The role of crustal melting in the formation of rhyolites: constraints from SIMS oxygen isotope data (Chon Aike Province, Patagonia, Argentina)

Susanne Seitz1*, Benita Putlitz1*, Lukas Peter Baumgartner1, Anne-Sophie Bouvier1

1Institute for Earth Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland

*corresponding author: susanne.seitz@unil.ch; benita.putlitz@unil.ch

\textbf{Abstract}

We report on the oxygen isotope composition of Jurassic rhyolites from a silicic large igneous province, the Chon Aike Province (Patagonia, Argentina). Quartz is shown to behave refractory with respect to diffusional oxygen isotope exchange, making it a robust tracer of magmatic processes. Detailed SIMS (secondary ion mass spectroscopy) transects across 24 quartz crystals reveal homogeneous, but elevated, oxygen isotope values (10.9 - 12.5 ‰). None of the analyzed grains display distinct discontinuities in 18O values. Late hydrothermal exchange is limited to a few tens of micrometer next to cracks, some grain boundaries, and inclusions. No correlation with igneous zoning as revealed by cathodoluminescence (CL) was found. Finally, quartz crystals display little to no inter-grain variability at sample or outcrop scale. Zircons (7.5 – 10.1 ‰), in contrast, display significant inter-crystalline oxygen isotopic heterogeneity (> 2.0 ‰) at sample scale, but core-rim analyses reveal no systematic variations. This is interpreted to confirm the antecrystic nature of zircons, while quartz crystals mostly are phenocrysts.
studied quartz and zircon provide, hence, complementary information on the evolution of magmatic system of the Chon Aike Province. Zircon likely captures information about the deeper source region, in contrast to quartz that will record the last stages of the magmatic system and thus might provide important information on the build-up and duration of magma chamber processes in the upper crust. The data illustrate that quartz - in absence of recrystallization - can retain its magmatic signature and is thus a useful tracer of pre-eruptive magmatic processes. The high δ^{18}O values of both zircon and quartz require significant (> 50 %) crustal - most likely sedimentary – contribution in the melt formation process, either via assimilation or anatexis. This yields new constraints on petrological models for the Chon Aike Province.

Introduction

Deciphering magmatic process using oxygen isotopes has made important progress over the last decade due to in-situ SIMS analysis mainly on the minerals zircon and olivine (Valley 2003; Bindeman 2008; Wang and Eiler 2008; Eiler et al. 2011; Bowman et al. 2012; Manzini et al. 2017). In silica-rich chemistries, e.g., granites and rhyolites, zircon is the mineral of choice for oxygen isotope analyses since it is a robust tracer of magmatic processes, and it can be combined with in-situ U-Pb age dating and trace element analysis (Wotzlaw et al. 2014). Compared to zircon, systematic in-situ oxygen isotope analysis of intra- and inter-grain variation of quartz is still rare, despite its abundance as phenocryst and the great interest in quartz textures, quartz thermometry and diffusion chronometry (Wark and Spear 2005; Wark and Watson 2006; Cherniak et al. 2007; Wark et al. 2007; Saunders et al. 2010; Thomas et al. 2010; Gualda et al. 2012; Huang and Audéat 2012; Matthews et al. 2012b; Chamberlain et al. 2014; Seitz et al. 2016b, Seitz et al. 2018), and especially considering that the diffusion parameters for oxygen
isotope in quartz are among the best known (Dennis 1984; Giletti and Yund 1984; Sharp et al. 1991).

Since quartz is a major rock forming component in acidic rocks, it was always part of the analytical suite in oxygen isotope works and is still routinely analyzed (e.g. Grunder and Wickham 1991; Masuda and O’Neil 1994; King and Valley 2001; Bindeman and Valley 2001; Bindeman 2008; Fourie and Harris 2011; Watts et al. 2011; Folkes et al. 2013; Watts et al. 2016; Ellis et al. 2017 among many others). Nevertheless, its importance as tracer of magmatic processes appears diminished, because it has been questioned to which extent quartz - as opposed to zircon - retains its magmatic signature. The works of Valley and Graham 1996 and King et al. 1997 clearly demonstrated that quartz can be affected by post-magmatic hydrothermal fluid-rock interaction (see also Allan and Yardley 2007; Tanner et al. 2013; Fekete et al. 2016). Additional arguments come from quartz-zircon oxygen isotope systematics: zircon and quartz are rarely in high-temperature equilibrium, even in fast cooling extrusive rocks (e.g., Bindeman and Valley 2002). This observation of disequilibrium persists, despite the uncertainties in the fractionation factors applied, and has been used to support the general view that quartz is more susceptible to secondary exchange processes. Yet, as pointed out by Valley and Graham 1996, the isotopic gradients that must exist in partially exchanged quartz grains have not been well documented. The high lateral spatial resolution of about 10 to 15 µm of the secondary ion mass spectrometry analysis is ideal to have a closer look at the oxygen isotope systematics of quartz and its zoning. Oxygen isotope zonation in quartz is also interesting, in view of the abundant cathodoluminescence zonation observed in quartz and the recent use of Ti-diffusion chronometry...
Only a few studies to date, however, have analyzed the oxygen isotope composition of magmatic quartz using in-situ techniques in a systematic manner (Valley and Graham 1996; Allan and Yardley 2007; Tanner et al. 2013, Fekete et al. 2016; Ankney et al. 2017; Budd et al. 2017). Here we report on the oxygen isotope signature of quartz and zircon from a suite of silicic volcanic rocks of Jurassic age that forms part of the Chon Aike magmatic province in Patagonia (Argentina). In particular, we are interested to evaluate if quartz can retain its magmatic isotope signature, and to explore how quartz compared to zircon can provide complementary information on the magmatic evolution. Thus, a goal of our study was (a) to examine whether individual quartz phenocrysts are homogeneous or zoned in δ18O, (b) to assess the grain-to-grain variability in each sample, and (c) to determine how variations in δ18O can be correlated with textural features (on grain- or hand sample scale), and (d) how their values compare to zircon δ18O. We discuss the likely mechanisms, such as recrystallization, diffusion or fluid infiltration via cracks, that produce the variability – or absence thereof – in δ18O. We further use the quartz data in combination with in-situ zircon analysis to discuss potential magma sources. Oxygen isotope data on rhyolites are scarce in Patagonia (Riley et al. 2001), and our data provide novel constraints on the role of crustal melting in the formation of the Chon Aike magmatic province.

Geological setting
The investigated suite of Jurassic rhyolitic lava flows and ignimbrites belong to the Chon Aike magmatic Province (CAP). This province is considered to be one of the world’s largest silicic provinces (SLIP; Bryan et al. 2002; Bryan and Ferrari 2013), with an estimated volume of about 235,000 km3 (Pankhurst et al. 1998). Because of its importance for the understanding of the Jurassic tectonic setting and ore-forming processes, this province has attracted considerable attention. For details on the CAP see papers by Baker et al. 1981; Gust et al. 1985; Kay et al. 1989; Wever and Storey 1992; Pankhurst and Rapela 1995; Pankhurst et al. 1998; Riley and Leat 1999; Pankhurst et al. 2000; Riley and Knight 2001; Riley et al. 2001; 2010; Japas et al. 2013; Benedini et al. 2014; Sruoga et al. 2014, as well as Pankhurst et al. 2011 and recent papers by Navarrete et al. 2016; Angiboust et al. 2017; Bouhier et al. 2017; Dopico et al. 2017. Yet, despite the important work accomplished, the CAP is not as well investigated as the large silicic systems in the western US or New Zealand for example.

The CAP developed in an extensional setting during the initial stage of the continental breakup of Gondwana. The products of this Jurassic volcanism cover a large area in Patagonia, from the Tierra del Fuego in the south to the North Patagonian Massif (Fig. 1). Volcanism was active for about 40 My and partly coincides with the Karroo-Ferrar mafic magmatism (e.g., Pankhurst et al. 2000; Riley et al. 2004). Pankhurst et al. 2000 distinguished three main volcanic episodes: the oldest episode (V1) occurred between 188 and 178 Ma, the second episode (V2) between 172 and 162 Ma and the youngest episode (V3) between 157 and 153 Ma. The age progression of the province is consistent with the migration of magmatism away from a mantle plume towards a proto-pacific margin (Riley and Leat 1999; Pankhurst et al. 2000; Riley et al. 2001). It is associated with NE-SW direction of extensional opening (Mpodozis and Ramos 2008).
Contemporaneously, subduction along the proto-pacific margin of Gondwana moved southwards along the western margin of South America during the Jurassic (Mpodozis and Ramos 2008). This change is also documented in the geochemical characteristic of the different volcanic episodes. The V1 episode (in northeast Patagonia and in the south of the Antarctic Peninsula) shows intraplate characteristics in response to mafic underplating associated with the Karoo-Ferrar mantle plume. Magmatism shifted to southern Patagonia and the northern Antarctic Peninsula during the V2 episode. The geochemistry of those rocks shows a signature of anatexis of a less evolved hydrous mafic crust, which is thought to be linked to pre-Middle Jurassic arc-related underplating. The V3 igneous rocks in the southern Andes are the result of a significant westwards shift in volcanic activity. They show an active-margin signature and are associated with granitoids (Pankhurst et al. 2000) and they are coeval with the emplacement of the oldest parts of the South Patagonian Batholith (145 and 157 Ma; Hervé et al. 2007b).

