"Correction 3"

Oxalate formation by *Aspergillus niger* on manganese ore minerals

Olga Frank-Kamenetskaya*a*, Marina Zelenskaya*b*, Alina Izatulina*a*, Vladislav Gurzhiy*a*,
Aleksei Rusakov*a*, Dmitry Vlasov*b*

*a*Institute of Earth Sciences, St. Petersburg State University, Universitetskaya Nab 7/9, 199034, St. Petersburg, Russia

b Department of Biology, St. Petersburg State University, Universitetskaya Nab 7/9, 199034, St. Petersburg, Russia

*Corresponding author. Tel.: +7 921 3316802; E-mail address: ofrank-kam@mail.ru (O. Frank-Kamenetskaya).

Abstract

Microscopic fungi (micromycetes) play an important role in rock alteration often leading to formation of insoluble biogenic oxalates on rock/mineral surfaces. Oxalate crystallization under the influence of fungus *Aspergillus niger* (one of the most active stone destructors) was studied *in vitro* on two Mn,Ca-bearing minerals of manganese ores: todorokite (Na$_{0.36}$,Ca$_{0.09}$,K$_{0.06}$,Sr$_{0.03}$,Ba$_{0.02}$)O$_{12}$(Mn$_{5.53}$,Mg$_{0.47}$)$_{0.56}$ and kutnohorite (Ca$_{0.77}$,Mn$_{0.23}$)(Mn$_{0.74}$,Fe$_{0.14}$,Mg$_{0.11}$)(CO$_3$)$_2$. The underlying minerals and the products of their alteration were investigated using powder and single crystal X-ray diffraction, optical microscopy, SEM and EDX methods.

It was shown that a more intense leaching of Ca-ions (compared to Mn-ions) from todorokite and kutnohorite leads to an earlier crystallization of calcium oxalates (predominantly whewellite) compared to manganese oxalates (lindbergite, falottaite). Crystallization of manganese oxalates on the surface of kutnohorite occurs in more acidic (compared to todorokite) medium through the formation of mycogenic Mn,Ca-bearing oxides, which are close in composition and structure to...
todorokite. The possibility of structural evolution within the manganese oxalate crystalline phases caused by hydration and dehydration processes, which are responsible for changes in proportions of lindbergite and falottaite, derives from similarities between the falottaite and lindbergite structures. The amorphization of falottaite in the temperature range of 70 – 80 °C suggests that formation of lindbergite by falottaite dehydration occurs via amorphous precursor. These results can be used for developing efficient biotechnologies using fungi for industrial enrichment of poor manganese ores and environmental bioremediation.

Keywords: fungal biomineralization, *Aspergillus niger*, manganese oxidation, toodorokite, kutnohorite, falottaite, lindbergite, whewellite, weddellite

INTRODUCTION

Microscopic fungi (micromycetes) play an important role in rock alteration often leading to formation of insoluble biogenic oxalates on their surfaces (Sterflinger 2000; Burford et al. 2003; Gadd 2007, 2010; Gadd et al. 2014; Gorbushina 2007; Vlasov et al. 2020). Investigation of these processes contributes to the understanding of biomineralization mechanisms under the influence of lithobiotic microbial community and biogeochemical cycles. These knowledge will create a basis for the potential biotechnological applications using fungi (Gadd 2010; Mulligan et al. 2004; Das et al. 2011, 2015, 2016; Acharya et al. 2004).

Simulation experiments with microorganisms (in particular microscopic fungi) are of great importance since they help obtain the patterns of rock alteration by microbial action and identification of the factors controlling these processes (Sayer et al. 1997; Burford et al. 2006; Wei et al. 2012; Ferrier et al. 2019; Vlasov et al 2020).

Manganese is a technologically important metal that has a few direct primary sources and is often mined in conjunction with other metals (Cu, Ni, and other), as well as from the low-grade manganese ores (Das et al. 2011, 2015; Acharya et al. 2004; Ghosh et al., 2016). Genuine interest in biotechnologies using diverse microbes, which leach manganese and other metals from the ores...
including low-grade ores, lies in biomining which is a superior green alternative to the current pyro
which are active producers of various organic acids, are often used in bioleaching. For example, the
leaching of metals from Indian ocean nodules was produced with *Aspergillus niger* (Mehta et al. 2010), the leaching of manganese from manganese ore with *Penicillium citrinum* (Acharya et al., 2001) and *Aspergillus sp.* (Mohanty et al. 2017), the leaching of heavy metals from mine tailings
with *Aspergillus fumigatus* (Seh-Bardan et al. 2012). The biotechnologies for bioremediation of the
environment from Mn and other toxic metals are also developed (Mota et al. 2020, Tsekova et al.

