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ABSTRACT 21	
  

A fundamental goal of mineralogy and petrology is the deep understanding of mineral 22	
  

phase relationships and the consequent spatial and temporal patterns of mineral 23	
  

coexistence in rocks, ore bodies, sediments, meteorites, and other natural polycrystalline 24	
  

materials. The multi-dimensional chemical complexity of such mineral assemblages has 25	
  

traditionally led to experimental and theoretical consideration of 2-, 3-, or n-component 26	
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systems that represent simplified approximations of natural systems. Network analysis 27	
  

provides a dynamic, quantitative, and predictive visualization framework for employing 28	
  

“big data” to explore complex and otherwise hidden higher-dimensional patterns of 29	
  

diversity and distribution in such mineral systems. We introduce and explore applications 30	
  

of mineral network analysis, in which mineral species are represented by nodes, while 31	
  

coexistence of minerals is indicated by lines between nodes. This approach provides a 32	
  

dynamic visualization platform for higher-dimensional analysis of phase relationships, 33	
  

because topologies of equilibrium phase assemblages and pathways of mineral reaction 34	
  

series are embedded within the networks. Mineral networks also facilitate quantitative 35	
  

comparison of lithologies from different planets and moons, the analysis of coexistence 36	
  

patterns simultaneously among hundreds of mineral species and their localities, the 37	
  

exploration of varied paragenetic modes of mineral groups, and investigation of changing 38	
  

patterns of mineral occurrence through deep time. Mineral network analysis, furthermore, 39	
  

represents an effective visual approach to teaching and learning in mineralogy and 40	
  

petrology. 41	
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INTRODUCTION 48	
  

Network analysis encompasses a powerful array of mathematical and visualization 49	
  

methods that have found numerous applications in the presentation and interpretation of 50	
  

“big data” in varied fields of technology and science (Kolaczyk 2009; Newman 2013). 51	
  

Technological networks include the physical infrastructures of power grids (Pagani and 52	
  

Aiello 2013), roads (Dong and Pentland 2009), and water supply systems (Hwang and 53	
  

Houghtalen 1996; Geem 2010), as well as communications infrastructure (Pinheiro 54	
  

2011), commercial distribution networks (Guimerá et al. 2005), and the Internet and other 55	
  

information networks (Otte and Rousseau 2002). In the familiar realm of social 56	
  

interactions, networks are used to quantify and visualize data in such diverse topics as the 57	
  

spread of disease, the links among Facebook “friends,” the structure of terrorist 58	
  

organizations, and connections among research collaborators (Otte and Rousseau 2002; 59	
  

Abraham et al. 2010; Scott and Carrington 2011; Kadushin 2012). Network analysis has 60	
  

been applied in biology to the study of ecosystem diversity (Banda et al. 2016), food 61	
  

webs (Martinez 1992; Dunne et al. 2008), neural networks (Müller et al. 1995), 62	
  

biochemical pathways (Costanzo et al. 2016), proteomics and protein-protein interactions 63	
  

(Amital et al. 2004; Harel et al. 2015; Ueza et al. 2016; Leuenberger et al. 2017), 64	
  

paleogeography (Sidor et al. 2013; Dunhill et al. 2016; Huang et al. 2016), and evolution 65	
  

(Vilhena et al. 2013; Cheng et al. 2014; Corel et al. 2016). In each of these network 66	
  

applications and more, the modeling, graphing, and analysis of data reveals previously 67	
  

unrecognized patterns and behaviors in complex systems. 68	
  

Qualitative network-like representations of minerals have been presented previously 69	
  

(e.g., Christy et al. 2016). However, in spite of its utility and widespread application, 70	
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quantitative network analysis does not appear to have been applied to mineralogical 71	
  

problems. Here we introduce and apply network analysis to topics in mineralogy and 72	
  

petrology—fields that are especially amenable to this approach because they consider 73	
  

systems of numerous mineral species that co-exist in myriad combinations in varied 74	
  

deposits. In particular, we demonstrate that network analysis of equilibrium mineral 75	
  

assemblages has the potential to elucidate phase relationships in complex multi-76	
  

dimensional composition space, while revealing previously hidden trends in spatial and 77	
  

temporal aspects of mineral diversity and distribution.  78	
  

     In this contribution we consider varied network representations of three contrasting 79	
  

mineral systems: (1) common rock-forming minerals in intrusive igneous rocks; (2) 80	
  

terrestrial minerals containing the element chromium; and (3) minerals containing the 81	
  

element copper. These subsets of the more than 5200 mineral species approved by the 82	
  

International Mineralogical Association’s Commission on New Minerals and Mineral 83	
  