The importance of crustal melting in the formation of the silicic CAP has been pointed out by several influential papers. Early geochemical studies (Baker et al. 1981; Gust et al. 1985; Wever and Storey 1992) argued that significant crustal melting was necessary to obtain the rhyolitic volcanic rocks of the CAP. Later, Pankhurst and Rapela (1995 and follow-up papers) suggested that the formation of the CAP rhyolites was due to partial melting of a mafic, granulite-facies lower crust of Grenvillian (model) age. The produced initial andesitic parental magma further evolved by fractional crystallization, likely in multiple stages (Pankhurst et al. 1998). Pankhurst and Rapela (1995) ruled out a significant contribution from a heterogeneous upper crust (see also Riley et al. 2001), also because the $^{87}\text{Sr}/^{86}\text{Sr}$ ratios of rhyolitic rocks are relatively homogenous throughout the CAP with values close to 0.7068.
Study area and sample description

The study area (Fig. 1 and Fig. 2) is located in southern Patagonia in the Fitz Roy mountain range (Argentina), east of the Chaltén Plutonic Complex (Ramírez de Arellano et al. 2012). In this part of Patagonia, the Jurassic volcanic rocks of the CAP are known as El Quemado Complex (EQC). In the study area, the EQC is composed of several rhyolitic flows and domes (further referred to as flows) and associated rhyolitic volcanoclastic rocks (further referred to as ignimbrites). The flows form kilometer-sized bodies, and are intercalated with the Rio Mayer Formation, a Cretaceous pelitic sequence (Fig. 3a). They preserved magmatic flow banding and vesicles (Fig. 3b). The sample localities Cerro Madsen, Laguna Sucia, Half Moon and the Loma de las Pizarras are shown in Fig. 2. Ignimbrites are exposed at the Cerro Polo locality (Fig. 2). Here a series of slightly inclined ignimbrite strata contain variable amounts of volcanic bombs and lithic fragments, and they are often characterized by fiamme structures (Fig. 4b and c). The ignimbrites discordantly overly a Paleozoic Basement, the Bahía de la Lancha Formation (Fig. 4a).

U-Pb zircon data from flows (Half Moon, Loma des Piazarras) and ignimbrites (Cerro Polo) yield Jurassic ages between 153 - 148 Ma (Leresche 2013); they belong thus to youngest (V3) episode of Jurassic volcanic activity in agreement with data from Malkowski et al. 2015 and studies further away (Pankhurst et al. 2000; Fildani and Hessler 2005). Representative whole rock analysis of the EQC are given in Table 1 and plotted in Fig. 5. The investigated flows and ignimbrites are peralumineous and show high SiO$_2$ contents from 75 to 82 wt% and Al$_2$O$_3$ varies between 12 and 15 wt%. Rocks of the EQC are typically low in MgO (< 1 wt%) and TiO$_2$ (< 0.5
wt%). In this characteristic they compare well with previously published data (e.g., Pankhurst and Rapela 1995) from silicic volcanics throughout the CAP (see Fig.5). Alteration lead to replacement of matrix and feldspar by carbonate and clay minerals. It is evident in low K$_2$O and elevated CaO-contents (see circled field in Fig.5).

Observation from thin sections and X-ray tomography show that the investigated flows are crystal-poor, while ignimbrites are crystal-rich (see also Seitz et al. 2018). Flows contain between 4 and 6 % quartz and sometimes up to 4 % feldspar crystals in a very fine-grained matrix of quartz and feldspar, which is interpreted to be recrystallized glass. Accessory biotite, zircon, and secondary ilmenite is present. Quartz crystals are mostly subhedral, with some embayments. Quartz shows magmatic oscillatory zoning in cathodoluminescence (CL) images (Fig. 6). Some of the quartz crystals contain inclusions or embayments of recrystallized melt. Ignimbrites are crystal rich and contain between 15 and 25 % quartz and between 10 and 15 % feldspar crystals in a very fine-grained matrix of quartz and feldspar. Accessories are biotite, zircon and secondary ilmenite. The matrix and the feldspars are frequently replaced by carbonate minerals. In CL images quartz crystals show a large variety in magmatic zoning patterns (Fig 7) with oscillatory, normal and reverse zoning along with internal dissolution textures. A detailed description and discussion of the quartz zoning pattern and can be found in Seitz et al., 2018.

Analytical Methods

Oxygen isotope analysis by CO$_2$–laser fluorination

Oxygen isotope data were acquired in the stable isotope laboratory of the University of Lausanne (Switzerland). Whole rock powder aliquots of 1 - 2 mg and handpicked quartz grains (1-3
individual crystals) were analyzed using the CO$_2$-laser fluorination method (for details on the procedure in Lausanne see Lacroix and Vennemann 2015). Results are corrected either to the international quartz standard NBS-28 (9.64 ‰, Coplen et al. 1983) or to the in-house standard LS-1 quartz, which has been calibrated to be 18.1 ‰ against NBS-28. The average precision and accuracy on replicates of these standards is better than 0.1 ‰.

SIMS δ^{18}O measurements of quartz and zircon

The oxygen isotope composition of quartz and zircon was measured in the SwissSIMS laboratory at the University of Lausanne (Switzerland). Central cuts of quartz phenocrysts were prepared for SIMS analysis based on 3D-images using computed micro X-ray tomography (µCT). Rock cores (~1.5 cm diameter and ~3 cm length) were marked with small saw cuts (using a wire saw) and subsequently imaged using a Bruker-SkyScan1173® µCT instrument. Scan-time was 14-15 hours, at 70 kV/140 nA or 80 kV/100 nA with a step size of 0.23° for a 360° rotation and averaging of 40 frames per rotation step. Volume rendering and image analysis were achieved using the SkyScan® software package. Quartz crystals were chosen based on their sizes and shape. Once the center of a crystal was identified, a ~1 mm thick section was prepared (i.e. the rock cores were cut slightly above or below the center identified of the chosen quartz crystal) and then carefully polished down to obtain sections that yield quartz cross sections corresponding to the central cut as identified in the tomographic images (see also Skora et al. 2006). Zircons were extracted from the hand sample using the electrodynamic disaggregation method (for details see Giese et al. 2010) at the SelFrag laboratory of the Institute of Geology, University of Bern (Switzerland). The samples were sieved and the zircons were concentrated from the <125 μm fraction based on density. Zircons were handpicked from this concentrate.
The extracted quartz and zircon crystals were mounted together with the UNIL-Q1 quartz standard (Seitz et al. 2016a) and the Penglai zircon (Li et al. 2010) respectively. Care was taken to only use the innermost 15 mm of the 2.5 cm diameter epoxy mount. The epoxy mount was polished with diamond paste, successively reducing grain size from 15 to 0.5 μm. Cathodoluminescence (CL) images were collected for each mount using the CamScanMV2300 scanning electron microscope (University of Lausanne).

The 18O/16O ratios were measured using a Cameca IMS 1280HR instrument. We used a 10 kV Cs$^+$ primary beam, a ~2 nA current, resulting in a ~10 μm beam size. The electron flood gun, with normal incidence, was used to compensate charges. 16O and 18O secondary ions, accelerated at 10 kV, were analyzed at a mass resolution of 3000 and collected on faraday cups in multi-collection mode. Faraday cups are calibrated in the beginning of the session, using the calibration routine. Each analysis takes less than 4 minutes, including pre-sputtering (30 sec) and automated centering of secondary electrons. A set of four standard analyses was measured every 10 - 20 analyses to monitor the instrument stability.

Results

Oxygen isotope geochemistry of quartz

We conducted a detailed SIMS study with over 600 quartz analyses covering 5 samples from flows and 6 samples from ignimbrites. This dataset is complemented by laser-fluorination analyses. Detailed ion microprobe δ^{18}O traverses were measured across 24 grains, 11 grains from flows and 13 grains from ignimbrites. CL imaging was used to select the best profile directions,
so as to traverse as many zones possible. Profiles are between 200 µm to 1500 µm long. If judged interesting, multiple profiles were obtained on a single grain, resulting in a total of 34 profiles, of which 17 are from flows and 17 are from ignimbrites. The data are summarized in Table 2a and 2b. All data is given in Supplement Table 1. Grains labeled #1-11 are from flows, while grains #12-24 are from ignimbrites.