The interest of the mineralogical community in studying the bioalteration of Mn-bearing
minerals is caused by the significant role of manganese in terrestrial and marine biological systems
as it is used by photosynthetic microorganisms for oxygen evolution (Tebo et al. 2005; Ehrlich and
Newman 2009). In nature Mn ions occur in 2+, 3+ and 4+ oxidation states. Many microorganisms
including micromycetes can oxidize Mn\(^{2+}\) from soluble phases followed by the precipitation of
Mn\(^{3+,4+}\) oxides (Santelli et al. 2011; Wei et al. 2012; Tang et al. 2013; Namgung et al. 2018).
Microbial oxidation rate exceeds the abiotic oxidation rate by 5-6 orders of magnitude (Tebo 1991;
Morgan 2005). Micromycetes producing oxalic acid can reduce back the Mn\(^{3+,4+}\) oxides with the
Manganese oxalate dihydrate, which was approved as a new mineral lindbergite Mn\([C_2O_4]\cdot2H_2O
(Atencio et al. 2004), was first found in the thallus of the *Pertusaria corallina* lichen on manganese
ore (Wilson and Jones 1984). Manganese oxalate trihydrate (falottaite, Mn\([C_2O_4]\cdot3H_2O), is a new
mineral found in the Falotta mine manganese deposit in the Swiss Alps by Graeser and Gabriel
(2013, 2016) but not yet found in biofilms.

In model experiments fungal manganese oxalates with various H\(_2\)O contents were obtained
before on rhodochrosite (Sayer et al. 1997), manganese oxides (Wie et al. 2012), manganese
nODULES (FERRIER ET AL. 2019) UNDER THE INFLUENCE OF ASPERGILLUS NIGER AND SERPULA HIMANTIOIDES. HOWEVER, PATTERNS OF FUNGAL CRYSTALLIZATION OF MANGANESE OXALATES VIA COMPLEX SOLUBILIZATION AND REDOX PROCESSES REMAIN UNCLEAR.

THE PRESENT WORK INVESTIGATES FUNGAL ALTERATION OF Mn, Ca-BEARING MINERALS OF MANGANESE ORES: COMPLEX OXIDE TODOROKITE AND CARBONATE KUTNOHORITE, IN VITRO. TODOROKITE (Na, Ca, K, Ba, Sr)$_x$(Mn$^{4+}$, Mn$^{3+}$, Mg)$_6$O$_{12}$.3-4H$_2$O is one of the main minerals of Fe-Mn nodules, which accumulate on modern oceans bed and are the largest source of manganese ore (Post 1999; Madondo et al. 2020; Bloise et al. 2020). Carbonate kutnohorite Ca(Mn, Mg, Fe)(CO$_3$)$_2$ is found in more poor sedimentary manganese carbonate ores (Zak and Povondra 1981; Johnson et al. 2015).

THE INTEREST OF THE PRESENT WORK WAS FOCUSED ON THE FOLLOWING FUNGAL ALTERATIONS OF TODOROKITE AND KUTNOHORITE: (1) THE SEQUENCE OF FORMATION AND TRANSFORMATION OF CALCIUM AND MANGANESE OXALATES, MORPHOLOGY OF FORMED CRYSTALS AND THEIR INTERGROWTHS; (2) THE EVOLUTION OF pH OF THE MEDIUM DURING OXALATE CRYSTALLIZATION; (3) THE MECHANISMS OF INFLUENCE OF COMPOSITION AND PROPERTIES OF UNDERLYING MINERAL SUBSTRATE ON OXALATE CRYSTALLIZATION; AND (4) STRUCTURAL EVOLUTION OF THE MANGANESE OXALATES, CAUSED BY HYDRATION AND DEHYDRATION PROCESSES.

MATERIALS AND METHODS

EXPERIMENTAL CONDITIONS

Agricultural Microbiology. The species identification of the strain was based on the sequence of the ITS region of rDNA (GenBank accession no - KF768341).

The two Mn,Ca- minerals were used as underlying substrates: todorokite (from M.Yu. Nikolaenko collection) which was originally found in an outcrop near Niki-Niki town (West Timor, Indonesia) and kutnohorite (from A.G. Bulakh collection) which was taken from Madan (Pb-Zn(-Ag) ore field (Bulgaria).

The experiment was carried out in liquid Czapek-Dox medium (NaNO$_3$ – 3.0; KH$_2$PO$_4$ – 1.0; MgSO$_4$·7H$_2$O – 0.5; KCl – 0.5; FeSO$_4$·7 H$_2$O – 0.015; glucose – 30.0 g/l.) at room temperature with constant pH control of cultural liquid (initial pH value 5.5). Mineral blocks (1x1x0.5 cm) were put on the bottom of plastic Petri dishes and 15 ml of Czapek-Dox liquid medium was added so that the surface of the underlying substrate was completely covered with the nutrient medium. Inoculation was carried out with _A.niger_ conidia and mycelium fragments from a 10-day-old fungal culture obtained on Czapek-Dox agar medium. The inoculum was placed on the surface of a liquid culture medium without submerging for better development of the surface culture of the fungus. The duration of the experiments ranged from two days to 20 days. Falottaite (manganese oxalate trihydrate) crystals, suitable for X-ray single crystal diffraction analysis, were obtained after 45 days in a separate experiment. Surfaces of Mn,Ca – minerals after the fungal treatment, precipitates and fungal biofilms formed during the experiment were investigated directly on 2, 4, 5, 6, 8, 14 and 20 days. For comparison, control experiments were carried out in parallel without the participation of fungi. All experiments were performed in triplicate.

