ABSTRACT

The crystal structures of natural Nb-rich chevkinite-(Ce) from the Biraya rare-metal deposit, Russia, crystallising in space groups $C2/m$ and $P2_1/a$, were solved and refined to $R_1 = 0.03$ and $R_1 = 0.07$, respectively, from data collected with a single-crystal diffractometer. X-ray photoelectron spectroscopy was used to determine the oxidation states of the following ions: Ce^{3+}, Fe^{2+} and Fe^{3+}, Ti^{4+} and Ti^{3+}. Typically, Nb-rich chevkinite-(Ce) has space group $C2/m$, but specimens with space group $P2_1/a$ were also identified. While XPS shows that both...
C2/m and P21/a crystal structures contain Ti4+ and Ti3+, it also indicates that Ti2+ may occur in the P21/a phases. The general formula for the Nb-rich chevkinite-(Ce) having space group C2/m is:

\[(\text{Ce}^{3+},\text{La}^{3+},\text{Nd}^{3+},\text{Pr}^{3+},\text{Ca}^{2+},\text{Na}^+)\Sigma_4\text{Fe}^{2+}(\text{Fe}^{3+},\text{Nb}^{5+},\text{Al}^{3+})\Sigma_2(\text{Ti}^{4+},\text{Ti}^{3+},\text{Nb}^{5+},\text{Mg}^{2+})\Sigma_2(\text{Si}_2\text{O}_7)_2\text{O}_8,\]

with P21/a,

\[(\text{Ce}^{3+},\text{La}^{3+},\text{Nd}^{3+},\text{Pr}^{3+},\text{Ca}^{2+},\text{Na}^+)\Sigma_4(\text{Fe}^{2+},\text{Mg}^{2+},\text{Ti}^{2+})\Sigma_1(\text{Fe}^{3+},\text{Nb}^{5+},\text{Al}^{3+})\Sigma_2(\text{Ti}^{4+},\text{Ti}^{3+},\text{Nb}^{5+})\Sigma_2(\text{Si}_2\text{O}_7)\Sigma_2\text{O}_8.\]

It is proposed that, in addition to the substitution \(\text{Fe}^{3+} + \text{Ti}^{4+} \leftrightarrow \text{Fe}^{2+} + \text{Nb}^{5+}\), niobium can also be incorporated into chevkinite-(Ce) by the substitution \(2\text{Ti}^{4+} \leftrightarrow \text{Nb}^{5+} + \text{Ti}^{3+}\), leading to substantial Nb-enrichment. The study has revealed that the distribution of cations between the various structural sites is considerably more complex than that envisaged in standard models of the chevkinite group, and that cations such as Ti can have more than one valency in the structure. Lighter elements with larger ionic radii (Mg2+) tend to occupy the D site in the C2/m crystal structure, whereas in the P21/a structure these elements (Mg2+, Ti2+) tend to enter the B site. Niobium is distributed between the C and D sites. The techniques employed provide a comprehensive representation of the distribution of cations and can be used to examine similar complexity in other mineral groups. The present study has shown that Nb can be fractionated also from residual melts.

Keywords: Chevkinite-(Ce), niobium, crystal structure, EPMA, X-ray photoelectron spectroscopy, chevkinite-group minerals, the Biraya depositit, Russia

INTRODUCTION
Chevkinite-group minerals (CGM), comprising twelve species, are accessory phases in a wide
range of igneous and metamorphic rocks (Macdonald and Belkin 2002; Vlach and Gualda
are challenging to characterize structurally and compositionally, as they display extensive
compositional zonation and considerable metamictisation (due to Th\(^{4+}\)), the latter
phenomenon usually involving hydration. In only a few CGM with relatively simple
compositions and largely unzoned crystals has it been possible to assign cations to particular

Zoning and metamictisation can lead to considerable difficulties in reconciling
compositions derived by electron microprobe analysis (EPMA) with those obtained by
refinement of site occupancies from single-crystal XRD. This significant problem was
discussed in detail by Sokolova et al. (2004) in their study of radiation-damaged chevkinite-
(Ce). These authors also showed that thermal annealing of partially metamict chevkinite-(Ce)
in air at 1100 ºC for 3 h resulted in a considerable improvement in the refined site-scattering
values (ssv = electrons per site) that allowed a more meaningful assignment of site
occupancies.

In this paper we report the structural characterization of natural Nb-rich chevkinite-(Ce)
having space groups \(C2/m\) and \(P2_1/a\) from the same hand specimen, with a view to
understanding the origin of the \(C \rightarrow P\) structural transition. Both crystals studied are
compositionally zoned and partially metamict. Given the reported difficulty in correlating
electron microprobe analyses with site-scattering values for such crystals (Sokolova et al.
2004), which was also observed in our study, our main aim was to identify the possible
coupled substitution mechanisms responsible for the substantial Nb enrichment of these
samples of chevkinite-(Ce). We have identified a new substitution mechanism for Nb
incorporation that involves Ti$^{3+}$. This new mechanism can lead to substantial Nb enrichment in chevkinite-(Ce).

The general formula of the CGM is (Popov et al. 2001; Sokolova et al. 2004; Chukanov et al. 2012; Holtstam et al. 2017): $A_4M_5(Si_2O_7)_2O_8$, where $A = Ce, La, Sr; M = Fe^{2+}, Fe^{3+}, Ti, Mn, Mg, Zr, Cr, W, □$ (where □ denotes cation vacancy). The general formula of CGM was also referred to as $A_4BC_2D_2(Si_2O_7)_2O_8$ (Ito 1967). Based on structural features the chevkinite group can be divided into two subgroups: chevkinite and perrierite.

The chevkinite structure is shown in Figure 1. Site connectivities are shown in Figure 2, which relates the site notation to the chemical formula. Our unique site names $B, C, D(1)$ and $D(2)$ correspond to $M(1), M(2), M(3)$ and $M(4)$, respectively, of Sokolova et al. (2004).