Intra-grain variations. The SIMS $\delta^{18}O$ profiles on quartz grains are quite homogenous no systematic zoning is apparent, considering the reproducibility of ca. 0.3 ‰ (see Fig. 6 to Fig. 8). None of the analyzed grains display distinct discontinuities in ^{18}O values that corresponds spatially with a core-rim boundary or zonation as defined in CL, which in these grains is tightly correlated with the Ti-variations, interpreted to reflect growth structures (Seitz et al. 2016b, Seitz et al. 2018).

The intra-grain homogeneity is well illustrated in the ignimbrite samples (grains #12 to #24) where $\delta^{18}O$–profiles traverse several CL zones but are flat and yield $\delta^{18}O$ values between 10.8 ‰ and 11.1 ‰ (Fig. 7 and Fig. 8). A particularly nice example is grain #24 (in sample ign-A10) which has a bright CL rim, but no corresponding $\delta^{18}O$ signal, or grain #20 (sample ign-A5) with its complex CL zoning. Potential non-concentric oxygen isotope zoning was investigated with two or more profiles (see e.g. grain #12 in sample ign-B3). Individual traverses were either obtained at a high angle to each other or parallel to each other. No zoning was found, confirming that quartz phenocrysts are homogenous taking into account ca. 0.3 ‰ (2 sigma) of the SIMS analysis.
Profiles of $\delta^{18}O$ across quartz from flows (grains #1 to #11) are typically more variable (Fig. 6 and Fig 8). Discrete shifts in $\delta^{18}O$ values are observed near grain boundaries, along healed cracks (dark in CL, but no surface topography) and embayments or melt inclusions. Most common are shifts to slightly higher values (from 11.5 - 12.0 ‰ to 13.0 - 14.0 ‰). Nevertheless, some lower values were also measured. In general, grains from the flows show more healed cracks than grains in ignimbrites, with a few exceptions (see e.g. grain #12 from sample ignSLB3). Cracks usually crosscut CL-domains. Note, that not all cracks result in a $\delta^{18}O$ shift. Indeed, there are many examples were cracks do not disturb the ^{18}O pattern. The width of healed cracks as seen in 2D also does not correlate with the extent of ^{18}O changes: sometimes small cracks induce a pronounced shift, larger than a big crack. A shift towards higher $\delta^{18}O$ values near an embayment or a recrystallized melt inclusion can be observed in grain #3 and to a smaller extend in grain #9. However, the shift in ^{18}O values does not correlate to the distinct zonation seen in the CL images.

Crystal to Crystal variation on a hand sample and outcrop scale. We have analyzed between 2 and 5 grains in seven of the samples (3 ignimbrites and 4 flows) to test for grain-to-grain variability (see Fig. 6 to Fig. 8 and Fig. S1 in the data repository). Most samples exhibit no inter-grain variability exceeding the 0.3 ‰ level of the reproducibility of the SIMS analysis. The exception is flow sample rhyPN73 from the Loma de las Pizarras; one grain has a slightly higher average composition when compared to the three other grains from this sample (Tab. 2b) but is still within error of the other grains.
The comparison of samples – using both SIMS and laser fluorination data (see below) - from any specific outcrop or location shows that they yield very similar quartz compositions. All ignimbrites were collected in the Cerro Polo area. To assess the extent of lateral and vertical variations we analyzed quartz crystals from several samples within a stratigraphic unit of the Cerro Polo section. Samples from the same tuff unit (e.g., grains #20 and #21 from layer 9 of the Cerro Polo section, or grains #22 to #24 from layer 8 of the section) are indistinguishable within error, and the Cerro Polo section as a whole is homogenous (δ¹⁸O of 10.8 to 11.2 ‰). Flows sampled at the Half Moon and Loma de las Pizarras, are characterized by δ¹⁸O values between 11.4 ‰ and 12.3 ‰. The flows from Cerro Madsen can be distinguished from the latter two localities, they show slightly higher δ¹⁸O values of 12.6 – 13.4 ‰.

Laser fluorination δ¹⁸O data of whole rock and quartz

The SIMS work was complemented by laser fluorination analysis (Tab. 2a). We investigated whole rocks (23 flows, 7 ignimbrites) and quartz crystals (9 flows and 2 ignimbrites). The whole rock δ¹⁸O data for flows and ignimbrites differ significantly. Most of the whole rock data from flows cover a range between ca. 11 – 13 ‰ (see Tab. 2a). These values are similar to the δ¹⁸O quartz values, which works well with the fact, that fractionation between a rhyolitic magma and quartz is small at high temperature (0.8 ‰ at 700°C and 0.5 ‰ at 900°C, see discussion below). In contrast, ignimbrite samples show significantly elevated δ¹⁸O whole rock values of ca. 15 – 16 ‰ (Tab. 2a), while quartz values vary between 11.0 – 11.4 ‰. Thin section observation and XRF analyses confirm that high δ¹⁸O signature of the ignimbrites are clearly the result of secondary alteration. Much of the matrix and the feldspar crystals are replaced by carbonate minerals. Hydrothermal alteration is also confirmed by the whole rock chemical data plotted in
Fig 5. They have low alkali concentrations, which is compensated by elevated a CaO content.

Interestingly, although the whole rock oxygen isotope signatures of these ignimbrite are the result of alteration, this does not appear to affect the oxygen isotope value of the quartz (see discussion below).

Comparison of laser fluorination and SIMS data

SIMS analysis has demonstrated that quartz grains from ignimbrites are homogeneous. The average value obtained from SIMS analysis compares well with those obtained from laser fluorination analyses. The same applies to samples from flows; an exception is sample rhyL5 from the Cerro Madsen locality (Tab. 2a), where the laser fluorination value is slightly lower (12.5 ‰) than the average SIMS values obtained from two grains (13.0 ± 0.74‰). Note, that this sample has a relatively large intra-grain-variability.

In-situ oxygen isotope geochemistry of zircon

Zircons are typically around 100 µm long, and less than 50 µm wide. CL imaging shows magmatic rhythmic zoning. In the more than hundred zircons studied by our group (Leresche 2013; Nescher 2013; Seitz 2016), we have found only a few grains with xenocrystic cores (< 1 %), and none of the zircons from the samples investigated for this study has a xenocrystic core. No metamorphic or late hydrothermal overgrowths were found. We obtained a total of 83 analyses from 67 grains, from 7 different flows and 1 ignimbrite (Tab. 2a). Figure 9 is a composite of CL images of zircon from all 8 samples, with analysis spots and measured δ18O shown.
The variation between individual zircon grains in any given sample are relatively large, up to 2.6‰ (Fig. 10). This is quite intriguing, and contrasts with the inter-grain homogeneity observed among quartz grains (in the same sample). Hence the zircons record a complex history for each sample. Zircons from sample rhyN7 (Laguna Sucia) exhibit the most pronounced variation seen in this study: a 2.6‰ range in δ^{18}O which corresponds to the full range in δ^{18}O from 7.5‰ to 10.1‰ here observed in one single sample. Nevertheless, the mean of its zircon population (8.7‰) is indistinguishable from those of other flows. Other samples show significant variation between zircon crystals as well, ranging from 0.8‰ to 1.7‰, but again samples are very similar in their arithmetic mean values of 8.5‰ to 8.8‰. The only ignimbrite sample has a slightly higher mean of 9.1‰. It has a similar inter-grain variation, from 7.7‰ to 9.8‰, despite the fact that only a small number of grains was analyzed. Interestingly, low values < 8.0‰ (from 7.5‰ to 7.9‰) as well as high values (9.1 - 10.1‰) are found in most samples.

The variability within single grains (Fig. 9 and Fig. 10), in contrast, is rather limited. In fact, where multiple analyses of a grain were carried out, the δ^{18}O values overlap within error, even where core respectively rim domains were targeted. Only sample rhyN7 has one zircon where the two spots analyzed are significantly different at a 2σ uncertainty level of 0.37‰. The core value is 8.4‰, while the rim value is 9.4‰.

Discussion

Assessment of oxygen isotope equilibrium between quartz, zircon, and whole rock

Isotopic equilibrium between two mineral phases can be evaluated in a δ^{18}O_A − δ^{18}O_B plot (Taylor and Sheppard 1986). Figure 11 evaluates the state of equilibrium between quartz and...
zircon and between quartz and whole rock. Quartz and zircon or quartz and whole rock pairs in
equilibrium should plot along the line of equilibrium. The temperature range of minimum 700°C
and maximum 900°C was chosen to cover the whole range of magmatic temperatures. For a
detailed discussion of the crystallization temperature for quartz and zircon crystals see Seitz et al.
2018. The equilibrium fractionation factors used for Figure 11 are listed in Tab. 3.