METHODS

Mn,Ca-bearing minerals and the products of its alteration were investigated by powder and single crystal X-ray diffraction, optical and scanning electron microscopy as well as energy-dispersive X-ray spectroscopy for elemental analysis.
Optical microscopy. To observe the germination of conidia of the fungus, the mycelium development, the sporification and formation of various crystals Leica optical mono and stereo microscopes with digital photo attachments were used.

Powder X-ray diffraction (PXRD). The determination of phase composition of the products of biomineralization was carried out by means of Bruker «D2 Phaser» powder X-ray diffractometer operated with CuKα radiation. X-ray diffraction patterns were collected at room temperature in the 2θ range of 5-60° with a step of 0.02° and a counting time of half second per step. A sample holder from a single crystal silica slice was used to eliminate the background noise. Phase identification was carried out using the ICDD PDF-2 database (release 2016).

Thermal behavior of fungal falottaite was examined in situ using a Rigaku Ultima IV powder X-ray diffractometer (PXRD, CoKα radiation; 40 kV / 30 mA; Bragg-Brentano geometry; PSD D-Tex Ultra detector). A Rigaku SHT-1500 chamber was employed for experiments in air in the range of +25 – +320 °C; a Pt strip (20×12×2 mm³) was used as a heating element and sample holder. The temperature steps varied from 5 to 20 °C depending on the temperature range. The heating rate was 2 °C/min. The collection time at each temperature step was about 30 min. The irreversibility of the observed phase transformations was verified by collecting PXRD data on cooling.

Single crystal X-ray diffraction (SCXRD). Single crystal of biogenic falottaite was selected under an optical microscope and mounted on a glass fiber. Data were collected using a Bruker SMART diffractometer equipped with an APEX II CCD area detector operated with monochromated MoKα radiation (λ[MoKα] = 0.71073 Å) at 50 kV and 40 mA. Diffraction data were collected at room temperature with frame widths of 0.5° in ω and φ, and exposition of 80s per each frame. Data were integrated and corrected for background, Lorentz, and polarization effects by means of the Bruker programs APEX2 and XPREP. A semi-empirical multi-scan absorption correction was applied using the SADABS program (Sheldrick 2013). The unit-cell parameters were refined by least-squares
analysis (Table 1). The structure was solved using dual-space algorithm and refined by means of \textit{SHELX} programs (Sheldrick 2015a; 2015b) incorporated in the \textit{OLEX2} program package (Dolomanov et al. 2009). The final model included coordinates and anisotropic displacement parameters for all non-H atoms. Positions of H atoms of H$_2$O molecules were localized from difference Fourier maps and refined with individual isotropic thermal displacement parameters. Supplementary crystallographic data have been deposited in the Inorganic Crystal Structure Database (CSD 1791378) and can be obtained from Fachinformationszentrum Karlsruhe via https://www.ccdc.cam.ac.uk/structures/.

\textbf{Scanning electron microscopy (SEM) and Energy-dispersive X-ray (EDX) spectroscopy.}

Scanning electron microscopy (SEM) with elemental composition analysis was used for identification of oxalate phases by morphological characteristics, examination of morphology of the formed crystals and their intergrowths and also for determination of the elemental composition of underlying substrate and crystallized products. The study was carried out by means of a TM 3000 (HITACHI, Japan, 2010) with OXFORD EDX module. For EDX measurements the microscope was additionally equipped with the Oxford Inca system which operated in a low vacuum (60 Pa) mode and at an acceleration voltage of 15 kV. To avoid the charging effect on SEM images the samples were coated by a thin carbon layer (High Vacuum Carbon Sprayer Q150TE). The EDX spectra were analyzed by means of the EDAX Genesis software package (semiquantitative analysis was performed by standard-less method that is generally reliable for elements with Z > 10). Quantitative elemental composition of underlying mineral substrates was analysed on the epoxy-mounted, polished, and carbon-coated samples by means of Hitachi S-3400N scanning electron microscope equipped with AzTec Energy 350 energy dispersive (EDX) spectrometer, using the following analytical standards: pure manganese (Mn), anorthite (Ca), forsterite and MgO (Mg), pure iron (Fe), albite (Na), orthoclase (K), celestine (Sr) and barite (Ba). EDX spectra were obtained under 25 kV accelerating voltage and 10 nA beam current.
Todorokite mineral formula was calculated assuming Mn+Mg content equal to 6. Kutnohorite mineral formula was calculated assuming summarized amount of cations (Ca, Mg, Mn and Fe) equal to 2.