Chains of CO$_6$ edge-sharing octahedra share corners with the chains of DO$_6$ edge-sharing octahedra, forming a sheet of octahedra oriented parallel to (001). BO$_6$ octahedra link with (Si$_2$O$_7$) groups to form a heteropolyhedral sheet parallel to (001). The two types of sheet alternate along the Z-direction. Intersheet connectivity is provided via tetrahedra and CO$_6$ octahedra in a way that creates large cavities between the sheets, which are occupied by A-cations arranged in a planar hexagonal array.

Niobium is commonly present in low concentrations in CGM (Nb$_2$O$_5 \leq 5$ wt%) and is assigned to the $C (M(2))$ site (Popov et al. 2001; Sokolova et al. 2004) and to C and $D (M(2)-M(4))$ (Yang et al. 2002, 2007). Makarochkin et al. (1959) described as niobochevkinite a mineral from the Ilmen Mineralogical Reserve, southern Urals, where it occurs in a fenitised granitic pegmatite; the phase contains 7.4 wt.% Nb$_2$O$_5$, corresponding to 0.71 Nb atoms per formula unit (apfu). Popov et al. (2001) described a new mineral from the Ilmen Mountains, southern Urals, Russia, which they termed polyakovite-(Ce) ((REE,Ca)$_4$(Mg,Fe$^{2+}$)(Cr$^{3+}$,Fe$^{3+}$)$_2$(Ti,Nb)$_2$Si$_4$O$_{22}$). The mineral contains 3.98 wt.% Nb$_2$O$_5$ and Nb was allocated as Nb$^{5+}$ to the $C (M2)$ site, where the atomic Ti$^{3+}$/Nb$^{5+}$ ratio is 4.75:1. Here
we present the results of electron microprobe analyses and a structural determination of a
CGM from Biraya, Russia, which has an average Nb₂O₅ content of 10.19 wt.% and a Ti/Nb
atomic ratio is 1.1:1. This is the most Nb-rich CGM yet recorded. The Biraya material is used
to examine the following aspects of the CGM; (i) how the entry of Nb affects the structure of
the host mineral, (ii) to identify space groups, (iii) how the unique sites in the crystal structure
correspond to the chemical formula of Nb-rich chevkinite-(Ce), (iv) and whether or not any
cations are present in more than one valence state. Several techniques are employed, including
single crystal X-ray diffraction (XRD), EPMA and X-ray photoelectron spectroscopy (XPS).

Coupled substitutions in chevkinite

In order to facilitate the description of compositional data and site occupancies in the Nb-
rich chevkinite-(Ce) described here, we outline the coupled substitutions that are likely to be
relevant. Initially, we do not consider the possibility of structural vacancies at metal sites
(Holtstam et al. 2017), but focus on end-members that are likely to control Nb incorporation
into chevkinite. An important constraint is that for electroneutrality the total charge at the
metal sites B, C and D is 16+. We present evidence for a new substitution involving trivalent
Ti: $2^{D}Ti^{4+} \rightarrow ^{D}Ti^{3+} + ^{D}Nb^{5+}$, implying a new end-member $^{A}Ce^{4}^{B}Fe^{2+}C^{Fe^{3+}_{2}}D^{(Nb^{5+} Ti^{3+})}$
$Si_{4}O_{22}$.

A composition approaching that of the Nb-rich chevkinite-(Ce) studied here can be derived
from an end-member $^{A}Ce^{4}^{B}Fe^{2+}C^{Fe^{3+}_{2}}D^{Ti^{4+}_{2}}Si_{4}O_{22}$ by:

$+ 0.5 \left[2^{D}Ti^{4+} \rightarrow ^{D}Ti^{3+} + ^{D}Nb^{5+} \right] + 0.5 \left[^{C}Fe^{3+} + ^{D}Ti^{4+} \rightarrow ^{C}Fe^{2+} + ^{D}Nb^{5+} \right]$

$= ^{A}Ce^{4}^{B}Fe^{2+}C^{(Fe^{3+}_{1.5} Fe^{2+}_{0.5})D^{(Nb^{5+} Ti^{3+}_{0.5} Ti^{4+}_{0.5})}}Si_{4}O_{22}$.

While divalent cations are not usually assigned to the C site of chevkinite-(Ce), there
appear to be no crystal-chemical reasons precluding this possibility. The oxygen bond-valence
deficit arising from replacement of an M^{2+} by M^{2+} (around 0.17 vu) could, in principle, be
accommodated by shortening of the two A-O bonds, as well as the additional bond-valence contributed by Nb$^{5+}$ replacing Ti$^{4+}$.

Metal site vacancies

Vacancies at metal sites in the crystal structure of chevkinite have been reported for the A, B C and D sites (Yang et al. 2002), and at C ($M(2)$) site only, varying from being minor (Popov et al. 2001; Sokolova et al. 2004) to 50% vacancies at this site per formula unit in the crystal structure of delhuyarite-(Ce) that is species-defining (Holtstam et al. 2017).

Consideration of the structure topology of chevkinite (Figs. 1 and 2) indicates that the most plausible metal sites for vacancies are those not bonded to SiO$_4$ tetrahedra, namely $D(1)$ and $D(2)$. The B site is coordinated to six SiO$_4$ tetrahedra, and the C site is coordinated to two SiO$_4$ tetrahedra. Formation of a vacancy at the B site (replacing a divalent or trivalent cation) or C sites results in significant under-bonding by ~0.3–0.5 valence units (vu) of oxygen atoms shared with tetrahedra. This bond-valence deficit cannot be compensated by protonation of these oxygens as it would result in significant over-bonding.

The replacement of Ti$^{4+}$ by a vacancy at the C site results in a bond-valence deficit of ~0.7 vu for each oxygen atom of the octahedron. This deficit could be compensated by protonation of the four oxygen atoms, i.e. Ti$^{4+}$ + 4O$^{2-}$ \rightarrow vacancy + 4OH$^-$. However, the remaining two oxygen atoms, each bonded to a SiO$_4$ tetrahedron and two A cations, remain significantly under-bonded. Such under-bonding is not, however, enough to allow protonation of these oxygens. Furthermore, protonation of all six oxygens of the vacant CO$_6$ octahedron lacks a charge-balanced substitution. Thus, it seems unlikely that the C site will host vacancies.