Names (IMA-CNMMN) exemplify the potential of network analysis to address 84	
  

fundamental questions in mineralogy and petrology. 85	
  

 86	
  

EXAMPLES OF MINERAL NETWORKS  87	
  

Minerals, whether in rocks, sediments, meteorites, or ore deposits, exist as 88	
  

assemblages of coexisting species. Here we introduce mineral networks as a strategy to 89	
  

represent and analyze the large and growing data resources related to these assemblages 90	
  

with a variety of mathematical and graphical models—network “renderings” that are 91	
  

available through open access sources. In each case mineral networks employ nodes (also 92	
  

known as vertices), each corresponding to a mineral species. Some node pairs are 93	
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connected by links (also known as edges), which indicate that those two minerals are 94	
  

found together at the same location or deposit. Variations in the ways that nodes and links 95	
  

are represented highlight different aspects of network relationships, as illustrated in the 96	
  

following examples. 97	
  

98	
  

Fruchterman-Reingold Force-Directed Networks: Figure 1A illustrates a simplified 99	
  

Fruchterman-Reingold force-directed network (Fruchterman and Reingold 1991; Csardi 100	
  

and Nepusz 2006), representing 36 major rock-forming minerals that occur in 101	
  

holocrystalline intrusive igneous rocks, as described in Alfred Harker’s classic Petrology 102	
  

for Students (Harker 1964). Mineralogical descriptions of 77 igneous rocks, each with 1 103	
  

to 6 major minerals (see Supplemental Information 1), provide the input data for this 104	
  

visualization. 105	
  

The Fruchterman–Reingold force-directed graph algorithm is based on two main 106	
  

principles: (1) vertices connected by an edge should be drawn near each other and (2) 107	
  

vertices generally should not be drawn too close to each other. These criteria resemble 108	
  

those of molecular or planetary simulations where bodies exert both attractive and 109	
  

repulsive forces on one another. This method attempts to balance the energy of the 110	
  

system through iterative displacement of the vertices by calculating the effect of 111	
  

attractive forces on each vertex, then calculating the effect of repulsive forces, and finally 112	
  

limiting the total displacement with a temperature parameter. In this rendering, we have 113	
  

no control over the length of the edges; edge length is determined by the final positions of 114	
  

vertices as the system reaches equilibrium, however, highly connected groups of nodes 115	
  

will tend to form clusters. 116	
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In Figure 1, we created a simplified Fruchterman-Reingold force directed network 117	
  

using the igraph package in R. We imported tabulated data on coexisting rock-forming 118	
  

minerals into R as a data frame, which was then converted into a matrix object to enable 119	
  

visualization using the igraph package. The igraph software enables a high level of 120	
  

customization based on different network metrics. If “auto.layout” is used, then the 121	
  

package finds the best-suited algorithm based on the nodes and the number of links 122	
  

between the nodes. After some preliminary analysis, we found the best-suited algorithm 123	
  

to be the Fruchterman-Reingold force-directed network with self-loops removed.  124	
  

Note that many of the mineral names employed by Harker do not correspond to 125	
  

approved IMA-CNMMN species. In some instances, such as “biotite,” “hornblende,” and 126	
  

“tourmaline,” the names once commonly employed by optical petrologists have been 127	
  

replaced by several related species (i.e., annite, fluorannite, siderophyllite, and 128	
  

tetraferriannite for “biotite”). In the case of plagioclase feldspar, on the other hand, 129	
  

Harker distinguishes six compositional variants—albite, oligoclase, andesine, labradorite, 130	
  

bytownite, and anorthite—as opposed to the two end-member species albite and anorthite 131	
  

recognized as valid species by the IMA-CNMMN.  132	
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A133	
  

 134	
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B135	
  

 136	
  
Figure 1. (A) A Fruchterman-Reingold force-directed network diagram of 36 137	
  
rock-forming minerals in holocrystalline intrusive igneous rocks. Each circular 138	
  
node represents a rock-forming mineral and each link indicates pairs of 139	
  
coexisting minerals in one or more rocks, as recorded in Harker (1964). (B) 140	
  
Different types of igneous rocks appear as closely linked clusters, or “cliques,” 141	
  
in this diagram.  142	
  

 143	
  

A consequence of these graphical procedures is that each igneous rock type, such as 144	
  

granite, olivine basalt, or nepheline syenite, is embedded as a localized, fully 145	
  

interconnected subset of nodes, or “clique,” in this network (Figure 1B). For example, the 146	
  

clique for minerals commonly found in granite includes quartz, muscovite, biotite, 147	
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orthoclase, albite, oligoclase, microcline, hornblende, and riebeckite, whereas olivine 148	
  

basalt contains the clique of labradorite, augite, forsterite, and magnetite. Each of the 77 149	
  

holocrystalline igneous rocks described by Harker (1964) is similarly embedded in this 150	
  

network. Thus, this visualization in a sense represents the sweep of igneous petrology in a 151	
  

single diagram—a result that hints at the large amount of multi-dimensional information 152	
  

embedded in network representations, while also suggesting a visual opportunity for 153	
  

teaching and learning about rocks and minerals.  154	
  

  155	
  

     Multi-Dimensional Scaling and Mineral Phase Topologies: A major research 156	
  

objective of mineralogy and petrology for more than a century has been the elucidation of 157	
  

mineral reaction series and phase equilibria (e.g., Bowen 1928; Yoder 1976). We 158	
  

postulate that, because mineral networks are based on observed assemblages of 159	
  

coexisting minerals, they must embed information on phase topologies and thus have the 160	
  

potential to reveal phase relationships in systems not yet studied experimentally.  161	
  