RESULTS

Mineral and elemental composition of underlying substrates

According to PXRD results, it was confirmed that the used mineral substrates are todorokite (ICDD (PDF-2) №01-087-0389) and kutnohorite (ICDD (PDF-2) №01-084-1291). Since manganese oxides with tunnel crystal structure (minerals coronadite, romanechite, todorokite) are usually difficult to analyze due to poor crystallinity (Bish and Post 1989) and may undergo changes during annealing, the manganese oxide sample was studied via PXRD at room temperature (25° C) and after annealing at 100° C and 500° C. No changes in powder XRD patterns were observed, confirming that this substrate corresponds to todorokite (Naganna 1963; Bish and Post 1989; Ghodbane et al. 2010).

According to EDX data (Table 2) formulas for the underlying minerals were: todorokite — (Na$_{0.36}$,Ca$_{0.09}$,K$_{0.06}$,Sr$_{0.03}$,Ba$_{0.02}$)$_{0.56}$(Mn$_{5.53}$,Mg$_{0.47}$)O$_{12}$·3-4H$_2$O; kutnohorite — (Ca$_{0.77}$,Mn$_{0.23}$)(Mn$_{0.74}$,Fe$_{0.14}$,Mg$_{0.11}$)(CO$_3$)$_2$.

Alteration of Ca,Mn-bearing minerals under fungal treatment

Crystallization on a todorokite surface

Alteration of todorokite under fungal treatment was registered already on the 2nd day of the experiment by decrease in pH of the medium (from 5.5 to 4). The beginning of dissolution of the underlying substrate and oxalate crystallization were detected. Numerous groups of lamellar pseudohexagonal crystals of monoclinic whewellite (monohydrate calcium oxalate, Ca[C$_2$O$_4$]H$_2$O) were visible on the surface of todorokite, the splitting of which led to the formation of dense stacked intergrowths. Tetragonal weddellite (dihydrate calcium oxalate, Ca[C$_2$O$_4$]·(2.5–x)H$_2$O),
was present in the form of single dipyramidal crystals (15-20 μm), some of which also showed signs of intensive splitting (Fig.1a,b; 2a, Table 3).

On the 4th day of the experiment, the pH of the medium did not change. Along with numerous crystals of calcium oxalates (predominantly whewellite) and their intergrowths, monoclinic lindbergite appears, which represented by separate large spherulite-like (shard-like, Ferrier et al. 2019) intergrowths of platy crystals (the size of intergrowths reaches 80-100 μm) (Fig. 1c,d, Table 3). The size of weddellite crystals (~100 μm) and the intensity of their splitting increased. In addition, small (~ 15–20 μm) crystals of weddellite of the next generation were visible.

On the 6th day of the experiment, the pH of the medium decreased to 3.5, the amount of lindbergite increased and a significant amount of orthorhombic falottaite was observed (Figs. 1e, 1f and 2b). The sizes of intergrowths of platy crystals of lindbergite reached 200-250 μm. Falottaite was represented by flat needle crystals, often forming star shaped intergrowths (Fig. 1f inset). The length of the crystals of falottaite varied from 200 μm to 1 mm. The morphology and ratio of calcium oxalates (weddellite and whewellite) preserved the same.

On the 8th day of the experiment a slight increase of pH of the medium (up to 4.5) was recorded. Numerous needle-like crystals of falottaite were visible (Fig.1g,h; 2c). Lindbergite disappeared. The morphology and ratio of calcium oxalates preserved the same.

On the 14th day of experiment pH increased to 6.0, and lindbergite appeared again (the size of the intergrowths of platy crystals ranged from 80 to 180 μm) (Figs. 1i, 1j and 2d). The amounts of lindbergite and falottaite were comparable. Whewellite was represented not only by stacks of platy crystals, but also by their spherulite-like intergrowth aggregates (Fig. 1j inset).

Calcium oxalates, which were present on todorokite at all stages of the experiment, contained an admixture of strontium, while manganese oxalates contained an admixture of magnesium. According to EDX, the content of strontium in calcium oxalates increased during the experiment and the content in weddellite was always greater than in whewellite. The Sr/Ca atomic
ratio in whewellite reached 12%, in Sr-weddellite - 58%, which corresponds to the solid solution \((\text{Ca,Sr})[\text{C}_2\text{O}_4](2.5-x)\text{H}_2\text{O}\) (sp.gr. I4/m) (Rusakov et al 2019). The Mg amounts in manganese oxalates of various hydration states were comparable. The Mg/Mn atomic ratio in lindbergite reached 15%, in falottaite- 12%.

Crystallization on kutnohorite surface

On the 2\(^{\text{nd}}\) day of the experiment pH of the medium decreased to 3.5. On the SEM images, along with intensive dissolution of the substrate, a carpet of small pseudo-hexagonal plate crystals of whewellite (from 7 to 15 \(\mu\text{m}\)) and whewellite intergrowths (in the form of rosettes and crosses) were visible (Figs. 3 a,b,Table 3).

On the 4\(^{\text{th}}\) day of the experiment pH of the medium decreased to 3.0. In addition to a continuous carpet of whewellite crystals, biogenic manganese oxide, whose X-ray diffraction pattern was close to that of the todorokite (Fig. 4a), was recorded.