The $D(1,2)$ sites are not bonded to tetrahedra, but are connected via corners to four CO$_6$ octahedra, and to two DO$_6$ octahedra with which they share two edges (Fig. 2a). Each oxygen atom of a DO$_6$ octahedron is shared by two D sites, one $A(1)$ site and one $A(2)$ site (Fig. 1).
Hence, the formation of a D-site vacancy would result in a decrease of bond valence of around 0.5-0.7 vu (if occupied by M^{3+} or Ti^{4+}) as the affected oxygen would then be three-coordinated via one D-O and two A-O bonds. A protonation mechanism is conceivable if a vacancy replaces Ti^{4+}, as the four oxygen atoms previously shared by two D sites would become OH groups via $Ti^{4+} + 4O^{2-} \rightarrow$ vacancy $+ 4OH^-$. Minor over-bonding associated with protonation could be alleviated by lengthening of A-O bonds. Thus, there may be plausible options for vacancy formation at D sites.

SAMPLE AND ANALYTICAL METHODS

The Biraya rare-metal deposit is located in the north of the Irkutsk district, Transbaikalia, Russia ($57°52'51''N, 116°42'30''E$) and comprises a series of lenticular carbonatite bodies and associated fenites, 10 km long and 50-300 m wide. The deposit is thought to be of mid-Palaeozoic age (Chernikov et al. 1994). Preliminary analyses by one of us (PMK) of a CGM from Biraya revealed unusually high Nb$_2$O$_5$ contents (up to ~12 wt.%), raising the possibility that this may be a new, Nb-rich member of the group. The sample analysed here (K12) comes from a thin vein in fenites associated with a carbonatite dyke. The vein is zoned and has melanocratic margins rich in tremolite and ferriallanite-(Ce), and a central zone enriched in cordylite. The mineral assemblage includes cordylite-(Ce), cordylite-(La) (Mills et al. 2012), anclylite-(Ce), bastnäsite-(Ce), hydroxylbasnäsite-(Ce), strontianite, daqingshanite-(Ce), Sr-calcite, ferriallanite-(Ce), biraite-(Ce) (Konev et al. 2005), talc and törnebohmite-(Ce).

Mineral compositions were determined by EPMA using wavelength-dispersive spectrometry at the Inter-Institute Analytical Complex at IGMI Faculty of Geology, University of Warsaw, using a Cameca SX-100 microprobe equipped with four wavelength analysers. The accelerating voltage was 15 kV and the probe current was 40 nA. Counting times were 20 s on peak and 10 s on each of two background positions. The standards and X-
ray lines used were: wollastonite for Ca (Kα), rutile for Ti (Kα), corundum for Al (Kα), albite for Na (Kα), diopside for Si and Mg (both Kα), hematite for Fe (Kα), rhodonite for Mn (Kα), barite for Ba (La), SrTiO₃ for Sr (La), synthetic ThO₂ for Th (Mα), apatite Jap2 for P (Kα), zircon ED2 for Zr (La), vorlanite for U (Mβ), Nb metal for Nb (La), Ta metal for Ta (Mα), LaB₆ for La (La), CeP₅O₁₄ for Ce (La), PrP₅O₁₄ for Pr (Lβ), NdP₅O₁₄ for Nd (Lβ), SmP₅O₁₄ for Sm (Lβ), GdP₅O₁₄ for Gd (Lβ), REE glasses for Dy (Lβ) and Yb (La), and Y₃Al₅O₁₂ for Y (La). The ‘PAP’φ(ρZ) program (Pouchou and Pichoir 1991) was used for corrections.

Representative analyses are given in Table 1 and the full data set is in the Supplementary Table 1.

Textural and compositional features of sample K12

The crystal shown in the BSE image on Figure 3a, 150 x 125 µm in area, was used in the structural investigation. The compositional zonation is complex, and is shown diagrammatically in Figure 3b. Our interpretation of the texture is that an originally oscillatory-zoned material (Zone A in Figure 3b) was patchily rimmed by a darker component B, which penetrated into the core of the crystal (Bp). Component B was itself partly rimmed and replaced by a very patchy, microporous component (C). It is unclear whether or not the homogeneous grey wedge (D) was part of the original oscillatory zoning or a later replacement phase. On compositional grounds (below), it is here taken to be part of zone A. It has, however, a sharp contact with the brightest component in the image of the crystal, E.

The major elements (>5 wt% as oxides) are La, Ce, Fe, Si, Nd, Nb and Ti. There is, however, a wide range of elements present at the level of <1 wt% oxides, including Ca, Sr, Ba, Th, U, Sm, Gd, Y, Mn, Mg, Zr and Al. There is considerable compositional variation associated with textural variations. The average compositions of zones A to E are given in Table 1. Variation in the oscillatory zoned area (A+D) is modest, e.g. 8.04-10.09 wt% Nb₂O₅.
In that zone, the average analytical total is 98.03 wt%; however, a notable feature of the other zones is the low oxide totals, down to 88.41 wt% in zone E. Such low totals are commonly associated with hydrothermal alteration, consistent in this case with the textural evidence that the low-total zones appear to be replacing the oscillatory zones. It is also clear from the averages (Table 1), and from the full data set (Supplementary Table 1), that there is a clear negative correlation between the oxide totals and the ThO$_2$ content. It is known that even small amounts of Th (~0.5 wt%) can cause metamictization of chevkinite (Sokolova et al. 2004). With average ThO$_2$ contents up to 2.27 wt%, we infer that the crystal is partially metamict and that the areas of higher Th content experienced greater structural damage, permitting access of larger volumes of hydrothermal fluids.

Other compositional changes, registered by the decreasing oxide totals, include: (i) minor decreases in Ca and Sr, followed by a sharp increase into zone E; (ii) minor linear increases in La and Ce, and decreases in Nb and Ti; and (iii) a sharp reduction in Fe and Si contents in zone E.