    To illustrate this potential we compiled coexisting mineral data on varied intrusive 162	
  

igneous rocks from A Descriptive Petrography of the Igneous Rocks by Albert Johannsen 163	
  

(1932-1938). The relatively small number of primary rock-forming minerals in intrusive 164	
  

igneous rocks, coupled with the likelihood that these minerals formed under equilibrium 165	
  

conditions and are not subject to the complications of metamorphism, diagenesis, and 166	
  

other alteration processes, make these minerals an excellent test case for network 167	
  

analysis. We consolidated the lists of minerals in Johannsen’s multi-volume treatment of 168	
  

729 crystalline igneous rocks into coexistence data for the 51 primary rock-forming 169	
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minerals (Supplemental Information 2). We used a variety of mineral network renderings 170	
  

to study the patterns of coexisting phases in these rocks.  171	
  

We initially employed multi-dimensional scaling (MDS) in both three- and two-172	
  

dimensional renderings (https://github.com/lic10/DTDI-DataAnalysis; Figures 2 and 3). 173	
  

MDS is an approach to visualizing the similarities between points of a high-dimensional 174	
  

dataset in a lower-dimensional space. The similarities between the data points are 175	
  

represented as distances between the projected points in the lower-dimensional space, 176	
  

where the objective of the scaling is to determine the coordinates of these projected 177	
  

points while preserving the distances as well as possible. In our case, the data points are 178	
  

mineral species, and the distances between points are inversely related to the degree of 179	
  

coexistence of the two minerals. We created the MDS diagrams in Figures 2 and 3 using 180	
  

the “cmdscale” command of the “stats” package in R (see https://github.com/lic10/DTDI-181	
  

DataAnalysis). We loaded the Johannsen igneous rock dataset (1932-1938) into R as a 182	
  

data frame, and generated a second data frame as a symmetric 51×51 mineral matrix in 183	
  

which the value recorded at matrix element ij represents the calculated distance, dij 184	
  

between nodes i and j. Distances were projected on both 2- and 3-dimensional spaces. We 185	
  

used the “rgl” package in R (Adler et al. 2016) to generate the 3D plot. In general, a 186	
  

network containing N nodes requires a representation in (N – 1) dimensions to satisfy 187	
  

exactly all dij. Consequently, MDS diagrams of fewer than (N – 1) dimensions employ 188	
  

distance least-squares analysis to distribute nodes as a projection from higher-189	
  

dimensional space. 190	
  

Familiar aspects of igneous mineral phase relationships are embedded in the multi-191	
  

dimensional scaling diagram for igneous minerals. For example, Bowen (1928) proposed 192	
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a mineral reaction series for igneous rocks in which Mg-Fe minerals tend to crystallize in 193	
  

a mafic cooling sequence (olivine à pyroxene à hornblende à biotite), whereas 194	
  

plagioclase feldspars transition from more calcium-rich to more sodium-rich varieties. At 195	
  

lower temperatures, late-stage minerals display a trend from alkali feldspar to muscovite 196	
  

to quartz. These mineral crystallization trends are mimicked from left-to-right in the 197	
  

MDS diagram, as illustrated in Figure 2B.  198	
  

A 199	
  

 200	
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B201	
  
Figure 2. Multi-dimensional scaling diagrams of 51 rock-forming minerals in 202	
  
729 igneous rocks tabulated by Johannsen (1932-1938). A. Three-dimensional 203	
  
rendering (see Supplemental Information 3 for animation). B. Two-dimensional 204	
  
rendering with minerals from Bowen’s reaction series (Bowen 1928) circled and 205	
  
connected with arrows [mafic trend (circled in red), plagioclase series (circled in 206	
  
blue), and late-stage trend (circled in green)]. 207	
  

208	
  
      In addition, the topology of phase connections in mineral network diagrams mirrors 209	
  

their phase relationships. For example, the “AFQ” ternary phase diagram for the system 210	
  

anorthite (CaAl2Si2O8)—forsterite (Mg2SiO4)—silica (SiO2) illustrates that quartz may 211	
  

coexist with anorthite and an intermediate mineral enstatite (MgSiO3), but not with 212	
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forsterite (Figure 3A). The topology of this phase diagram is also embedded in the MDS 213	
  

diagram (Figure 3B).  214	
  

A  B215	
  

216	
  

Enstatite

Forsterite

Anorthite

Quartz
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Figure 3. The topologies of phase diagrams, such as the anorthite-forsterite-217	
  
quartz ternary solidus diagram (A), are mirrored in the topologies of mineral 218	
  
network diagrams (B). Ternary diagram after Anderson (1915). 219	
  

220	
  

     The phase relationships of igneous rocks have been well documented through decades 221	
  

of studies in experimental petrology and thermochemical modeling, so the examples in 222	
  