On the 6\(^{\text{th}}\) day of the experiment pH of the medium decreased to 2.5. Lindbergite and falottaite were present in a significant and comparable amount (Figs. 3c,d; 4b), and the crystals sometimes grew into each other (Fig. 3c, bottom inset). Among the numerous crystals of whewellite (carpet on the surface of the underlying substrate), individual dipyramidal weddellite crystals (15–25 \(\mu\text{m}\)) appeared (Fig. 3d). The morphology of whewellite crystals did not change. Lindbergite was represented by both large spherulite-like intergrowths from numerous plate crystals (from 100 to 200 \(\mu\text{m}\)) and smaller intergrowths from 2-3 plate crystals (~ 20-30 \(\mu\text{m}\)) (Fig. 3c - upper inset). The morphology of the falottaite crystals was similar to that described above on the surface of todorokite.

On the 8\(^{\text{th}}\) day of the experiment pH reached a minimum value of 2. The surface of the kutnohorite was still covered with a continuous carpet of platy whewellite crystals. Falottaite disappeared, large intergrowths of platy lindbergite crystals were visible (up to 250-300 \(\mu\text{m}\)), as
well as individual small platy lindbergite crystals of the following generations (~ 10-60 μm) (Figs. 3e, 4c).

Further, on the 14th and 20th day of the experiment pH slightly increased to 2.5. As shown in the SEM images, almost no changes occurred (Fig. 3f; 4d).

Manganese oxalates formed on kutnohorite at all stages of the experiment contain impurities of magnesium and iron. The Mg/Mn and Fe/Mn atomic ratios in lindbergite reached 45 and 21%, respectively; in falottaite – 13 and 14%, respectively.

Thermal behavior of biogenic falottaite

High temperature XRD studies of the manganese oxalate trihydrate (falottaite) demonstrated that amorphization process occurred in the temperature range of 70 – 80 °C followed by disappearance of falottaite diffraction peaks (Fig. 5). The previously reported transformation of falottaite to lindbergite (Huizing et al. 1977; Baran 2014), which occurs at room temperature in air during several days, was not observed. At temperatures above 130 °C, broad peaks, probably of manganese oxide (Mn$_2$O$_3$) appeared (Donkova and Mehandjiev 2004).

Refinement of biogenic falottaite crystal structure

Our SC XRD measurements showed that the structure of biogenic falottaite formed in the presence of fungus *A. niger* (Fig 6a, c) was identical to that of synthetic manganese oxalate trihydrate (Fu et al. 2005); the latter had been crystallized from an aqueous solution of MnCO$_3$ and oxalic acid (Table S1). According to the similarity of the unit cell parameters (Table S1), both synthetic crystals were structural analogs of mineral falottaite which had originally been found in Falotta ore field (Tinzen, Switzerland) (Graeser and Gabriel 2013).

The distinctive feature of the biogenic falottaite crystals studied here is partial Mn$^{2+}$ to Mg$^{2+}$ ionic substitution: Mn site-scattering factor = 23.1 *epfu*, so the Mn:Mg ratio = 0.85:0.15, which is in
good agreement with the aforementioned EDX result. The structural formula of the falottaite obtained by *A. niger* after 45 days of experiment is [Mn$_{0.85}$Mg$_{0.15}$][C$_2$O$_4$](H$_2$O)$_2$]·(H$_2$O).

DISCUSSION

Regularities of fungal oxalate formation

The results of our *in vitro* experiment demonstrated that the alteration of Mn,Ca-bearing minerals (todorokite and kutnohorite) under the influence of *A. niger* fungus occurred via a complex of solubilization and crystallization processes, leading to the formation of Ca- and Mn-bearing oxalates with various H$_2$O contents (analogs of whewellite, weddellite, lindbergite and falottaite). Proportions of lindbergite and falottaite changed as a result of the hydration and dehydration processes.

Other elements that had got into the crystallization medium from the underlying mineral substrate during solubilization were incorporated in Ca- and Mn-oxalates as isomorphic impurities: Sr into weddellite and whewellite (Sr/Ca ≤ 58 and 12%, respectively); Mg and Fe into lindbergite and falottaite (Mg/Mn ≤ 45 and 13%, Fe/Mn ≤ 21 and 14%, respectively).

Calcium oxalates (predominantly whewellite) formed on a surface of todorokite and kutnohorite earlier than manganese oxalates (already on the 2nd day of the experiment) (Table 3, Fig. 1ab, 3ab), which indicates that Ca$^{2+}$ ions were leaching from underlying substrates under the action of aggressive metabolites *A. niger* more intensively than that for manganese ions. Kutnohorite surface was covered with calcium oxalate crystals almost completely, while todorokite surface - only for 30-40%, which may be attributed to the much lower content of Ca$^{2+}$ ions in todorokite than in kutnohorite (Table 2). Significant predominance of whewellite over weddellite on the surface of both substrates at all stages of the experiment (weddellite on the surface of kutnohorite in the early stages could not be detected at all) indicates the prevalence of oxalate ions over calcium ions in the crystallization medium (Kuzmina et al. 2019).