There are several calibrations published for quartz-zircon, and probably the most commonly
employed fractionation factors for $\Delta_{\text{quartz-zircon}}$ are from Zheng 1996, Valley 2003 and Trail et al.
2009. These fractionation factors vary between 2.5 ‰ and 3.3 ‰ at 700 C°, depending on the
calibration chosen. In Fig. 11b the individual zircon δ^{18}O values are plotted against the average
quartz δ^{18}O value of the corresponding sample. Even using the largest fractionation of 2.4 ‰
(900°C) and 3.3 ‰ (700 C°; Zheng 1996) the δ^{18}O$_{\text{quartz}}$ – δ^{18}O$_{\text{zircon}}$ plot (Fig. 11b) highlights that
most zircon crystals are not in high-temperature isotopic equilibrium with quartz. Only quartz
and zircon from sample rhyPN73 plot between the equilibrium fractionation lines of 700°C and
900°C. The disequilibrium features shown in Fig. 11b are not surprising, since quartz values are
homogeneous, and zircon δ^{18}O values show a large variability. A look at the ignimbrite sample
ignSL75 illustrates this point: the measured $\Delta_{\text{quartz-zircon}}$ fractionation ranges from 1.6 ‰ to 3.4 ‰.
Most other samples show a similar range of fractionation. In the past, quartz-zircon
disequilibrium was often attributed to late stage, hydrothermal alteration of quartz (e.g., King et
al. 1997). In the present case, however, alteration of quartz is not likely due to the homogenous
isotopic profiles measured and the preservation of igneous titanium zoning (Seitz 2016; Seitz et
al. 2016b; Seitz et al. 2018; see additional discussion below). Alternatively, we need to consider
that zircon, as accessory phase, and quartz might record very different aspects of the magmatic
evolution (Claiborne et al., 2010; Gualda and Ghiorso, 2013; Chamberlain et al. 2014; Till et al. 2016. Budd et al. 2017). In this sense, quartz-zircon disequilibrium reflects that zircons are antecrysts derived from a heterogeneous source, as it has been proposed for the Yellowstone magmatic system (e.g., Bindeman et al. 2008b; Wotzlaw et al. 2014), while quartz crystallized later from their host magma.

The equilibrium $\delta^{18}O$ whole rock composition of rhyolitic rocks can be investigated by using a quartz-rhyolite melt fractionation factor. The equilibrium fractionation $\Delta_{\text{quartz-rhyolite}}$ can be calculated from $\Delta_{\text{CO}_2\text{-rhyolite}}$ (Appora et al. 2003) and $\Delta_{\text{CO}_2\text{-quartz}}$ (Zhao and Zheng 2003). Depending on the temperature the fractionation varies between 0.5 ‰ (900°C) and 0.8 ‰ (700°C). Hence quartz-whole rock ^{18}O fractionation should be small, between 0.5 – 1.0 ‰ at magmatic temperatures. The $\delta^{18}O_{\text{quartz}} - \delta^{18}O_{\text{whole rock}}$ plot in Fig. 11a reveals that this is not the case. Especially for the ignimbrites, quartz and its whole rock are far from equilibrium at these temperatures: the whole rocks show elevated oxygen isotope values of around 15.0 – 16.0 ‰ and are thus substantially higher than the average 11.0 ‰ quartz values obtained from ignimbrites. This observation is in agreement with the observed strong chemical and mineralogical alteration in ignimbrites, which resulted in carbonate precipitation, and replacement of feldspar and mafic minerals by hydrous minerals and carbonate. The high whole rock values, as well as the replacement mineralogy clearly suggests a low temperature ($<<500^\circ$C) alteration of these ignimbrites. Therefore, whole rock values do not represent melt $\delta^{18}O$ values. The disequilibrium is less pronounced for most flow samples. Quartz values are often, as expected, just slightly higher than their whole rock or identical within error, i.e. they approach high temperature equilibrium. However, there are also some samples where the whole rock value is more than 1.0
% higher than the corresponding quartz value. Nevertheless, this shows that flows have been less altered by hydrothermal fluids, as is also suggested by the petrography of these samples.

Most zircon crystals are not in equilibrium with the whole rock δ^{18}O composition (see Fig. S2 in data repository). The fractionation obtained between zircon and whole rock suggests unrealistically low equilibrium temperatures for most samples.

Hydrothermal alteration

The very high δ^{18}O whole rock values of ignimbrites and of some flows suggest that the rocks were hydrothermally altered. This hydrothermal alteration, confirmed by carbonate and clay mineral formation in the ignimbrite and some of the flows, occurred at relatively low temperatures, in the stability field of carbonates and clays, typically expected to be below 300 - 400°C. This is not surprising, since it is known that whole rocks are prone to change during hydrothermal alteration (Baumgartner and Valley 2001). Quartz has been shown to change its isotopic composition (e.g., King et al. 1997; Bindeman and Valley 2002). In fact, many workers suggest that only zircon preserves its original magmatic signature as it is highly resistant to weathering, alteration and has an exceedingly slow diffusion (e.g., Valley 2003). However, the CL data presented in Fig. 6 and Fig. 7 (see also Fig. S1 in data repository) clearly shows that the quartz crystals did not recrystallize during alteration. They display igneous, mostly Ti-induced CL-zoning (Seitz et al. 2016b; Seitz et al. 2018). In the present case, thus, exchange of 18O between quartz and fluids during hydrothermal interaction could only be due to diffusion as opposed to dissolution-precipitation.
To explore the possibility of oxygen isotope re-equilibration in quartz via diffusion, we performed diffusion calculation modeling using the SIMS data. Across more than 600 data points for quartz by SIMS (Fig. 12a, Tab. 2b), compositions are homogeneous with consistently high values, with most analyses falling between 11.0 ‰ to 13.0 ‰. If grains were changed by diffusion during a hydrothermal event, diffusion needed to be sufficiently fast to completely homogenize the grains. Hence the diffusion distance needs to be much larger than half of the typical grain size (~1mm). A reasonable minimal distance is 500 µm. The required diffusion time, $t = 0.4 \frac{a^2}{D}$ for a sphere with the grain radius a and the diffusion coefficient D. Bloch and Ganguly 2014 showed that this would result in a 98% re-equilibration of a sphere. The result is contoured in Fig. 13 for 500 µm. The water present diffusion coefficient of Giletti and Yund 1984 parallel to the c-axis of quartz was used to obtain a minimum time. This D compares well with the Dennis 1984 data. Diffusion in quartz is one to three orders faster parallel to the c-axis than perpendicular to it. We use the parallel diffusion coefficient of Giletti and Yund 1984 to obtain a minimum time estimate needed for re-equilibration, despite the fact that most quartz crystals were cut perpendicular to the c-axis. A re-equilibration time of more than 5×10^7 yr is needed at 400°C and a duration of over 4×10^9 yr is required at 300°C. Hence diffusive homogenization of quartz would take prohibitively long. Thus, a low temperature hydrothermal water-rock interaction cannot change quartz phenocryst compositions without recrystallisation, in agreement with our observations. Nevertheless, we interpret the – mostly subtle - changes in δ^{18}O measured close to cracks, embayments, and grain boundaries to reflect the effect of hydrothermal alteration. The half-width of the alteration is about 25 µm. This alteration distances would require roughly 125 ky at 400°C, a time span comparable to the life time of a hydrothermal system (Arehart et al. 2002; Rowland and Simmons 2012; Chiaradia et al. 2013).
In conclusion, the homogeneous δ^{18}O values of quartz are clearly magmatic in origin. Since diffusion of oxygen in zircon is even slower (Watson and Cherniak 1997; Cherniak and Watson 2003; Farver 2010), the above discussion also holds for the δ^{18}O composition of zircon, and zircon oxygen compositions should not be influenced by hydrothermal fluid-rock interaction, as long as they are not recrystallized.

Significance of δ^{18}O of quartz and zircon for magma evolution

Several of the quartzes from the flows and ignimbrites of the ELC were previously examined for their Ti-in-quartz zonation to derive timescales (Seitz et. al. 2016, Seitz et al. 2018). These studies determined short growth and residence times in the order of years to tens of years for these quartz crystals, based on the sharpness of Ti-zoning patterns measured by NanoSIMS. The extremely homogeneous profiles observed in quartz, as well as the negligible differences measured between grains could be the result of growth from a homogeneous magma or, alternatively, they could have been re-homogenized at magmatic temperatures. The latter seems to be unlikely, because the diffusion of Ti in quartz (4.4×10^{-19} m2/s, Cherniak et al. 2007) is very similar to that of oxygen self-diffusion in dry quartz (6.3×10^{-19} m2/s; Sharp et al. 1991) at magmatic temperatures (of 1000°C; see also Fig 13). Since very delicate Ti-zoning patterns are evident in CL-imaging, significant diffusion can be excluded. Hence, we argue that the δ^{18}O of quartz is a magmatic signature; its value reflecting the composition of the rhyolitic magma in the period of quartz crystal growth prior to eruption; this period is thought to be in the order of years to tens of years (Seitz et al. 2016, Seitz et al. 2018). The question is whether the small variations between the diverse flows reflect sampling of discrete magma reservoirs with subtle compositional differences or a systematic temporal evolution over time. At the moment we
cannot discern a systematic temporal evolution as has been observed for the Toba volcanic zone, for example. Based on in-situ quartz data Budd et al. 2017 could identify an important addition of a low-δ^{18}O component, i.e. hydrothermally altered rock, late in the genesis of the Toba magmas.