Figures 2 and 3 illustrate the necessary conformity of network diagrams to established 223	
  

phase relationships. However, numerous other mineralogical systems have not been 224	
  

investigated in this detail. Much work remains to be done, but we postulate that mineral 225	
  

network analysis of coexisting species in other complex natural chemical systems holds 226	
  

the prospect of revealing unknown phase relationships through multi-dimensional 227	
  

analysis. In such analyses, care must be taken to ensure that connections between the 228	
  

mineral nodes actually represent equilibrium phase assemblages. In situations such as 229	
  

intrusive igneous rocks and cogenetic hydrothermal ore minerals, equilibrium formation 230	
  

is a safe assumption, and linked nodes will represent adjacent stability fields on the 231	
  

relevant phase diagram. However, greater care must be exercised when dealing with 232	
  

assemblages including secondary minerals such as oxidative weathering products, 233	
  

diagenesis, metamorphism, etc. 234	
  

235	
  

Cluster Analysis and Paragenetic Modes: A valuable attribute of network diagrams is 236	
  

that the node representations can incorporate additional dimensions of information 237	
  

through their size, color, shape, and patterning. In Figures 4 and 5B, we scaled node 238	
  

diameters and inter-node distances for Cr mineral species in the following way: If two 239	
  

minerals A and B occur at a and b localities, respectively, and they co-occur at c 240	
  

localities, then the node diameters of A and B are log2(a) and log2(b), and the distance of 241	
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the link connecting A and B is [1 – c/min(a,b)], where min(a,b) is the smaller of a and b. 242	
  

If A and B always occur together then we assign a minimum distance of 0.1. 243	
  

Cluster analysis employs mineral network data to identify subsets of closely related 244	
  

species—an approach that can reveal previously unrecognized relationships among 245	
  

species. For example, we performed cluster analysis on the 30 most common terrestrial 246	
  

Cr minerals. We included minerals that satisfy three criteria: (1) Cr occupies more than 247	
  

50% of at least one symmetrically distinct crystal lattice site; (2) the mineral occurs at 248	
  

three or more localities; and (3) the mineral co-occurs with other Cr minerals at two or 249	
  

more localities. In Figure 4 we applied the Walktrap Algorithm (Pons and Latapy 2005) 250	
  

of the igraph package in R to mineral coexistence data in mindat.org to detect clusters of 251	
  

closely related Cr minerals. This approach is based on the analysis of random walks 252	
  

among links. Random walks are more likely to stay within a single cluster because there 253	
  

are more links within a cluster than links leading to different clusters. When we employ 254	
  

this algorithm to perform 5-step random walks on the Cr mineral graph, the minerals 255	
  

separate naturally into four clusters, each of which can be associated with a different 256	
  

paragenetic mode. The largest of the four clusters includes 17 Cr3+ minerals, all of which 257	
  

are high-temperature igneous, metamorphic, and hydrothermal species (group 1). Three 258	
  

additional clusters falling peripherally to this central cluster include all Cr6+ minerals, 259	
  

seven of which (group 2) form from low-temperature, oxidized hydrothermal fluids 260	
  

leaching Cr-rich igneous rocks. The remaining six Cr6+ minerals, which lie above the 261	
  

central cluster, are sedimentary species found in soils (group 3) and in desert 262	
  

environments (group 4). Cluster analysis is consistent with the observation that chromium 263	
  

in terrestrial Cr6+ minerals is probably sourced from Cr3+ reservoirs, either through 264	
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hydrothermal leaching or oxidative weathering (e.g., Liu et al. 2017). We conclude that 265	
  

cluster analysis holds promise for revealing patterns of diagenesis and distribution in a 266	
  

variety of mineral systems. 267	
  

 268	
  

Figure 4. Cluster analysis of 30 common chromium-bearing minerals reveals 269	
  
segregation into 4 groups. The central cluster (group 1) includes 17 Cr3+ species 270	
  
formed through igneous, metamorphic, or hydrothermal processes. The left-hand 271	
  
cluster (group 2) includes 7 Cr6+ species formed through hydrothermal 272	
  
alteration, whereas the two smaller clusters (groups 3 and 4) include chromate 273	
  
minerals precipitated in soils and desert environments. Black lines indicate 274	
  
coexistence of minerals within a cluster, and red lines indicate coexistence 275	
  
between minerals of neighboring clusters. 276	
  
 277	
  
 278	
  

Force-Directed Mineral Graphs: An important potential contribution of mineral 279	
  

network analysis lies in the simultaneous visualization and study of relationships 280	
  

among scores or hundreds of minerals that are related by composition, age, tectonic 281	
  

setting, deposit type, or numerous other variables. Force-directed graphs (Figure 5), 282	
  

which represent the distribution of nodes as a dynamic network with balanced spring-283	
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like interactions among nodes, are particularly useful in this regard. We generate these 284	
  

graphs by algorithms that run through a number of iterations, displacing the nodes 285	
  

according to fictive attractive and repulsive forces that they exert on each other, until a 286	
  

layout is found that minimizes the “energy” of the system and possibly satisfies other 287	
  

constraints such as drawing connected nodes at certain separations. These methods are 288	
  

implemented in highly customizable modules in multiple programming languages, 289	
  

such as Javascript and R, making it possible to render the graphs through a number of 290	
  

interfaces including web browsers.  291	
  

In Figure 5, we created the browser-based force-directed graphs using the D3 4.0 292	
  

d3-force module, which simulates physical forces using velocity Verlet integration 293	
  