The compositional variations related to both types of zoning make the calculation of an average composition of the crystal difficult. Here, it is taken to be the average of 54 point analyses of the study sample. An empirical formula based on that average and calculated for 22 oxygen atoms is

$$(\text{Ca}_{0.18}\text{Sr}_{0.13}\text{Na}_{0.16}\text{La}_{1.2}\text{Ce}_{2.02}\text{Pr}_{0.16}\text{Nd}_{0.42})(\text{Fe}_{1.91}\text{Mg}_{0.16}\text{Al}_{0.13}\text{Ti}_{1.22}\text{Nb}_{1.11})(\text{Si}_{1.99}\text{O}_7)\text{O}_8.$$

Experimental

X-ray diffraction

Data collection was undertaken at 100 K on a Rigaku Oxford Diffraction KUMA KM4CCD κ-axis X-ray diffractometer with graphite-monochromated MoKα radiation. A single crystal (crystal 1, Figure 3) was positioned 50 mm from the CCD detector (Opal). 1901
frames were measured with a 1° framewidth and a frametime of 15 sec. Another crystal (no.
2) was measured at 100K on a Rigaku Oxford Diffraction SuperNova diffractometer equipped
with X-ray Mo source and Atlas detector. 810 frames were measured with a 1° interval and a
counting time of 6 sec. Both data sets were corrected for Lorentz and polarization effects. A
numerical absorption correction was applied in both cases. Data reduction and analysis were
carried out with the program CrysalisPro® (Rigaku-Oxford Diffraction). Twinning was found
for crystal 2 for which 79% of all reflections were indexed for the first component, 46% for
the second component and with 26% of reflections overlapped (8% with full overlap) and 1%
of reflections remained unindexed. 18% of reflections were almost fully separated, with an
overlap factor below 0.2. The threshold to reject overlapped reflections at the twin finalisation
process of CrysalisPro® was set to 80% for the preparation of HKLF 4 file. The HKLF 5 file
contains a complete set of \(hkl \), merged from deconvoluted reflections of both twin domains.

The structures were solved by direct methods and refined using the SHELXL (Sheldrick
2008) within Olex2 (Dolomanov et al. 2009) and WinGX (Farrugia 2012) programs. For the
twinned crystal, the HKLF4 file was used for structure solution, followed by structure
refinement using the HKLF5 file. The refinements were based on \(F^2 \) for all reflections, except
those with negative intensities. Weighted \(R \) factors (\(wR \)) and all goodness-of-fit (\(S \)) values are
based on \(F^2 \). Conventional \(R \) factors are based on \(F \) with \(F \) set to zero for negative \(F^2 \). Neutral
atomic scattering factors were taken from Tables 4.2.6.8 and 6.1.1.4 of the International
Tables for Crystallography Vol. C (Wilson 1992). The \(ssv \) refined for 4\(i(1) \) and 4\(i(2) \) sites
were obtained using only the Ce scattering factor, due to the high Ce contents of these sites;
the \(ssv \) for the 2\(d \) site was based upon Fe and Ti scattering factors; the \(ssv \) for 2\(a \), 2\(b \), and 4\(e \)
sites used Ti and Nb neutral scattering factors. When more than one element occupies the
same position in the asymmetric unit, constraints for equal atom coordinates and equal
anisotropic displacement parameters for these groups of atoms within each unique site were

10
applied. Twinned crystal 2 was refined against HKLF 5 file, containing reflections from both components. Supplementary Table S2 contains selected crystallographic data and refinement details. In order to obtain better geometry and ADPs, higher-resolution datasets were collected to 61° 2θ and 66° 2θ for crystal 1 and crystal 2, respectively. The highest residual electron density (2.7 for crystal 1 and 9.38 eÅ⁻³ for crystal 2) are located c.a. 0.6-0.7 Å from the heavy REE atoms. These values can be reduced to 1.5 and 4.8 eÅ⁻³ when the resolution is decreased to 0.6 Å⁻¹, (recommended by the International Union of Crystallography), consistent with the cause of the high residual being associated with termination ripples in the Fourier synthesis, rather than being due to incomplete modelling of a contribution from non-bonded electrons or a split site.

X-ray photoelectron spectroscopy

X-ray photoelectron spectroscopy (XPS) analyses were carried out at the Faculty of Process and Environmental Engineering, Lodz University of Technology, Poland, on a Kratos AXIS Ultra spectrometer equipped with a monochromatic Al Kα X-ray source of excitation energy equal to 1486.6 eV. The spectra were obtained using an analysis area of 300 x 700 µm. The power of the anode was set at 225 W and the hemispherical electron energy analyzer was operated at a pass energy of 20 eV for all high resolution measurements. All spectra were collected using a charge neutralizer and every energy region was swept ten times to increase the signal-to-noise-ratio. Evaluation of the XPS data was conducted by using the CasaXPS software. The adventitious carbon main peak (C(1s), 284.8 eV) was used for the final calibration of each spectrum.

RESULTS

Crystal structure refinement

Crystal 1 has space group C2/m and crystal 2 has space group P2₁/a. In the refinement strategy used, the occupancies of the two A sites, one B (M(1)) site, one C (M(2)) site and two
$D (M(3), M(4))$ sites were refined. In the Wyckoff notation these sites have multiplicities of: $A
times 4i$ and $4i$ for $C2/m$, $4e$ and $4e$ for $P2_1/a$, $B \ 2d$ for $C2/m$, $2b$ for $P2_1/a$, $C \ 4e$ for $C2/m$; $4e$ for $P2_1/a$, $D \ 2a$ and $2b$ for $C2/m$, $2a$ and $2c$ for $P2_1/a$. The ssy for crystal 1 ($C2/m$) refined to the following values: $4i(1) = 52.5$ electrons ($\equiv 0.90 \text{ Ce}$), $4i(2) = 50.2$ ($\equiv 0.87 \text{ Ce}$), $2d = 25.9$ electrons ($\equiv 0.96 \text{ Fe} + 0.04 \text{ Ti}$), $4e = 24.4$ electrons ($\equiv 0.60 \text{ Ti} + 0.40 \text{ Nb}$), $2a = 20.8$ electrons ($\equiv 0.95 \text{ Ti}$), $2b = 24.5$ electrons ($\equiv 0.87 \text{ Ti} + 0.13 \text{ Nb}$). The site scattering values, for crystal 2 ($P2_1/a$), were refined as follows: $4e(1) = 52.2$ electrons ($\equiv 0.90 \text{ Ce}$), $4e(2) = 51.6$ electrons ($\equiv 0.89 \text{ Ce}$), $2b = 24.6$ electrons ($\equiv 0.64 \text{ Fe} + 0.36 \text{ Ti}$), $4e = 22.7$ electrons ($\equiv 0.41 \text{ Fe} + 0.59 \text{ Ti}$), $2a = 22.7$ electrons ($\equiv 0.96 \text{ Ti} + 0.04 \text{ Nb}$), $2c = 26.0$ electrons ($\equiv 0.78 \text{ Ti} + 0.22 \text{ Nb}$), with multiplicity taken into account. Supplementary Table S3 presents the final atom coordinates.