The δ^{18}O in-situ analysis of the zircon crystals illustrate a large grain-to-grain variability, yet zircon grains are not zoned; no xenocrystic cores are present. These observations suggests that zircons are antecrysts (as defined by Miller et al. 2003), crystallizing from discrete magma reservoirs with different oxygen isotope compositions or a heterogeneous magma body. Subsequent magma movement – percolation and mixing – scooped up these zircons resulting in a heterogeneous zircon population. Such a crystal cargo is well documented for many silicic magma system (Gualda and Ghiorso 2013, Bindemann and Simakin 2014, Wotzlaw et al. 2014, Bachmann and Huber 2016). Wotzlaw et al. 2014 explained the diverse δ^{18}O values of zircons from Yellowstone by remelting an isotopically heterogeneous crust, where zircons crystallized from different melt pods and then were accumulated together with the melt in a larger magma chamber. The long-term assembly of the EQC magma with mantle and particularly crustal contributions (see below) would be expected to result in a diverse crystal cargo, irrespective of the exact origin of the high δ^{18}O crustal signature. However, at this point, we cannot determine whether this diversity results from a heterogeneous source, an assembly of isolated magma batches, or extraction of diverse zircons together with interstitial melt from a crustal mush.

Evidence of crustal melting

Both quartz and zircon reflect a magmatic isotope signature and are used here to discuss the petrological and geological implications for the CAP, specifically the EQC, and its magma
source in the Chaltén area. In Fig. 14 the EQC volcanic rocks from the Chaltén area are
compared to the large volcanic silicic systems worldwide. The melt composition of the EQC
to the large volcanic silicic systems worldwide. The melt composition of the EQC
samples was calculated using minimum and maximum values of the quartz δ^{18}O composition for
a temperature range of 700-900°C based on the Appora et al. 2003 and the Zhao and Zheng 2003
calibrations assuming equilibrium between quartz and a rhyolitic melt (see Tab. 3). The
compilation in Fig. 14 highlights the particularity of our dataset. The EQC volcanic rocks are
compilation in Fig. 14 highlights the particularity of our dataset. The EQC volcanic rocks are
characterized by an exceptionally high SiO$_2$ and δ^{18}O composition, when compared to other
large silicic systems such as the Fish Canyon Tuff, Central Snake River Plain or Great Basin
Tuff in the western US (e.g., Folkes et al. 2013 and references therein). Other examples of high
δ^{18}O rhyolites come from Karoo-Etendeka province (southern Africa), from the Altiplano-Puna
Volcanic Complex and Cerro Galan (NW Argentina) and Tuscany (Italy) and from the Himalaya
(Taylor and Turi 1976; France-Lanord et al. 1988; Masuda and O'Neil 1994; Barnekow 2000)
and from the Caetano Tuff in Nevada, USA (Watts et al. 2016). The melting of a pre-existing,
non-mafic (sedimentary, volcanic, granitic) crust is proposed to be important for the rhyolite
formation in all these regions (Pichavant et al. 1988; Peccerillo 2017, see also Scaillet et al.
2016).

The importance of crustal melting in the formation of the CAP has been discussed by several
papers in the past (Baker et al. 1981; Gust et al. 1985; Wever and Storey 1992; Pankhurst and
Rapela 1995; Pankhurst et al. 1998; Riley et al. 2001). While early papers advocate crustal
melting, later works suggest complex crystal fractionation and assimilation processes of a mafic
crust. Only a few oxygen isotope data are available so far, and our contribution extends the data
base considerably. The high δ^{18}O signatures the EQC flows and ignimbrites in the Chaltén
suggest a significant crustal - most likely sedimentary - contribution to the melt formation process. Indeed, oxygen isotopes are an excellent tracer of a crustal signature, since the mantle is homogeneous at 5.5 % (Mattey et al. 1994). Zircons crystallized in equilibrium with a mantle melt, should have δ¹⁸O values around 5.3 % (Valley 2003). Quartz δ¹⁸O values from typical rhyolites derived by simple closed system fractionation from a mafic parent range usually from 6 % to 8 % (Bindeman 2008). The high δ¹⁸O signature of the EQC (zircon: 7.5 % – 10.5 %, quartz: 11 – 13 %) ties in very well with the peraluminous composition of these volcanic rocks, a characteristic documented all over the CAP (e.g., Riley et al. 2001). The high oxygen isotope signature suggests either a large amount of assimilation with a sedimentary or felsic component or direct partial melting of a sedimentary or felsic source (e.g., carbonates: 20 - 30 % and siliciclastic sediments: 10 - 20 %; granitoids: 7 - 14 %; Kolodny and Epstein 1976; Arthur et al. 1983, see also compilation in Taylor and Sheppard 1986; Eiler 2001; Bindeman 2008). Both scenarios – assimilation and melting – require a significant heat input (Annen and Sparks 2002; Dufek and Bergantz 2005; Annen 2009; Whittington et al. 2009; Furlong and Chapman 2013). Yet, it is evident that the observed signature cannot be achieved by simple models of fractional crystallization – as closed system fractional crystallization produces small oxygen isotope variation in the order of 1 % – but clearly requires addition of sedimentary or felsic materials (Taylor and Sheppard 1986; Chappell and White 1992; King and Valley 2001). Simple mass-balance calculations suggest that ca. 50 % of a crustal material with a composition of δ¹⁸O = 15 %, which corresponds to a typical value of a paragneiss or meta-sandstone (compare Hoefs 2018) has to be added to a typical basaltic magma (with an δ¹⁸O = 5.5 %) to achieve the observed high-δ¹⁸O signature of the EQC ignimbrites and flows. Currently there are no oxygen isotope analysis available for potential source rocks in the area, so the above calculations are a
first estimate. Higher or lower percentage of crustal contribution are needed respectively depending on the composition of the composition of the actual crustal rocks involved.

The estimate agrees well with results from other high δ^{18}O regions (e.g. Puna, Karoo); these studies discuss up to or in some cases more than 50% of contamination to reach similarly high oxygen isotope values. The Neogene ignimbrites of the Altiplano-Puna Volcanic Complex and Cerro Galan in Argentina are long known for their high δ^{18}O signature with whole rocks value $>9 – 14\%$ for rhyodacitic ignimbrites and 8 - 10% for basalts and andesites (Harmon et al. 1984; Taylor 1986). Recent work (Kay et al. 2010; Folkes et al. 2013; Freymuth et al. 2015) using quartz phenocrysts confirms this pattern; with values in the range from 8 – 10%. They discuss assimilation-fractional crystallization models, which suggest that the crustal melt proportion acquired by these ignimbrite magmas is variable but high - on the order of 22 – 68% (see also Jones et al. 2015).

Implications

The unique dataset presented here demonstrates that the isotopic composition of quartz can be used to characterize extrusive rocks, provided care is taken to demonstrate the absence of recrystallization. Resetting quartz in low temperature hydrothermal systems through diffusion requires millions of years (even at ca. 400°C). This time span is typically not available in hydrothermal environments. We suggest that quartz can indeed preserves its magmatic oxygen isotope signature. Quartz crystallized late during the evolution of the rhyolite magmas of the EQC, recording the δ^{18}O composition of the erupted magma batch.
The zircon oxygen isotope record, on the other hand, rather reflects the overall, long-term evolution of the magmatic system. Most of the investigated zircons are antecrysts, which were accumulated in the magma reservoir during the evolution of the magmatic system. Thus, they likely capture information about the source region feeding the magma reservoir. Quartz in contrast will record the last stages of the magmatic system and thus might provide important information on the build-up and duration of magma chamber processes in the upper crust.

Quartz-zircon disequilibrium is commonly observed (see e.g., Bindeman and Simakin 2014). The data proves that in the case of the EQC volcanic rocks of the Chaltén area, this is not due to post-magmatic alteration of quartz. The homogeneity of quartz, the short crystallization time of quartz (Seitz et al. 2016b, Seitz et al. 2018), the zircon diversity and the disequilibrium between quartz and zircon clearly indicate that zircon and quartz growth was not contemporaneous. Indeed, equilibrium should not be expected. However, the causes of disequilibrium need to be examined, if we want to achieve a better understanding of the magmatic system and in particular when attempting thermometry.