(Verlet 1967) and implements the Barnes–Hut approximation (Barnes and Hut 1986) 294	
  

for performing n-body simulations, similar to those of molecular or planetary systems. 295	
  

For each of the three graphs we compiled a symmetric matrix whose non-diagonal 296	
  

elements represent the number of localities where two minerals coexist and whose 297	
  

diagonal elements represent the total number of localities at which each mineral is 298	
  

found. As a preliminary step we imported these data into R as data frames and 299	
  

converted into two lists, one with nodes representing all the minerals in the dataset, 300	
  

and the other with links representing coexistence relationships between the nodes. We 301	
  

created the list of nodes by extracting the row or column names of the data frame, each 302	
  

of which represents a mineral, and we produced the list of links by iterating over the 303	
  

upper or lower triangle of the matrix and copying the row name, column name, and 304	
  

computing a coexistence metric between the two minerals. We added additional fields 305	
  

to the nodes list, such as mineral compositions, the number of localities at which the 306	
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mineral occurs, and/or structural classification of the mineral. 307	
  

We combined these two lists and converted them into a JSON (Javascript Object 308	
  

Notation) file, which is stored along with a web page written in HTML (Hypertext 309	
  

Markup Language) and Javascript that uses functions from the D3 4.0 library. The 310	
  

data file is read from the file system and rendered when the page is opened in a web-311	
  

browser. Our Javascript code generates the layout by performing a many body (n-312	
  

body) simulation and constraining edge lengths to values that equal the coexistence 313	
  

metric multiplied by a constant to make the connections more apparent. We set node 314	
  

sizes to the binary logarithm of the abundance value of a mineral in the cases of Cu 315	
  

and igneous rocks diagrams, and the actual abundance values in the Cr diagram. Node 316	
  

colors in Figure 5 variously indicate the structural classification of the minerals 317	
  

(igneous network), paragenetic mode (Cr network), and composition (Cu network).   318	
  

The mineral network diagrams in this study require data on coexisting minerals in 319	
  

individual rocks or from individual localities. We manually generated spreadsheets of 320	
  

coexisting minerals in igneous rocks from text and tables in Harker (1964) and 321	
  

Johannsen (1932-1938) as presented in Supplemental Information 1 and 2. We used a 322	
  

PERL script to construct spreadsheets of coexisting chromium and copper minerals, 323	
  

which are generated automatically from data on coexisting species from localities 324	
  

recorded in the crowd-sourced mineral website mindat.org. We define Cr- or Cu-325	
  

minerals as those reported in the official IMA list of minerals at rruff.info/ima. For 326	
  

each pair of coexisting minerals we generated a file that contains all localities at which 327	
  

those two minerals occur. A second program reads the assembled files to obtain the 328	
  

number of localities at which each pair occurs and outputs these counts in matrix form. 329	
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A  330	
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B       331	
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C332	
  
Figure 5. Force-directed network graphs of minerals. A. 51 rock-forming 333	
  
igneous minerals sorted by structural groups. B. 58 chromium minerals sorted 334	
  
by paragenetic mode. C. 664 copper minerals sorted by composition. See 335	
  
Supplemental Information 4, 5, and 6, respectively, for animations of these 336	
  
three dynamic graphs. 337	
  

338	
  

An important feature of browser-based force-directed graphs is that they can be 339	
  

manipulated with a mouse—individual nodes can be “pulled aside,” thus deforming the 340	
  

network and illustrating the number and nature of links to other nodes (see movies in 341	
  

Supplemental Information 4, 5, and 6). Figure 5 presents static images of three 342	
  

contrasting force-directed graphs: (1) 51 common rock-forming igneous minerals; (2) 58 343	
  

terrestrial minerals of chromium; and (3) 664 minerals of copper. 344	
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     In Figure 5A, which represents connections among 51 igneous minerals, the node 345	
  

colors indicate broad compositional groups (see figure for key). Note that while colors 346	
  

are largely mixed, the red (quartz and feldspar minerals) and orange (feldspathoids and 347	
  

zeolite mineral) nodes tend to concentrate near the lower and upper halves of the 348	
  

network, respectively—a feature that reflects the natural avoidance of quartz and 349	
  

feldspathoids. Node colors in Figure 5B for chromium minerals correspond to 350	
  

paragenetic modes; note the strong clustering of nodes by color—an observation that 351	
  

parallels the cluster analysis in Figure 4. Node colors in Figure 5C for copper minerals 352	
  

indicate mineral compositions separated according to the presence or absence of sulfur or 353	
  

oxygen. Strong segregation by color reveals clustering according to these compositional 354	
  

variables for sulfides, sulfates, and oxygen-bearing species. 355	
  

      356	
  

Network metrics: An important attribute of networks is the ability to compare and 357	
  

contrast their topological characteristics through the use of many quantitative network 358	
  

metrics (e.g., Newman 2013; Table 1). For example, a network’s edge density D, defined 359	
  

as the ratio of the number of observed links to the maximum possible number of links, 360	
  

quantifies the extent to which a network is interconnected. For a network with N nodes 361	
  