Formation of calcium oxalates on todorokite and kutnohorite started in an acidic medium at almost the same pH values (4 and 3.5, respectively; Table 3; Fig. 7), slightly decreased in
comparison with the initial pH value of 5.5. The pH values on the surface of both underlying substrates during the experiment, first, decreased and then, after having reached a certain limiting value, increased, which may be associated with a decrease of oxalate ions content in solution due to intense crystallization and also with aging of fungus culture (Sturm et al. 2015). The minimum pH value (3.5) at the surface of todorokite, was reached on the 6th day of the experiment, and on the 14th day it increased to 6.0. The minimum pH value (2.0) at the surface of kutnohorite was reached on the 8th day of the experiment, which subsequently increased but very slightly (on the 14th day it was equal to 2.5). Such differences indicate a lower solubility of kutnohorite (as compared with todorokite) in the products of microbial metabolism, which slows down the processes of Mn leaching and Mn-oxalate crystallization that occurs in a more acidic (compared to todorokite) medium.

Formation of manganese oxalates on the surface of Mn,Ca-bearing minerals under the influence of *A.niger* fungus occurred via complex redox processes (Mn$^{2+}$ to Mn$^{3+,4+}$ and *vice versa*) which depend on the oxidation state of manganese ions in the underlying mineral substrate and on the pH of crystallization medium (Table 3; Fig. 7).

As a result of todorokite solubilization under the influence of fungus, Mn$^{3+,4+}$ ions were directly released into the medium. Then ions were reduced to Mn$^{2+}$ along with the gradual pH increase from 3.5 to 6 which lead to manganese oxalates precipitation starting from dihydrous linbergite formation (Fig. 1c,d, 2c). Later, trihydrous falottaite appeared on the surface of todorokite. The ratio between linbergite and falottaite varied depending on hydration and dehydration processes (Fig.1c,d,e,f,g,h). Orthorhombic magnesium oxalate dihydrate γ-Mn(C$_2$O$_4$)$_2$·2H$_2$O, which is stable according to Huizing et al. (1977) under pH > 4, in the products of the interaction between *A.niger* and todorokite was not found, which can be explained by the stabilizing action of the chemical components of the crystallization medium on the todorokite surface.
During kutnohorite solubilization Mn$^{2+}$ ions were released into the medium and afterwards oxidize to Mn$^{3+},4+$ at pH=2.5-3.0, which resulted in the mycogenic Mn,Ca-oxide formation on the 4th day of the experiment. The PXRD pattern of this oxide was close to that of todorokite (Figs. 4a,b). This result is in a good agreement with previous studies, according to which fungal Mn(II) oxidation leads to the formation of Mn(IV)-oxides (Santelli et al. 2011; Wei et al. 2012; Milova-Ziakova et al. 2016; Tang et al. 2013; Namgung et al. 2018). Kutnohorite solubilization in current experiments resulted in the appearance of Mn$^{2+}$ along with Ca$^{2+}$, Fe$^{2+}$ and Mg$^{2+}$ cations in the crystallization medium, which made it possible to form fungal Mn,Ca-bearing oxide that was close in composition and structure to todorokite. Then Mn,Ca-bearing biogenic oxide solubilized under the influence of micromycetes and Mn$^{3+},4+$ ions oxidized back to Mn$^{2+}$. Mn oxalate crystallization started only after that, on the 6th day of the experiment (later than on the todorokite), at the average pH = 2.5. First, lindbergite and falottaite were present on the surface of kutnohorite (Fig.3c,d,4b), and then (on the 8th day of the experiment, at the pH = 2), falottaite transformed to lindbergite due to dehydration (Fig.3e,4c). Thus, the acidic medium did not contribute to the stabilization of the manganese oxalate trihydrate, falottaite.

Wei et al. (2012) proposed that lindbergite solely forms due to falottaite dehydration. Our results on kutnohorite supported the possibility of falottaite to lindbergite transformation. High temperature XRD studies of the falottaite demonstrated that amorphization process occured in the temperature range of 70 – 80 °C (Fig. 5). This suggested that falottaite — lindbergite transformation occurs via amorphous precursor phase, that is typical for many carbonate and phosphate minerals of biogenic origin (Yao et al. 2017; Addadi and Weiner 2014; Kim et al. 2019). Additionally, our experiments on todorokite demonstrated the possibility of falottaite formation via lindbergite hydration. Lindbergite (and possibly falottaite) had also precipitated directly from solutions on both Mn,Ca-bearing underlying mineral substrates.

As in other model experiments performed with the participation of fungus A.niger (Sayer et al. 1997; Wie et al. 2012; Sturm et al. 2015; Rusakov et al. 2016; Ferries et al. 2019; Frank...
Kamenetskaya et al. 2019; Zelenskaya et al. 2020), most oxalate crystals synthesized by us were characterized by multiple splitting and the formation of spherulite-like (shard-like according to Ferrier et al. 2019) and other aggregates (Figs. 1,3), which were absent for manganese and calcium oxalates found in biofilms on the surface of rocks (Wilson and Jones 1984; Frank-Kamenetskaya et al. 2019). Besides, the size of synthesized crystals was significantly larger than that of natural samples. For instance, intergrowths of plate crystals of lindbergite (~300 μm) (Fig. 3f) were significantly larger than that of natural, poorly crystalline phases (5-20 μm) (Wilson and Jones 1984). In our experiments only crystals of lindbergite and weddellite of subsequent generations (small lamellar and dipyramidal, respectively) (Figs. 1cd, 3f) had the morphology close to oxalates from natural biofilms. These differences in morphology between natural crystals and those obtained in vitro under the fungus action indicate that the ionic supersaturation of the solutions and the crystal growth rates under natural conditions were not as high as in experiments.