It is now commonly accepted that major rock forming minerals like quartz, feldspar or hornblende and accessory phases like zircon record very different parts of the magmatic history (i.e., Claiborne et al., 2010; Gualda and Ghiorso, 2013; Chamberlain et al. 2014; Till et al. 2016). Our results from the Chaltén area and the data from Toba by Budd et al. 2017 underline the potential of investigating quartz, as its oxygen isotope signature can decipher magmatic processes that are not reflected in zircon record. The present work convincingly illustrates the complementing nature of quartz and zircon analysis, and thus the advantage of this approach.
SIMS techniques are now more readily available and they will allow us to gain a better understanding of the texture and chemistry of quartz, an important rock forming mineral in silicic systems. A detailed look at quartz is also interesting in combination with other in-situ methods, which illustrate zonation of quartz, like Ti-diffusion chronometry (Wark et al. 2007; Saunders et al. 2010; Matthews et al. 2012a; 2012b; Chamberlain et al. 2014; Seitz et al. 2016b; Seitz et al. 2018).

The importance of crustal melting in the formation of the CAP, and other large silicic systems, has been discussed controversially in the past, and our oxygen isotope data allow a new look at this subject. We recognize that widespread crustal anatexis seems difficult to achieve due to the high thermal energy required, yet the presented oxygen isotope data support partial melting of an 18O-rich crust to form the silicic volcanic rocks in the Chaltén area. A follow up study is in progress - also using other tracers such as Sr or Pb isotopes, as well as high precision U-Pb dating - to better quantify and model the crustal component. If the high δ^{18}O oxygen isotope values prove to be a large-scale signature, suggested by the peraluminous character of the CAP volcanic rocks, this has important consequence of how to discuss crustal melting and in turn how to interpret the tectonic-magmatic models suggested for the CAP.

Acknowledgements

We thank the authorities of the Parque Nacional de los Glaciares (Argentina) for the permission to sample and the rangers in El Chaltén for their support. A special thank you goes to A. Kosmal (El Chaltén) for his hospitality, logistic support and geological insights. We also like to thank our field assistants N. Buchs and E. May for their help. We thank P. Vonlanthen for the introduction
to the cathodoluminescence laboratory. We thank L. Caricchi and O. Müntener for helpful
discussions. We appreciated the constructive suggestions by M. Stelten and L. Claiborne, which
have led to a significant improvement of the manuscript. We gratefully acknowledge funding by
the Swiss National Science Foundation (Fund 200020_150078 to BP, 200021_153094 to LPB)
and PCI CASA funding of the Swiss government to LPB

References

Allan, M.M., and Yardley, B.W.D. (2007) Tracking meteoric infiltration into a magmatic-
hydrothermal system: A cathodoluminescence, oxygen isotope and trace element study of

Angiboust, S., Hyppolito, T., Glodny, J., Cambeses, A., Garcia-Casco, A., Calderón, M., and
Juliani, C. (2017) Hot subduction in the middle Jurassic and partial melting of oceanic crust

Ankney, M.E., Bacon, C.R., Valley, J.W., Beard, B.L., and Johnson, C.M. (2017) Oxygen and
U-Th isotopes and the timescales of hydrothermal exchange and melting in granitoid wall
rocks at Mount Mazama, Crater Lake, Oregon. Geochimica et Cosmochimica Acta, 213,
137–154.

Annen, C. (2009) From plutons to magma chambers: Thermal constraints on the accumulation of
eruptible silicic magma in the upper crust. Earth and Planetary Science Letters, 284, 409–
416.

Annen, C., and Sparks, R.S.J. (2002) Effects of repetitive emplacement of basaltic intrusions on
thermal evolution and melt generation in the crust. Earth and Planetary Science Letters, 203,
937–955.

integrated O, U–Pb and Hf isotope study of zircon. Contributions to Mineralogy and

oxygen isotope fractionations between CO2 vapor and soda-melilite melt. Geochimica et

of volcanic, plutonic and geothermal activity at Ngatamariki, New Zealand. Journal of

Dopico, C.I.M.N., de Luchi, M.G.L., Rapalini, A.E., Wemmer, K., Fanning, C.M., and Basei,

Ramírez de Arellano, C., Putlitz, B., Müntener, O., and Ovtcharova, M. (2012) High precision U/Pb zircon dating of the Chaltén Plutonic Complex (Cerro Fitz Roy, Patagonia) and its
relationship to arc migration in the southernmost Andes. Tectonics, 31.

The 175 Ma and 160 Ma contour line is separating the V1, V2 and V3 volcanic episode of the Chon Aike Province. Also shown are the Patagonian Batholith and the Patagonian Plateau Basalts (after Pankhurst et al. 1998; Hervé et al. 2007a). The study area is in the vicinity of the Miocene Chaltén Plutonic Complex.

Figure 2. Detailed geological map of the study area indicating the main sample locations Cerro (Co.) Madsen, Laguna Sucia, Half Moon, Loma de las Pizarras and Cerro (Co.) Polo (modified from Ramírez de Arellano et al. 2012; Leresche 2013 and Nescher 2013).

Figure 3. (a) Overview photo of a rhyolitic lava dome (Half Moon) and flow (Lomo de las Pizarras) of the El Quemado Complex inter-folded with the Cretaceous pelitic sedimentary rocks of the Rio Maye Formation. (b) Rhyolite showing magmatic flow banding and vesicles. For scale, the diameter of the hand lens is ~1.5 cm.

Figure 4. (a) Photo of multiple deposits of rhyolitic ignimbrites at Cerro (Co.) Polo. They discordantly overlying the Paleozoic clastic sequence of the Bahia de la Lancha Formation. Some ignimbrites contain volcanic bombs (b) and they often show lithic fragments and fiamme structures (c). For scale, the head of the hammer is ~10 cm long.

Figure 5. Total alkali versus silica diagram of the El Quemado Complex in orange (this study). The shaded area is interpreted to result from alkali leaching and carbonate precipitation during hydrothermal alteration. Data from the literature for the Chon Aike Province, including the El Quemado Complex, are from Pankhurst and Rapela 1995; Pankhurst et al. 1998. R – rhyolite; D – dacite; TD – trachydacite; A – Andesite; TA – trachyandesite; BA – basaltic andesite; BTA – basaltic trachyandesite; B – basalt; TB – trachybasalt.
Figure 6. Cathodoluminescence images of quartz phenocrysts from rhyolitic lava flows, with indicated SIMS analysis profiles. The white circles indicate the location of the δ¹⁸O SIMS analysis. The corresponding quartz profiles are shown in the panel below. The error bars represent 2σ of the SIMS analysis. Open symbols are measured in cracks. The dotted line represents major zones in CL.

Figure 7. Cathodoluminescence images of quartz phenocrysts from rhyolitic ignimbrites and SIMS analysis profiles. The white dots indicate the location of the δ¹⁸O SIMS analysis. The corresponding quartz profiles are shown in the panel below. The error bars represent 2σ of the SIMS analysis. Open symbols are measured in cracks. The dotted line represents major zones in CL.

Figure 8. δ¹⁸O SIMS analysis measured on quartz crystals from rhyolitic flows (orange) and ignimbrites (green). The error bars represent 2σ of the SIMS analysis. Open symbols represent measurements affected by cracks. The dotted line represents major zones in CL. The corresponding CL images are shown in Fig. S1 (data repository).

Figure 9. Cathodoluminescence images of zircons. The red ellipses indicate the location of the δ¹⁸O SIMS analyses (error 2σ).

Figure 10. Oxygen isotope values of single zircon phenocrysts measured by SIMS. The error (2σ) is usually better than 0.3 ‰. The zircon population of a single sample shows a large spread, but no differences exist between individual samples. Rim and core from one zircon are usually the same within the error. Horizontal lines represent the sample average.

Figure 11. Calculated oxygen isotope fractionation for (a) quartz-whole rock, and (b) quartz-zircon. Full symbols represent bulk quartz measured with CO₂-laser fluorination and open symbols represent quartz measured with SIMS. Whole rock analysis was obtained by laser fluorination. Zircon crystals were all measured with SIMS. The 700°C and 900°C line is the calculated equilibrium fractionation based on the values as indicated in Tab. 3. The 2σ of the analyses is indicated, where not shown it is smaller than symbol.

Figure 12. Histogram of δ¹⁸O-values from (a) quartz and (b) zircon. The average quartz has a value of 11.6 ‰ and the average zircon has a value of 8.7 ‰.