Stachowicz et al. (in revision) reports the values of the M-O bond lengths, the polyhedral volumes of the MO_x first coordination spheres with cations from the A, B, C and D sites and refined ssy for crystal 1, 2 and seven other Nb-rich chevkinite-(Ce) crystals.

Valence states (XPS)

As Nb-rich chevkinite-(Ce) is very complex compositionally, we now explore the possibility that one or more cations is present in different oxidation states. XPS was used to identify the oxidation states of certain elements. The experiments were carried out to determine how Nb-rich chevkinite-(Ce) maintains electroneutrality. A determination of the oxidation state of Ce and plausible inferred charges of Ti and Fe have proved possible to obtain.

XPS is a surface method in which monochromatic soft X-rays interact with atoms from the surface of the sample by ejecting their core shell electrons. The measured kinetic energy of the emitted electrons gives information about the binding energies of these electrons to the
nucleus (after correction towards the work function characteristic for each XPS instrument).
The energy of emitted electrons has a characteristic value for particular elements. Moreover, it
is also sensitive to oxidation state. A more detailed explanation of the principles of XPS can
be found in Moulder et al. (1992) and Heide (2011). An order-of-magnitude smaller sample
can be studied compared with Mössbauer spectroscopy.

A signal of so-called “adventitious carbon”, used for the calibration of spectra, is almost
always a part of the XPS spectra, even if the carbon did not originate in the sample itself. The
C(1s) band (maximum at 284.8 eV) is often used for the calibration of narrow scan positions
before quantitative analysis. When carbon is absent from a sample, this signal comes from
traces of organic molecules on the sample surface. Data were collected from two different
areas of the sample surface. For both, the carbon peak maxima were located at the same
energy, 284 eV, which was caused by the charge neutralizer. For that reason, all the spectra
were shifted by about +0.8 eV before quantitative analysis.

The Ce(3d) spectra (Figure 4) are of good quality with a high signal-to-noise ratio. They
are identical for both analysed areas. The shape of all peaks is characteristic of trivalent Ce
and their peak positions are in perfect agreement with literature presenting trivalent Ce oxide
spectra (Praline et al. 1980; Paparazzo et al. 1991; Mullins et al. 1998; Bêche et al. 2008). The
Ti spectra (Figure 5) are also of reasonable quality and can easily be deconvoluted to obtain
quantitative information. The spectra show that Ti in Nb-rich chevkinite-(Ce) is in all three
oxidation states: +3, +4 and +2, and that the peaks overlap one another. These results may
also be compared to studies by Biesinger et al. (2010), where a compilation of XPS data from
the literature, such as the positions of particular peaks and the splitting between spin-orbit
doublets, has been presented. That analysis was next complemented by an experimental
verification for some reference samples. Such an approach gave a good opportunity for
comparison in the case of a quantitative analysis of new materials.
Computation of the overlapping peak areas, from which the ratios of valency are obtained, needs some constraints on the fitting procedure to retain physical meaning for the analysed spectra. The constraint applied was that the ratio of areas for the spin-orbit split doublets \((\text{Ti}(2p)^3/2: \text{Ti}(2p)^1/2)\) was to be equal to 2:1 for each oxidation state of Ti. An additional constraint for the \(\text{Ti}^{4+}(2p)^1/2-\text{Ti}^{4+}(2p)^3/2\) doublet splitting to be equal to 5.5 eV in the spectrum from the first area was necessary. The last constraint was applied to \(\text{Ti}^{2+}/2\) FWHM being equal to 0.8 of \(\text{Ti}^{3+}/2\) FWHM in the spectrum from the second area of the sample. This value was taken from the first spectrum, where \(\text{Ti}^{3+}/2\) peak is dominant and no constraints on the full width at half maxima were applied during the fitting process. The spectra from each binding energy region show different ratios of Ti valency. It is not known exactly what causes this discrepancy. Sputtering by an argon gun, which causes a reduction of some cations, including Ti and Fe (Choudhury et al. 1989; Hassel and Burggraaf 1991; McCafferty and Wightman 1999; Hashimoto and Tanaka 2002), was not carried out in this experiment. The influence of sputtering on Nb-rich chevkinite-(Ce) was tested after the essential measurements. We have not found in the literature any information on surface effects causing a shift of the collected peaks during multiple acquisition, which in the case of Ti could explain this phenomenon.

The applicability of XPS to the investigation of the valency of cations was tested on a number of CGM samples (perrierite-(Ce) from Roseland, Virginia; chevkinite-(Ce) from the Cherry Mts, Southern Urals vein 35; Ilmen Mts, chevkinite-(Ce) from the Ilmen Mts, Southern Urals; and chevkinite-(Ce) from a pegmatite, Diamer District, Pakistan). The charge balance of chemical formulae for all specimens was well established by the combination of EPMA and X-ray diffraction analyses. Spectra for tetravalent Ti were obtained for all these samples. We associate the presence of the lower valency of titanium in the Nb-rich chevkinite-(Ce) to a high concentration of niobium.
The Fe(2p)3/2 envelope containing a high-spin Fe cation was fitted using peaks corresponding to the Gupta and Sen (GS) multiplets formalism (Gupta and Sen 1974, 1975). The multiplets model the splitting of the core p-vacancy levels in iron (in the Hartree-Fock free-ion approximation). GS multiplets are widely used in the quantitative analysis of Fe valency. A review of the positions and widths of Fe peak components and a comparison with the results obtained from reference samples were performed by Grosvenor et al. (2004). The values of the signal to noise ratio for Fe(2p) 3/2 spectra (Figure 6) collected for Nb-rich chevkinite-(Ce) are rather low. Nevertheless, the shape of the experimental spectra can be reproduced very well by the convolution of peaks proposed by Grosvenor et al. (2004). The XPS instrument, AlKα X-ray source and passing energy (20 eV) were identical to those used in the reference experiments of Grosvenor et al. (2004). For that reason the FWHM values, and the distances between peaks belonging to each valency of Fe, were constrained within the limits of deviation, as in the reference article. Such an approach can give only an approximation to the ratios of the oxidation states of Fe in the sample. Here Fe³⁺:Fe²⁺ was observed to be 1.85:1.