and L links:   362	
  

                                                        D = 2L/[N(N – 1)].                                    [Equation1] 363	
  

D can vary from 0 in a network with no links to 1 for a fully connected network. For 364	
  

mineral networks, 0 means every mineral occurs by itself, whereas 1 means every 365	
  

mineral co-occurs with every other mineral.  366	
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Freeman network centralization or degree centralization, FNC, is one of several 367	
  

measures of how many nodes play central roles in the network. In a network of N nodes, 368	
  

degree centralization for each node i is the number of links to other nodes, or node 369	
  

degree, deg(i). Freeman network centralization is defined as: 370	
  

 , [Equation 2] 371	
  

in which degmax is the maximum degree node. FNC can vary from 0 to 1; in a mineral 372	
  

network, low centralization indicates that minerals are uniformly interconnected, whereas 373	
  

high centralization indicates that only one or a few minerals are highly connected. 374	
  

Transitivity, T, is defined by the ratio of the number of loops of length three and the 375	
  

number of paths of length two in a network. In mineral networks, 0 means that minerals 376	
  

co-occur only as pairs and 1 means that each mineral co-occurs with at least two others. 377	
  

Diameter, d, of a network with N nodes is defined as the maximum value of the 378	
  

shortest path (i.e., “degree of separation”) between any two nodes in the network, as 379	
  

determined by the number of edges and the average edge length between the two nodes. 380	
  

Mean distance, MD, of a network with N nodes indicates the average path length, 381	
  

calculated from the shortest paths between all possible pairs of nodes. In a mineral 382	
  

network, MD represents the average separation between mineral pairs. 383	
  

The three force-directed mineral networks illustrated in Figure 5 differ significantly in 384	
  

their network metrics. The igneous mineral network (Figure 5A) is relatively dense with 385	
  

high transitivity (D = 0.64; T = 0.77), while the network is decentralized (FNC = 0.34), 386	
  

and compact (d = 1.1; MD = 1.36). Two minerals, biotite and magnetite, have links to all 387	
  

other minerals; thus, manipulating the nodes for biotite and magnetite (see movie in 388	
  

Supplemental Information 4) results in a rapid return to the initial equilibrium network 389	
  

FNC = degmax− deg(i)
(N −1)(N − 2)i=1

N∑
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configuration with those nodes appearing near the center of the network. Manipulation of 390	
  

quartz (near the bottom of the network) and nepheline (near the top), by contrast, 391	
  

illustrates the avoidance of those two minerals, which do not co-occur in igneous rocks. 392	
  

We postulate that the relatively high density and low diameter of this network are 393	
  

manifestations of high-temperature equilibrium associated with intrusive igneous rocks, 394	
  

for which a relatively few common rock-forming minerals occur in several lithologies. 395	
  

 396	
  

    Table 1. Network metrics for force-directed graphs (see Figure 5)     397	
  

Mineral System  Density  Centralization   Transitivity  Diameter  Mean Distance  398	
  

Igneous minerals  0.64    0.34     0.77   1.1    1.36   399	
  

Cr minerals   0.05    0.33     0.44   6.0    2.65   400	
  

Cu minerals   0.12    0.68     0.48   4.0    1.93    401	
  

 402	
  

     The network for 58 terrestrial chromium minerals (Figure 5B) contrasts with that for 403	
  

igneous minerals in that it possesses much lower density and transitivity (D = 0.05; T = 404	
  

0.48), and greater diameter and mean distance (d = 6; MD = 2.65). These values are 405	
  

consistent with the cluster analysis (Figure 4), which revealed four groups of minerals 406	
  

that are largely separate from each other. A striking feature of this Cr mineral network is 407	
  

the segregation of nodes by colors, which represent paragenetic modes (see figure 408	
  

caption). As revealed by cluster analysis, chromium minerals occurring through 409	
  

weathering, formed during metamorphism, found in sediments, or crystallized through 410	
  

igneous processes tend not to co-occur and thus appear as somewhat isolated clusters in 411	
  

Figure 5B. On the other hand, hydrothermal Cr minerals are much more interconnected 412	
  

with phases formed through other paragenetic processes. Such complex relationships 413	
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among 58 minerals become obvious through manipulation of a force-directed graph (see 414	
  

movie in Supplemental Information 5) and exemplify the wealth of information contained 415	
  

in these network diagrams. 416	
  

     Copper minerals (Figure 5C) provide a third, contrasting example of a mineral 417	
  

network with relatively low density and transitivity (D = 0.12; T = 0.44), but high 418	
  

centrality (FNC = 0.68), and intermediate diameter and mean distance (d = 4; MD = 419	
  