Figure 13. Temperature versus time plot for oxygen isotope (Giletti and Yund 1984) and titanium (Cherniak et al. 2007) diffusion in quartz parallel to the c-axis over 500 μm. The diffusion time was calculated using the formula $t = 0.4*a^2/D$ for a sphere, a is the grain radius and D the diffusion coefficient. This corresponds to a 98 % exchange of the composition (Bloch and Ganguly, 2014).

Table 1. Representative whole rock geochemical analyses of major elements (XRF).

Table 2a. Oxygen isotope analyses of the El Quemado Complex measured by laser fluorination (whole rock and quartz) and SIMS (quartz and zircon).

Table 2b. Summary of oxygen isotope profiles measured in quartz crystals from the El Quemado Complex by SIMS.

Table 3. Equilibrium oxygen isotope fractionation between quartz and rhyolite, quartz and zircon, and rhyolite and zircon at 900°C and 700°C.

Supplement Figure S1. Additional cathodoluminescence images of quartz phenocrysts from rhyolitic lava flows and ignimbrites. The red dots indicate the location of the δ18O SIMS analysis. All corresponding profiles are shown in Figure 8.

Supplement Figure S2. Calculated oxygen isotope fractionation for zircon-whole rock. Whole rock analysis was obtained by laser fluorination. Zircon crystals were all measured with SIMS. The 700°C and 900°C line is the calculated equilibrium fractionation based on the values as indicated in Tab. 3. The 2σ of the analysis is indicated, where not shown it is smaller than symbol.

Supplement Table S1. SIMS δ18O data of all profiles measured on quartz samples from rhyolitic lava flows and ignimbrites of the El Quemado Complex (profiles are shown in Figures 6 to 8).
Figure 1

- Patagonian Batholith
- Patagonian Ice Field
- Plateau Basalts
- Miocene & Pliocene Intrusions
- Chon Aike Province
- North Patagonian Massive
- Lago Pueyrredón
- Lago Argentino
- Tierra del Fuego
- Staten Island
- Rio Deseado
- Lago Pueyrredón
- Study area

Map showing the study area in the Patagonian region with various geological features and locations.
Figure 3

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Figure 4

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Figure 6
Figure 8
Figure 9
Figure 10
Figure 11

(a) $\delta^{18}O_{\text{quartz}}$ vs $\delta^{18}O_{\text{whole rock}}$ for rhyolite and ignimbrite samples.

(b) $\delta^{18}O_{\text{quartz}}$ vs $\delta^{18}O_{\text{zircon}}$ for rhyolite and ignimbrite samples.

Temperature conditions: 700°C and 900°C.
Figure 12

(a) Frequency distribution of quartz (n = 621) showing δ¹⁸O values.
(b) Frequency distribution of zircon (n = 83) showing δ¹⁸O values.
Figure 13

![Graph showing temperature over time for Oxygen and Titanium with a 500 μm diffusion distance parallel to the c-axis.](image-url)
Figure 14

δ¹⁸O_melt (‰) vs. SiO₂ (wt%) plot showing the distribution of various geological features.

- Etendeka
- APVC
- Galán
- El Quemado Complex
- TVZ
- BT
- HRT
- Central Snake River Plain
- Kamchatka
- SCSG
<table>
<thead>
<tr>
<th>Sample</th>
<th>rhyL5</th>
<th>rhyA1d</th>
<th>rhyN7</th>
<th>rhy0721</th>
<th>rhy0821</th>
<th>rhySL30</th>
<th>rhyPN74</th>
<th>rhyPN29</th>
<th>ignSL72</th>
<th>ignA5</th>
<th>ignSL75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locality</td>
<td>Co. Madsen</td>
<td>Laguna Sucia</td>
<td>Half Moon</td>
<td>Lomo de las Pizarras</td>
<td>Co. Polo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td>77.21</td>
<td>79.24</td>
<td>75.80</td>
<td>77.45</td>
<td>78.39</td>
<td>76.49</td>
<td>76.07</td>
<td>75.22</td>
<td>75.08</td>
<td>73.22</td>
<td>77.73</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.09</td>
<td>0.05</td>
<td>0.08</td>
<td>0.05</td>
<td>0.09</td>
<td>0.08</td>
<td>0.11</td>
<td>0.08</td>
<td>0.22</td>
</tr>
<tr>
<td>Al2O3</td>
<td>12.95</td>
<td>12.00</td>
<td>13.00</td>
<td>12.66</td>
<td>13.12</td>
<td>11.84</td>
<td>13.48</td>
<td>13.38</td>
<td>11.13</td>
<td>9.93</td>
<td>8.28</td>
</tr>
<tr>
<td>Fe2O3(t)</td>
<td>1.41</td>
<td>0.18</td>
<td>1.79</td>
<td>0.93</td>
<td>0.79</td>
<td>1.25</td>
<td>1.18</td>
<td>1.70</td>
<td>1.96</td>
<td>1.76</td>
<td>8.28</td>
</tr>
<tr>
<td>MnO</td>
<td>0.02</td>
<td>0.00</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.05</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>MgO</td>
<td>0.11</td>
<td>0.02</td>
<td>0.47</td>
<td>0.06</td>
<td>0.06</td>
<td>0.60</td>
<td>0.14</td>
<td>0.11</td>
<td>0.66</td>
<td>0.68</td>
<td>1.11</td>
</tr>
<tr>
<td>CaO</td>
<td>0.33</td>
<td>0.08</td>
<td>0.68</td>
<td>0.58</td>
<td>0.16</td>
<td>1.95</td>
<td>1.19</td>
<td>0.21</td>
<td>3.41</td>
<td>4.69</td>
<td>0.21</td>
</tr>
<tr>
<td>Na2O</td>
<td>2.19</td>
<td>2.62</td>
<td>2.36</td>
<td>2.76</td>
<td>0.78</td>
<td>2.11</td>
<td>2.59</td>
<td>2.38</td>
<td>0.36</td>
<td>0.73</td>
<td>0.32</td>
</tr>
<tr>
<td>K2O</td>
<td>4.92</td>
<td>5.05</td>
<td>4.77</td>
<td>4.37</td>
<td>6.39</td>
<td>2.45</td>
<td>4.65</td>
<td>5.50</td>
<td>2.67</td>
<td>2.22</td>
<td>1.06</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>LOI</td>
<td>0.61</td>
<td>0.53</td>
<td>0.59</td>
<td>0.60</td>
<td>0.32</td>
<td>3.23</td>
<td>0.37</td>
<td>0.99</td>
<td>4.51</td>
<td>5.89</td>
<td>2.18</td>
</tr>
<tr>
<td>Total</td>
<td>99.82</td>
<td>99.78</td>
<td>99.59</td>
<td>99.51</td>
<td>100.10</td>
<td>99.00</td>
<td>99.81</td>
<td>99.60</td>
<td>99.97</td>
<td>99.28</td>
<td>99.86</td>
</tr>
</tbody>
</table>

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
DOI: https://doi.org/10.2138/am-2018-6520

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
<table>
<thead>
<tr>
<th>Sample</th>
<th>δ¹⁸O (laser fluorination)</th>
<th>δ¹⁸O (SIMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WR [%o]</td>
<td>Qtz [%o]</td>
</tr>
<tr>
<td>Cerro Madsen - Rhyolites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rhyL5</td>
<td>11.18</td>
<td></td>
</tr>
<tr>
<td>rhyA1d</td>
<td>12.49</td>
<td>± 0.01</td>
</tr>
<tr>
<td>rhyL4</td>
<td>12.37</td>
<td>± 0.16</td>
</tr>
<tr>
<td>rhyD1c</td>
<td>12.12</td>
<td>± 0.05</td>
</tr>
<tr>
<td>rhyL6</td>
<td>8.63</td>
<td>± 0.97</td>
</tr>
<tr>
<td>rhyC1</td>
<td>11.90</td>
<td></td>
</tr>
<tr>
<td>Laguna Sucia - Rhyolites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rhyH5</td>
<td>12.15</td>
<td>± 0.10</td>
</tr>
<tr>
<td>rhyN7</td>
<td>10.71</td>
<td>± 0.15</td>
</tr>
<tr>
<td>rhy0721*</td>
<td>11.95</td>
<td>± 0.38</td>
</tr>
<tr>
<td>rhySL38**</td>
<td>11.91</td>
<td>± 0.21</td>
</tr>
<tr>
<td>rhy0821*</td>
<td>12.15</td>
<td>± 0.19</td>
</tr>
<tr>
<td>rhySL62**</td>
<td>12.18</td>
<td></td>
</tr>
<tr>
<td>rhyPN15**</td>
<td>10.64</td>
<td>± 0.14</td>
</tr>
<tr>
<td>rhy0701*</td>
<td>13.14</td>
<td></td>
</tr>
<tr>
<td>rhy0786*</td>
<td>13.48</td>
<td>± 0.32</td>
</tr>
<tr>
<td>Half Moon - Rhyolites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rhyB7</td>
<td>12.80</td>
<td>± 0.18</td>
</tr>
<tr>
<td>rhyE5</td>
<td>11.58</td>
<td>± 0.66</td>
</tr>
<tr>
<td>rhyPN29**</td>
<td>12.58</td>
<td>± 0.06</td>
</tr>
<tr>
<td>rhyN1a</td>
<td>11.04</td>
<td>± 0.10</td>
</tr>
<tr>
<td>rhyPN31**</td>
<td>10.84</td>
<td></td>
</tr>
<tr>
<td>Loma de las Pizarras - Rhyolites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rhyPN69**</td>
<td>11.94</td>
<td>± 0.35</td>
</tr>
<tr>
<td>rhyPN73**</td>
<td>10.04</td>
<td></td>
</tr>
<tr>
<td>rhyPN74**</td>
<td>11.55</td>
<td>± 0.06</td>
</tr>
<tr>
<td>rhyPN26**</td>
<td>12.32</td>
<td>± 0.14</td>
</tr>
<tr>
<td>rhyPN10**</td>
<td>12.61</td>
<td></td>
</tr>
<tr>
<td>Corro Polo - Ignimbrites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ignSLB3**</td>
<td>11.11</td>
<td>± 0.55</td>
</tr>
<tr>
<td>ignSL72**</td>
<td>15.54</td>
<td>± 0.03</td>
</tr>
<tr>
<td>ignA5</td>
<td>14.68</td>
<td>± 0.03</td>
</tr>
<tr>
<td>ignA9</td>
<td>14.96</td>
<td>± 0.35</td>
</tr>
<tr>
<td>ignA10</td>
<td>15.7</td>
<td>± 0.22</td>
</tr>
<tr>
<td>ignSL71**</td>
<td>15.64</td>
<td>± 0.31</td>
</tr>
</tbody>
</table>