Assignment of cations to crystallographic sites

An exact allocation of ionic compositions (taken from EPMA) to particular unique sites in the crystal structure is a complex matter for several reasons. The previously given empirical formula for Nb-rich chevkinite-(Ce),

$$(Ca_{0.18}Sr_{0.13}Na_{0.16}La_{1.2}Ce_{2.02}Pr_{0.16}Nd_{0.42})(Fe_{1.91}Mg_{0.16}Al_{0.13}Ti_{1.22}Nb_{1.11})(Si_{1.99}O_{7})_2O_8,$$

was obtained as the average of all 54 EPMA analyses. However, this formula is not representative of the crystalline areas of the sample. Due to a significant concentration of thorium, metamictization of some areas occurred, followed by hydrothermal alteration. Empirical evidence for this can be found in the low totals in the EPMA analyses which include analyses.
of metamict areas (area E in Figure 3b and column E of Table 1), not representative of the
crystalline areas. Further evidence was found in the much stronger diffraction from crystal 1
after annealing at 750 °C in a vacuum environment (Stachowicz et al., in revision), compared
with the untreated crystal. Hence, it appears that recrystallization took place during the
annealing process. Moreover, a transformation from \(C2/m\) to \(P2_1/a\) crystal symmetry was
observed. Due to partial metamictization of the crystal the EPMA composition does not
correspond exactly to the refined site scattering values of positions occupied by cations in the
crystal lattice. Finally, the EPMA analysis was performed on only one section of crystal 1 (ca.
in the middle of the height), and revealed complex and highly variable zoning. Nonetheless, a
discussion and an attempt to assign the major elements (exceeding 0.1 \(apfu\)) to particular sites
are now given.

The averages of the compositions of most crystalline parts of the crystal from area A+D
and C in Figure 3, being closest to the primary chevkinite, served as a guideline for the
assignment of composition in the Nb-rich chevkinite-(Ce) crystal structure. An approximate
formula based on EPMA (column A+D and C of Table 1) can then be written as:
\[
(Ca_{0.11}Na_{0.12}La_{1.30}Ce_{2.06}Pr_{0.16}Nd_{0.42})(Fe_{2.24}Mg_{0.22}Al_{0.15}Ti_{1.06}Nb_{0.98})(Si_{2.07}O_{7})_2O_8.
\]

In order to determine which atoms occupy particular \(A\), \(B\), \(C\) and \(D\) sites, we related the
values of the ionic radii of Shannon (1976) to the volumes of the first coordination polyhedra
of the sites, calculated from the X-ray crystal structures using the algorithm of Robinson et al.
(1971). The volumes of octahedra were calculated using \textit{Platon} software (Spek 2009) and
volumes of other polyhedra using \textit{Vesta} software (Momma and Izumi 2011). The \(ssv\) were
refined against the X-ray data. The refined \(A\), \(B\), \(C\) and \(D\) \(ssv\) sum to significantly different
values for \(C2/m\) and \(P2_1/a\) crystal structures. The \(MO_6\) first coordination sphere octahedra,
especially the \(BO_6\) octahedra) also differ in volumes (Stachowicz et al., in revision).
The A sites are occupied by REE Ca, and Na, atoms. As is common in CGM, there is an excess of elements in the A site. Sokolova et al. (2004) suggested the presence of small amounts (0.05 $apfu$) of Ca in the B site of chevkinite-(Ce) from the Kaldzhan Buragtag alkali granite, Mongolia. This is also a possibility for the Nb-rich chevkinite-(Ce).

The BO_6 octahedra are the largest in both discussed structures. An increase from 11.9 Å3 to 12.6 Å3 was found for $C2/m$ and $P2_1/a$ structures. The elements with the largest volumes (except cations from the A sites) should be considered to occupy to the B site, namely Fe$^{2+}$ (i.r. = 0.78 Å), Mg$^{2+}$ (i.r. = 0.72 Å) and Ti$^{2+}$ (i.r. = 0.86 Å). The lighter Mg$^{2+}$ and Ti$^{2+}$ ions are absent from the $C2/m$ structure and substitute for part of the Fe$^{2+}$ when the structure changes to $P2_1/a$. This reallocation of cations rationalises the increase of BO_6 volume and the drop of ssv of the B site from 25.9 to 24.6.

The C site has the smallest volume of all MO_6 coordination octahedra (Stachowicz et al. in revision) in both space groups. It is occupied by Fe$^{3+}$ (i.r. = 0.65 Å), Nb$^{5+}$ (i.r. = 0.64 Å) and Al$^{3+}$ (i.r. = 0.54 Å) ions. This site seems to change the least due to transformation.

The two D sites of Nb-rich chevkinite-(Ce) are occupied by Ti$^{3+}$ (i.r. = 0.67 Å), Ti$^{4+}$ (i.r. = 0.60 Å), Nb$^{5+}$ and Mg$^{2+}$ in the crystal 1 with $C2/m$ space group. In the $P2_1/a$ structure of crystal 2, Mg$^{2+}$ is absent in the D sites. These DO_6 octahedra have the largest volumes among all chevkinites of known crystal structure (Stachowicz et al., in revision). We interpret this as a structural indication of the presence of Ti$^{3+}$ ($C2/m$ and $P2_1/a$) and Mg$^{2+}$ ($C2/m$) at the D sites of the Nb-rich chevkinite-(Ce). The lower valency of Ti balances the charge associated with the high content of Nb$^{5+}$. The migration of Mg$^{2+}$, the largest among the D site ions, results in a decrease of the DO_6 volume of ca. 0.14 Å. The mechanisms of Ti$^{4+}$ substitution in the D sites can be summarised as: $2Ti^{4+} \rightarrow Nb^{5+} + Ti^{3+}$; $2Ti^{4+} + O^{2-} \rightarrow Nb^{5+} + Mg^{2+} + OH^- + vac$.