1.93). Aspects of the co-existence of copper minerals are revealed in Figure 5C, which is 420	
  

colored according to the presence or absence of the two principal anions, O and S. A 421	
  

strong degree of segregation is seen for sulfides (red), sulfates (orange), and minerals 422	
  

with O but not S (blue). By contrast, copper minerals with neither O nor S (green) are 423	
  

much more widely distributed, as they are found associated with a variety of other copper 424	
  

minerals. Manipulations of the nodes for the two most interconnected copper minerals, 425	
  

chalcopyrite and malachite, reveal connections to all regions of the graph and result in 426	
  

significant distortion of the entire network (Supplemental Information 6). Manipulation 427	
  

of the node for native copper, on the other hand, shows greater connectivity to oxides and 428	
  

sulfates than to sulfides—an insight not readily obvious from tables of coexisting mineral 429	
  

species (and a finding that will be explored in more detail in a forthcoming study). The 430	
  

ability to view and interrogate simultaneously and dynamically the relationships among 431	
  

hundreds of mineral species underscores the power of force-directed mineral network 432	
  

visualizations. 433	
  

434	
  

Bipartite Networks: Bipartite networks incorporate two types of nodes and thus reveal 435	
  

information complementary to the previous examples (e.g., Asratian et al. 1998). Of 436	
  



	
   26	
  

special interest in mineralogy are network diagrams that include nodes for both mineral 437	
  

species and their localities, with links connecting localities to mineral species found at 438	
  

those localities. In Figures 6A and 6B we present bipartite networks for copper minerals 439	
  

for two contrasting geological time intervals, from the Archean Eon (4.0 to 2.5 Ga) and 440	
  

the Cenozoic Era (66 Ma to present), respectively. We color mineral nodes according to 441	
  

mineral compositions with respect to the presence or absence of oxygen and sulfur, as in 442	
  

Figure 5C. Locality nodes, which in this case represent countries or broad geographic 443	
  

regions, appear in black.  444	
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B446	
  

Figure 6. Bipartite networks for copper minerals from the Archean Eon (A) and Cenozoic 447	
  
Era (B) reveal distinctive patterns of mineral diversity and distribution through space and 448	
  
time. Black nodes represent localities, whereas colored nodes represent mineral species 449	
  
linked to those localities. The distinctive pattern of an “O” or “U”-shape arrangement of 450	
  
localities with relatively few common minerals in the center area and a greater number of 451	
  
rare minerals in peripheral positions conforms to a Large Number of Rare Events 452	
  
frequency distribution (Hazen et al. 2015; Hystad 2015). Note also the increase in 453	
  
mineral diversity, as well as the evolution of mineral compositions, from A to B. 454	
  

455	
  
As with the previously demonstrated force-directed mineral networks, we employed 456	
  

mineral/locality data to produce the bipartite graphs. We imported data into R where two 457	
  

sets of nodes were extracted, one containing mineral species and the other containing the 458	
  

localities where these minerals occur. We combined the two sets of nodes into one list 459	
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and added an attribute to each item in the list, determining its type as either mineral or 460	
  

locality. We then generated a list of links from the data such that each link connects a 461	
  

mineral species to a locality. Following the same procedure as with the force-directed 462	
  

graphs created using the D3 4.0 library, we combined the data structures representing the 463	
  

nodes and links into a JSON file linked to an HTML page such that the diagrams can be 464	
  

rendered and manipulated in a web browser. 465	
  

These striking bipartite networks provide simultaneous visual representations of data 466	
  

on the diversity and abundances of mineral species, as well as their geographical 467	
  

distributions, compositional characteristics, and geological ages. As such, these diagrams 468	
  

demonstrate the potential of network analysis to explore simultaneously numerous 469	
  

parameters related to mineral diversity and distribution and thus to reveal previously 470	
  

unrecognized aspects of mineral evolution and mineral ecology. Insights from these 471	
  

visualizations include: 472	
  

• In both networks the nodes of the force-directed graph self-organize into a 473	
  

distinctive pattern with black locality nodes forming an “O” or “U”-shape 474	
  

arrangement. The commoner minerals, those found at numerous localities, appear 475	
  

as colored nodes near the center of these diagrams, whereas a significantly greater 476	
  

number of rare minerals that occur at only one or two localities plot as colored 477	
  

nodes in clusters and “fans” of minerals arranged around the periphery of the 478	
  

diagram. This unanticipated elegant geometry is the visual manifestation of a 479	
  

Large Number of Rare Events (LNRE) frequency distribution that characterizes 480	
  

Earth’s near-surface mineralogy (Hazen et al. 2015; Hystad et al. 2015).  481	
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• The Archean bipartite network (Figure 6A), with 97 Cu minerals from 45 broad482	
  

geographical localities, reveals that sulfide minerals dominated copper483	
  

mineralogy prior to the Great Oxidation Event (e.g., Hazen et al. 2008; Canfield484	
  

2014; Lyons et al. 2014). Sulfides represent 17 (74%) of the 23 common Archean485	
  

copper minerals located “inside” the ring of black locality nodes and 32 (50%) of486	
  

the 64 rare minerals located around the periphery. Note also the relative paucity of487	
  

sulfate minerals—only 7 species (7%), all of them rare, out of 97 Archean copper488	
  

minerals.489	
  

• The Cenozoic bipartite network for copper minerals contrasts with that of the490	
  