Errors for laser fluorination analysis are reported as 1σ.
If no duplicates were analyzed, laser fluorination data is reported with 0.1‰ (1σ) by default.
Errors for the SIMS analysis are reported as 2σ.
WR - whole rock; Qtz - quartz; Zrc - zircon
samples from: * Ramírez de Arellano 2011; **Leresche 2013 or Nescher 2013

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
<table>
<thead>
<tr>
<th>sample name</th>
<th>grain transect #</th>
<th>δ¹⁸O [‰]</th>
<th>STDV 2σ</th>
<th>n comments</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerro Madsen - Rhyolites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rhyL5</td>
<td>1</td>
<td>13.07 ± 0.55</td>
<td>45</td>
<td>grain average</td>
<td></td>
</tr>
<tr>
<td>grain_01</td>
<td>1</td>
<td>13.01 ± 0.74</td>
<td>95</td>
<td>sample average</td>
<td></td>
</tr>
<tr>
<td>A-B</td>
<td>1</td>
<td>12.98 ± 0.53</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A'-B'</td>
<td>2</td>
<td>13.14 ± 0.62</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A''-B''</td>
<td>3</td>
<td>13.06 ± 0.44</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grain_04</td>
<td>2</td>
<td>12.95 ± 0.87</td>
<td>50</td>
<td>grain average</td>
<td></td>
</tr>
<tr>
<td>A-B</td>
<td>4</td>
<td>12.57 ± 0.62</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A'-B'</td>
<td>5</td>
<td>12.85 ± 0.55</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A''-B''</td>
<td>6</td>
<td>13.32 ± 0.57</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A'''-B'''</td>
<td>7</td>
<td>13.35 ± 0.36</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Half Moon - Rhyolites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rhyB7</td>
<td>3</td>
<td>12.28 ± 1.97</td>
<td>29</td>
<td>sample average</td>
<td></td>
</tr>
<tr>
<td>grain_01</td>
<td>4</td>
<td>11.44 ± 0.63</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grain_07</td>
<td>5</td>
<td>11.75 ± 0.53</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loma de las Pizarras - Rhyolites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rhyPN69***</td>
<td></td>
<td>11.94 ± 0.35</td>
<td>52</td>
<td>sample average</td>
<td></td>
</tr>
<tr>
<td>grain 69a</td>
<td>6</td>
<td>11.91 ± 0.73</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grain 69b</td>
<td>7</td>
<td>11.91 ± 0.64</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rhyPN73***</td>
<td></td>
<td>11.95 ± 0.99</td>
<td>89</td>
<td>sample average</td>
<td></td>
</tr>
<tr>
<td>grain 73</td>
<td>8</td>
<td>11.79 ± 1.01</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grain 73a</td>
<td>9</td>
<td>11.82 ± 0.66</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grain 73b</td>
<td>10</td>
<td>11.94 ± 0.95</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grain 73c</td>
<td>11</td>
<td>12.29 ± 1.06</td>
<td>22</td>
<td>grain average</td>
<td></td>
</tr>
<tr>
<td>A-B</td>
<td>16</td>
<td>11.94 ± 0.68</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A'-B'</td>
<td>17</td>
<td>12.59 ± 0.94</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerro Polo - Ignimbrites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ignSLB3***</td>
<td></td>
<td>11.11 ± 0.55</td>
<td>107</td>
<td>sample average</td>
<td></td>
</tr>
<tr>
<td>grain a</td>
<td>12</td>
<td>11.16 ± 0.63</td>
<td>67</td>
<td>grain average</td>
<td></td>
</tr>
<tr>
<td>A-B</td>
<td>18</td>
<td>11.16 ± 0.75</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A'-B'</td>
<td>19</td>
<td>11.16 ± 0.53</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grain b</td>
<td>13</td>
<td>11.00 ± 0.36</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grain c</td>
<td>14</td>
<td>11.05 ± 0.27</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ignSL72***</td>
<td></td>
<td>10.99 ± 0.37</td>
<td>99</td>
<td>sample average</td>
<td></td>
</tr>
<tr>
<td>grain a</td>
<td>15</td>
<td>10.92 ± 0.20</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grain b</td>
<td>16</td>
<td>11.15 ± 0.26</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grain c</td>
<td>17</td>
<td>11.08 ± 0.38</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grain d</td>
<td>18</td>
<td>10.98 ± 0.26</td>
<td>21</td>
<td>grain average</td>
<td></td>
</tr>
<tr>
<td>A-B</td>
<td>25</td>
<td>10.86 ± 0.19</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A'-B'</td>
<td>26</td>
<td>10.92 ± 0.32</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grain e</td>
<td>19</td>
<td>10.92 ± 0.33</td>
<td>36</td>
<td>grain average</td>
<td></td>
</tr>
<tr>
<td>A-B</td>
<td>27</td>
<td>10.84 ± 0.23</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A'-B'</td>
<td>28</td>
<td>10.98 ± 0.35</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ignA5*</td>
<td>20</td>
<td>11.04 ± 0.37</td>
<td>31</td>
<td>sample average</td>
<td></td>
</tr>
<tr>
<td>ignA6*</td>
<td>21</td>
<td>10.79 ± 0.36</td>
<td>13</td>
<td>sample average</td>
<td></td>
</tr>
<tr>
<td>ignA9**</td>
<td>22</td>
<td>10.95 ± 0.35</td>
<td>13</td>
<td>sample average</td>
<td></td>
</tr>
<tr>
<td>grain_05</td>
<td>23</td>
<td>10.90 ± 0.25</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grain_10</td>
<td>24</td>
<td>10.92 ± 0.36</td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* from same ignimbrite layer 9
** from same ignimbrite layer 8

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
<table>
<thead>
<tr>
<th>Material</th>
<th>900°C</th>
<th>700°C</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qtz-rhy</td>
<td>0.6</td>
<td>0.9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>1.0</td>
<td>3+2</td>
</tr>
<tr>
<td>0.5</td>
<td>0.8</td>
<td></td>
<td>3+1*</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>1.1</td>
<td>4+3</td>
</tr>
<tr>
<td></td>
<td>-0.3</td>
<td>0.6</td>
<td>5+3</td>
</tr>
<tr>
<td>Qtz-Zrc</td>
<td>2.4</td>
<td>3.3</td>
<td>4*</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>2.8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>2.5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>1.5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>3.8</td>
<td>5+4</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1.8</td>
<td>5+8</td>
</tr>
<tr>
<td>rhy-Zrc</td>
<td>2.5</td>
<td>3.2</td>
<td>3+4</td>
</tr>
</tbody>
</table>

Qtz - quartz; Zrc - zircon; rhy - rhyolite

* values used for calculations in Fig. 11

(1) Appora et al. 2003; (2) Palin et al. 1996;
(3) Zhao and Zheng 2003; (4) Zheng 1996;
(5) Sharp and Kirschner 1994; (6) Valley 2003;
(7) Trail et al. 2009; (8) Krylov et al. 2002