Niobium is distributed among the C and D sites. Its presence is not seen as a larger value of ssv because it is masked by the presence of lighter elements, Al$^{3+}$ in the C site and Mg$^{2+}$.
and possibly vacancies in the \(D \) site. With the migration of magnesium to the \(B \) site in the \(P2_1/a \) crystal structure the presence of Nb is revealed in the increasing value of \(ssv \) in the \(D \) sites. Here, the \(ssv \) of the \(D(2) \) site (2\(c \) in the Wyckoff notation) refines to a value of 26, which can suggest another interpretation, namely full occupation by Fe. This \(ssv \) value increases systematically with the degree of transformation to \(P2_1/a \) symmetry. This phenomenon is discussed in the companion paper by Stachowicz et al. (in revision).

IMPLICATIONS

The predominant symmetry of Nb-rich chevkinite-(Ce) is \(C2/m \); however, a natural specimen of lower, \(P2_1/a \), symmetry was also recognised. Despite their nearly identical crystal structure topologies, the partitioning of elements among the \(B \), \(C \) and \(D \) sites differs significantly for specimens having the different space groups. Lighter elements with larger ionic radii (\(Mg^{2+} \), \(Ti^{2+} \)) tend to occupy the \(D \) site in the \(C2/m \) crystal structure, whereas in the \(P2_1/a \) structure these elements prefer the \(B \) site. Niobium is distributed between the \(C \) and \(D \) sites. The high content of niobium in the studied mineral may influence the presence of lower valences of titanium through the substitution \(2Ti^{4+} \rightarrow Nb^{5+} + Ti^{3+} \), to maintain electroneutrality. It points to the possible existence of a new chevkinite end member. For Nb-rich chevkinite-(Ce), Ce is present as \(Ce^{3+} \), Fe as \(Fe^{3+} \) and \(Fe^{2+} \) (in the ratio 1.85:1), and Ti as \(Ti^{4+} \), \(Ti^{3+} \) and possibly \(Ti^{2+} \), however only in the transformed \(P2_1/a \) form. Our work shows that a combined approach using structure determination (XRD), photoelectron spectroscopy and electron microprobe analysis can provide a comprehensive representation of the distribution of cations, and their oxidation state, in a structurally and chemically complex mineral. Chevkinite-group minerals can occur as phenocrysts in silicic volcanic rocks and can be early-magmatic phases in granites. They thus have the potential to fractionate the wide range of elements in their structure. For example, chevkinite-(Ce) has been the dominant control over Light REE distribution in
peralkaline rhyolites from Gran Canaria (Troll et al. 2003) and metaluminous rhyolites of the Peach Spring Tuff, SW USA (Padilla and Gualda 2016). The present study has shown that Nb can also be fractionated from residual melts.

ACKNOWLEDGMENTS

We are very grateful to Stefano Merlino, Sergey Aksenov, an anonymous reviewer and Associate Editor Alejandro Fernandez-Martinez for their very helpful comments on the manuscript, which much improved its quality. The research for this paper was in part supported by the Polish Ministry of Science and Higher Education within the Mobility Plus Fund award number 1301/MOB/IV/2015/0. Financial support was provided by Polish National Science Centre NCN grant decision DEC-2011/03/B/ST10/05491. We thank the Department of Earth Sciences, Natural History Museum, London, for hosting MS’s year-long visit to work with MDW.

REFERENCES CITED

FIGURE CAPTIONS

Figure 1. General view of chevkinite-type structure. Sheets of edge-sharing CO₆, D(1)O₆ and D(2)O₆ octahedra parallel to (001) alternate with layers of Si₂O₇ dimers connected via BO₆octahedra. Framework interstices are occupied by sheets of A(1) and A(2) sites occupied by REE and dominated by Ce in the samples studied here. Ce at A(1) is 8-coordinate in the C₂/m and P₂₁/a structures. Ce at A(2) is 8- and 9-coordinated in the C₂/m and P₂₁/a structures, respectively. Linkages between the sheets and layers involve Si(2) tetrahedra and Ce-O bonds.
Figure 2. The connectivity of B, C and D octahedra in chevkinite-type structure (a) projected onto (001) and (b) projected onto (010).

Figure 3. (a) BSE image of the crystal of Nb-rich chevkinite-(Ce) analysed by XRD and by EPMA, to show the very complex internal zonation. (b) Simplified interpretation of the distribution of the various textural zones. An oscillatory zoned crystal (Zones A and D) was replaced during one or more phases of hydrothermal alteration (zones B, Bp, C and E) The dark circles are analytical spots.

Figure 4. The Ce$^{3+}$ spectrum is composed of two multiplets corresponding to the spin-orbit split Ce(3d)5/2 and (3d)3/2 core holes. The line shapes and their positions are typical of trivalent Ce. Additionally, there is no peak at 916 eV which is a characteristic of tetravalent Ce.

Figure 5. The deconvoluted Ti(2p)3/2, Ti(2p)1/2 spectra from two different areas of the sample. The ratios of Ti with each oxidation state differ in both experiments. The largest contributions are Ti$^{3+}$ (first exp.) and Ti$^{4+}$ (second exp.). The final occupation ratio included in the X-ray crystal structure is: Ti$^{4+}$/Ti$^{3+}$/Ti$^{2+}$ = 5/5/2.

Figure 6. The deconvolution of the Fe(2p)3/2 spectra showing the 1.84:1 ratio of Fe$^{3+}$ to Fe$^{2+}$.

TABLES

Table 1. EPMA average compositions of textural zones.