Archean Eon in a number of respects. The significant increase in the number of491	
  

identified mineral species (colored nodes), from 97 to almost 400, is to be492	
  

expected when comparing Earth’s recent mineralogy with the scant record of493	
  

rocks more than 2.5 billion years old. However, there are also striking and494	
  

previously unrecognized differences in the distributions of mineral compositions495	
  

from these two geological intervals. Sulfide minerals (red nodes) continue to496	
  

make up a significant fraction of the most common species located near the center497	
  

of the diagram. Of the approximately 100 mineral nodes located within the “U” of498	
  

black locality nodes, more than 40 are sulfide minerals. Furthermore, most of499	
  

these phases are concentrated at the “bottom” of the “U”—a position representing500	
  

the most widely distributed copper minerals. Of the remaining common Cu phases501	
  

in the central region, most are carbonate, phosphate, and other minerals that502	
  

contain oxygen but not sulfur (blue nodes concentrated in the “upper” region503	
  

inside the “U”), perhaps reflecting the oxygenation by photosynthesis of Earth’s504	
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atmosphere and oceans, and the corresponding generation of novel oxidized 505	
  

copper mineral species.  506	
  

• Peripheral (i.e., rare) copper minerals from the Cenozoic Era differ markedly in507	
  

composition from those of the Archean Eon. Sulfide minerals account for only508	
  

about 50 (<20%) of the more than 280 rare species, whereas at least 210 (~75%)509	
  

oxygen-bearing minerals, 60 of them sulfates, decorate the diagram in sprays and510	
  

clusters of phases known from only one or two geographic regions.511	
  

These intriguing insights regarding copper mineral evolution and ecology have been 512	
  

hidden among large data tables of more than 600 species from more than 10,000 513	
  

localities, representing more than 100,000 individual mineral-locality data 514	
  

(rruff.inof/ima; mindat.org). Research now in progress will investigate these intriguing 515	
  

trends for copper mineral evolution and ecology in greater detail, while searching for 516	
  

patterns that might point to the prediction of new copper minerals and ore deposits. 517	
  

518	
  

CONCLUSIONS 519	
  

     Network analysis provides mineralogists and petrologists with a dynamic, multi-520	
  

dimensional, quantitative visualization approach to explore complex and otherwise 521	
  

hidden patterns of diversity and distribution in systems of numerous minerals—522	
  

information that heretofore has been buried in large and growing mineral data resources. 523	
  

Open access data repositories now document more than 5200 mineral species 524	
  

(rruff.info/ima), from 275,000 localities, incorporating approximately one million 525	
  

mineral/locality data (mindat.org). It is thus possible to employ mineral network 526	
  

visualizations to quantitatively investigate patterns of coexistence, phase relationships, 527	
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reaction pathways, network metrics, frequency distributions, and deep-time evolution of 528	
  

virtually any mineral group.  529	
  

We suggest that further investigation of mineral networks will reveal previously 530	
  

hidden patterns of species coexistence and clustering based, for example, on structure 531	
  

type, chemistry, age, solubility, hardness and other mechanical properties, redox state, 532	
  

depth and temperature of formation, year and method of mineral discovery, and 533	
  

paragenetic mode. Mineral metadata, furthermore, permit exploration of mineral subsets 534	
  

through filtering by geographic region, tectonic setting, co-occurrence with varied 535	
  

biozones, economic resources, environmental characteristics, and other key parameters. 536	
  

In addition, networks are now being generated for minerals on Mars, the Moon, and 537	
  

Vesta (as represented by “HED” achondrite meteorites) with the motivation to compare 538	
  

and contrast mineral evolution and ecology of different planets and moons.  539	
  

Given the inherent beauty and richness of these visualization tools, it is perhaps easy 540	
  

to become distracted from the varied, multi-dimensional, and as yet unexplored aspects of 541	
  

mineralogy that networks promise to illuminate. We look to a future when the 542	
  

consolidated network of all 5200 mineral species, distributed among hundreds of 543	
  

thousands of localities, will offer an unparalleled open access research tool. We conclude 544	
  

that mineral network analysis, by combining the potential of big data mineralogy with a 545	
  

dynamic and accessible visual aesthetic, represents a powerful new method to explore 546	
  

fundamental problems in mineralogy and petrology. 547	
  

 548	
  

 549	
  

 550	
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Supplemental Information 677	
  

678	
  

Supplemental Information Contains: 679	
  

1. Excel file of 36 minerals from 76 intrusive igneous rocks, as extracted from Harker680	
  

(1964). 681	
  

2. Excel file of 51 minerals from 725 intrusive igneous rocks, as extracted from682	
  

Johannsen (1932-1938). 683	
  

3. Movie of the rotation of the 3-dimensional multi-dimensional scaling diagram of rock-684	
  

forming minerals in intrusive igneous rocks. 685	
  

4. Movie of the manipulation of nodes for biotite, magnetite, quartz, and nepheline in the686	
  

force-directed graph of intrusive igneous minerals. 687	
  

5. Movie of the manipulation of nodes for chromite and crocoite in the force-directed688	
  

graph of terrestrial chromium minerals. 689	
  

6. Movie of the manipulation of nodes for chalcopyrite, malachite, and copper in the690	
  

force-directed graph of the 242 most common copper minerals (≥ 50 localities). 691	
  