Structural evolution within the manganese oxalates derived by hydration and dehydration processes

The peculiarities of the crystal structures of falottaite and lindbergite minerals make the formation of lindbergite from falottaite possible and vice versa. Both structures are based on Mn-centered octahedra linked together via oxalate groups into infinite chains, which are in turn arranged to form a pseudo layered architecture (Fig. 6).

Cis-arrangement of H$_2$O(2) molecules in falottaite results in distorted octahedral coordination of Mn sites (Table S2) which are linked via oxalate groups into infinite zigzag chains running along the a axis (Fig. 6a). The chains are arranged into pseudo layers parallel to the (010) plane linked together via H-bonding between the H$_2$O(2) molecules and O(3) atoms of oxalate groups from the neighbour chains (Fig.6a, Table S3). Another nonequivalent H$_2$O(4) molecule situates between the Mn-oxalate pseudo layers providing their linkage into a three-dimensional structure (Fig 6c).
Distorted Mn-centered octahedra in the structure of lindbergite are linked via oxalate groups into infinite chains along the c axis and are also held together by O—H···O hydrogen bonds (Table S1, Fig. 6b). Two H$_2$O molecules that coordinate Mn atoms are trans-arranged. Both structures are characterized by the absence of vacancies in the sites of O atoms related to H$_2$O molecules, which is, for instance, different with respect to calcium oxalate weddellite, where the amount of H$_2$O molecules may vary (Izatulina et al. 2014; Frank-Kamenetskaya et al. 2016; Mills and Christy 2016). The main difference between the structures of monoclinic lindbergite (Deyrieux et al. 1973; Soleimannejad 2007; Echigo 2008) and orthorhombic falottaite is the presence of the interlayer H$_2$O molecules in the structure of the latter (Fig. 6d). Structural similarities between manganese oxalates with different H$_2$O contents confirm the possibility of structural evolution within the manganese oxalate crystalline phases caused by hydration and dehydration processes, as also occurs in calcium oxalates (Izatulina et al. 2018).

IMPLICATIONS

The present work contributes to the studies of biomineralization mechanisms under the influence of lithobiont microbial community, primarily fungi. The results of the *in vitro* experiment made it possible to significantly advance in the study of Ca,Mn-bearing minerals bioalteration via a complex of solubilization, crystallization and transformational processes, and showed a significant effect of the composition and properties of the underlying mineral substrate on these processes. The *in vitro* regularities of oxalate crystallization (variations in phase composition of the obtained crystals, their morphology, the incorporation of isomorphic impurities) on the surface of Ca,Mn-bearing minerals under the action of the *A.niger* fungus can now be used for describing the crystallization processes occurring in nature with the participation of micromycetes on surfaces of various minerals, primarily containing ions of transition metals of variable valence (Cu, Fe etc.).

The *in vitro* results obtained using *A.niger* (collected in nature) can be useful for developing new more economical and environmentally friendly efficient biotechnologies using fungi for
manganese leaching from the ores, including low-grade industrial beneficiation of poor manganese ores, and also environmental Mn bioremediation. In particular, the revealed characteristics of the underlying mineral substrate (primarily oxidation state of manganese ions, density and solubility of rock), which directly affect the intensity of solubilization, allow a controlled approach to selecting conditions for bioleaching of manganese from the processed ores.

ACKNOWLEDGMENTS

This work was supported by Russian Science Foundation (project N 19-17-00141).

The laboratory researches were carried out in the Research Park of Saint Petersburg State University, the SEM investigations — in the “Resource Center Microscopy and Microanalysis (RCMM)” and in the Centre for Geo-Environmental Research and Modelling (Geomodel), the XRD measurements — in the X-ray Diffraction Centre.

REFERENCES CITED

Sheldrick, G.M. (2013) SADABS, University Gottingen, Germany.

Soleimannejad, J., Aghabozorg, H., Hooshmand, S., Ghadermazi, M., Gharamaleki, J.A. (2007) The monoclinic polymorph of catena-poly[[diaquamanganese(II)]-μ-oxalato-κ^4^O^1^,O^2^:O^1′^,O^2′^]. Acta Crystallographica Section Section E, 63, m2389-m2390.

Fig.1. SEM images of the oxalate crystals formed on todorokite surface after 2 (a,b), 4(c,d), 6 (e,f), 8 (g,h), 14 (i,j) days of the experiment.

