13		
402		6.00		3.40		
403						
404	Bond angles (°)					
405	O ⁱ –A–O ⁱⁱⁱ	82.3(1)	O ⁱⁱ –A–O ^{iv}	105.9(1)	O–A–O ^v	160.8(2)
406		82.1(1)		106.5(1)		159.6(2)
407	O ^{vi} – <i>B</i> –O ^{vii}	102.3(2)	O- <i>B</i> -O ⁱ	89.0(1)	O-B-O ⁱⁱⁱ	163.2(2)

Table 3. Interatomic distances and angles of LiNbO₃-type $Mg_{2.98(2)}Al_{1.99(2)}Si_{3.02(2)}O_{12}$.

408		101.0(2)		89.07(6)		164.9(2)
409	$A - O - B^{v}$	103.7(2)	А-О-В	83.27(1)	A – O^{viii} – B^{v}	86.6(1)
410		101.5(2)		83.40(8)		83.41(8)
411	A-O ^{vii} -A ^{ix}	117.6(1)	<i>B</i> -O ^{vii} - <i>B</i> ^{vii}	143.3(1)		
412		118.5(1)		143.0(2)		

413 Symmetry codes: (i) -y, x-y, z. (ii) -x+y+2/3, y+1/3. (iii) -x+y, -x, z. (iv) x+2/3, x-y+1/3, z+5/6. (v) -y+2/3,

414 -x+1/3, z+5/6. (vi) x+1/3, x-y+2/3, z+1/6. (vii) -y+1/3, -x+2/3, z+1/6. (viii) -x+y+2/3, y+1/3, z+5/6. (ix) x+2/3,

415 *y*+1/3, *z*+1/3.

416 The upper and lower lines reported for each site represent the oxygen- U_{iso} -fixed and oxygen- U_{iso} -free

- 417 refinements, respectively.
- 418 BVS: bond valence sum value
- 419 n_c : effective coordination number
- 420 ^{aIV}BVS (*B*) represents the value calculated with three shorter and one longer oxygen-*B* cation bond lengths.
- 421
- 422
- 423
- 424
- 425
- 426

427

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-6027

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Fig. 3

(Mg_{0.75}Al_{0.25})O₆ octahedron

Av. length = 2.043 Å BVS = 2.27 n_c = 5.98

С

a

(Si_{0.75}Al_{0.25})O₆ octahedron

Av. length = 1.840 Å BVS = 4.23 $^{\rm IV}$ BVS = 3.66 n_c = 3.13