<table>
<thead>
<tr>
<th>Zone</th>
<th>A+D</th>
<th>B</th>
<th>Bp</th>
<th>C</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>14</td>
<td>8</td>
<td>18</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>wt%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_2O_5</td>
<td>0.05</td>
<td>0.15</td>
<td>0.16</td>
<td>0.09</td>
<td>0.11</td>
</tr>
<tr>
<td>Nb_2O_5</td>
<td>8.86</td>
<td>11.21</td>
<td>11.57</td>
<td>10.10</td>
<td>7.83</td>
</tr>
<tr>
<td>Ta_2O_5</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.06</td>
</tr>
<tr>
<td>SiO_2</td>
<td>18.18</td>
<td>17.11</td>
<td>16.66</td>
<td>17.47</td>
<td>9.48</td>
</tr>
<tr>
<td>TiO_2</td>
<td>5.78</td>
<td>7.56</td>
<td>7.53</td>
<td>6.58</td>
<td>5.64</td>
</tr>
<tr>
<td>ThO_2</td>
<td>0.47</td>
<td>1.35</td>
<td>1.40</td>
<td>0.95</td>
<td>2.27</td>
</tr>
<tr>
<td>Al_2O_3</td>
<td>0.58</td>
<td>0.44</td>
<td>0.47</td>
<td>0.48</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>0.14</td>
<td>0.19</td>
<td>0.15</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Sc2O3</td>
<td>0.14</td>
<td>0.19</td>
<td>0.15</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>La2O3</td>
<td>15.86</td>
<td>12.40</td>
<td>12.04</td>
<td>14.30</td>
<td>17.44</td>
</tr>
<tr>
<td>Ce2O3</td>
<td>24.70</td>
<td>21.38</td>
<td>21.41</td>
<td>23.48</td>
<td>27.09</td>
</tr>
<tr>
<td>Pr2O3</td>
<td>2.05</td>
<td>1.68</td>
<td>1.67</td>
<td>1.80</td>
<td>2.00</td>
</tr>
<tr>
<td>Nd2O3</td>
<td>5.17</td>
<td>4.56</td>
<td>4.65</td>
<td>4.93</td>
<td>5.19</td>
</tr>
<tr>
<td>Sm2O3</td>
<td>0.33</td>
<td>0.31</td>
<td>0.32</td>
<td>0.27</td>
<td>0.33</td>
</tr>
<tr>
<td>Gd2O3</td>
<td>0.23</td>
<td>0.31</td>
<td>0.20</td>
<td>0.22</td>
<td>0.25</td>
</tr>
<tr>
<td>MgO</td>
<td>0.70</td>
<td>0.36</td>
<td>0.31</td>
<td>0.52</td>
<td>0.06</td>
</tr>
<tr>
<td>CaO</td>
<td>0.37</td>
<td>0.72</td>
<td>0.69</td>
<td>0.54</td>
<td>2.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.19</td>
<td>0.34</td>
<td>0.29</td>
<td>0.28</td>
<td>0.16</td>
</tr>
<tr>
<td>FeO*</td>
<td>12.33</td>
<td>9.11</td>
<td>8.80</td>
<td>10.31</td>
<td>2.97</td>
</tr>
<tr>
<td>SrO</td>
<td>0.49</td>
<td>0.73</td>
<td>0.68</td>
<td>0.53</td>
<td>4.12</td>
</tr>
<tr>
<td>BaO</td>
<td>0.51</td>
<td>0.75</td>
<td>1.07</td>
<td>1.00</td>
<td>0.94</td>
</tr>
<tr>
<td>PbO</td>
<td>0.58</td>
<td>0.55</td>
<td>0.56</td>
<td>0.73</td>
<td>bd</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.36</td>
<td>0.38</td>
<td>0.39</td>
<td>0.45</td>
<td>0.51</td>
</tr>
<tr>
<td>Total</td>
<td>98.03</td>
<td>91.67</td>
<td>91.12</td>
<td>95.27</td>
<td>88.41</td>
</tr>
</tbody>
</table>

FeO*, all Fe as Fe²⁺; bd, below detection; n, number of analyses used in calculating averages; Textural zones refer to those shown in Figure 1b.
Residual STD = 1.20759

No peak characteristic for Ce$^{4+}$
<table>
<thead>
<tr>
<th>Name</th>
<th>Pos.</th>
<th>FWHM</th>
<th>Area</th>
<th>%Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti 4+</td>
<td>458.57</td>
<td>1.497</td>
<td>2178.79</td>
<td>34.91</td>
</tr>
<tr>
<td>Ti 4+</td>
<td>464.09</td>
<td>2.293</td>
<td>1089.40</td>
<td>17.45</td>
</tr>
<tr>
<td>Ti 3+</td>
<td>456.87</td>
<td>1.635</td>
<td>1308.03</td>
<td>20.96</td>
</tr>
<tr>
<td>Ti 3+</td>
<td>462.20</td>
<td>2.112</td>
<td>654.01</td>
<td>10.48</td>
</tr>
<tr>
<td>Ti 2+</td>
<td>455.16</td>
<td>1.308</td>
<td>673.98</td>
<td>10.80</td>
</tr>
<tr>
<td>Ti 2+</td>
<td>460.82</td>
<td>1.173</td>
<td>336.99</td>
<td>5.40</td>
</tr>
</tbody>
</table>
Residual STD = 0.820882

<table>
<thead>
<tr>
<th>Name</th>
<th>Pos.</th>
<th>%Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe 3+ (1)</td>
<td>710.29</td>
<td>19.49</td>
</tr>
<tr>
<td>Fe 3+ (2)</td>
<td>711.20</td>
<td>19.26</td>
</tr>
<tr>
<td>Fe 3+ (3)</td>
<td>712.35</td>
<td>13.89</td>
</tr>
<tr>
<td>Fe 3+ (4)</td>
<td>713.70</td>
<td>8.46</td>
</tr>
<tr>
<td>Fe 2+ (1)</td>
<td>708.39</td>
<td>12.17</td>
</tr>
<tr>
<td>Fe 2+ (2)</td>
<td>709.20</td>
<td>14.72</td>
</tr>
<tr>
<td>Fe 2+ (3)</td>
<td>710.33</td>
<td>8.21</td>
</tr>
<tr>
<td>satellite</td>
<td>715.49</td>
<td>3.79</td>
</tr>
</tbody>
</table>