Fig.2. XRD patterns of oxalate crystals formed on todorokite surface after: a – 2, b – 6, c – 8, d – 14 days of the experiment. Wh – whewellite, Wd – weddellite, L – lindbergite, F – falottaita, T – todorokite.

Fig.3 SEM images of the oxalate crystals formed on kutnohorite surface after 2 (a,b), 6 (c,d), 8 (e), 14 (f) days of the experiment.

Fig.4. XRD patterns of oxalate crystals formed on kutnohorite surface after: a – 4, b – 6, c – 8, d – 14 days of the experiment. Wh – whewellite, Wd – weddellite, L – lindbergite, F – falottaita, T – biogenic Mn,Ca –oxide.

Fig.5. Powder XRD patterns of falottaita as a function of temperature (23 – 300 °C) on heating in air.

Fig.6. Crystal structures of manganese oxalate hydrates: a – falottaita (sp. gr. Pecc), viewed along [010]; b – lindbergite (sp. gr. C2/c), viewed along [001]; c – falottaita, viewed along [100]; d – lindbergite, viewed along [010].

Fig.7. Phase assemblage of crystalline products of the reaction between Ca, Mn-minerals with A. niger versus pH of crystallization medium.
Fig.1. SEM images of the oxalate crystals formed on todorokite surface after 2 (a,b), 4(c,d), 6 (e,f), 8 (g,h), 14 (i,j) days of the experiment.
Fig. 2. XRD patterns of oxalate crystals formed on todorokite surface after: a – 2, b – 6, c – 8, d – 14 days of the experiment. Wh – whewellite, Wd – weddellite, L – lindbergite, F – falottaite, T – todorokite.
Fig. 3 SEM images of the oxalate crystals formed on kutnohorite surface after 2 (a,b), 6 (c,d), 8 (e), 14 (f) days of the experiment.
Fig. 4. XRD patterns of oxalate crystals formed on kutnohorite surface after: a – 4, b – 6, c – 8, d – 14 days of the experiment. Wh – whewellite, Wd – weddellite, L – lindbergite, F – falottaite, T – biogenic Mn,Ca–oxide.

Fig. 5. Powder XRD patterns of falottaite as a function of temperature (23 – 300 °C) on heating in air.
Fig. 6. Crystal structures of manganese oxalate hydrates: a – falottaite (sp. gr. $P_{c}c_{a}$), viewed along [010]; b – lindbergite (sp. gr. C_{2}/c), viewed along [001]; c – falottaite, viewed along [100]; d – lindbergite, viewed along [010].

Fig. 7. Phase assemblage of crystalline products of the reaction between Ca, Mn-minerals with $A.\ niger$ versus pH of crystallization medium.
Table 1. Crystallographic data and selected refinement parameters for the studied biogenic falottaite (manganese oxalate trihydrate).

| Formula | \([\text{Mg}_{0.15}\text{Mn}_{0.85}(\text{C}_2\text{O}_4)(\text{H}_2\text{O})_2]\cdot(\text{H}_2\text{O})| \)
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula mass</td>
<td>192.49</td>
</tr>
<tr>
<td>Space group</td>
<td>(P\text{cca})</td>
</tr>
<tr>
<td>(\mu) (mm(^{-1}))</td>
<td>1.926</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>293(2)</td>
</tr>
<tr>
<td>(Z)</td>
<td>4</td>
</tr>
<tr>
<td>(D_{\text{calc}}) (g/cm(^3))</td>
<td>1.678</td>
</tr>
<tr>
<td>Size (mm(^3))</td>
<td>0.16×0.06×0.02</td>
</tr>
<tr>
<td>Radiation</td>
<td>MoK(\alpha)</td>
</tr>
<tr>
<td>Total ref.</td>
<td>6817</td>
</tr>
<tr>
<td>Unique ref.</td>
<td>786</td>
</tr>
<tr>
<td>(2\theta) range, °</td>
<td>6.15–55.00</td>
</tr>
<tr>
<td>Unique (</td>
<td>F_o</td>
</tr>
<tr>
<td>(R_{\text{int}})</td>
<td>0.0466</td>
</tr>
<tr>
<td>(R_o)</td>
<td>0.0304</td>
</tr>
<tr>
<td>(R_1) ((</td>
<td>F_o</td>
</tr>
<tr>
<td>(wR_2) ((</td>
<td>F_o</td>
</tr>
<tr>
<td>(R_1) (all)</td>
<td>0.0337</td>
</tr>
<tr>
<td>(wR_2) (all)</td>
<td>0.0339</td>
</tr>
<tr>
<td>GOF</td>
<td>0.848</td>
</tr>
<tr>
<td>(\rho_{\text{min}}, \rho_{\text{max}}, \omega/\AA^3)</td>
<td>(-0.179, 0.262)</td>
</tr>
</tbody>
</table>

\(\rho_{\text{min}}, \rho_{\text{max}}, \omega/\AA^3\) is defined as the minimum and maximum density values and the resolution of the data, respectively.

Note: \(R_1 = \frac{|F_o| - |F_c|}{|F_o|}; \quad wR_2 = \frac{\sum \{ w(F_o^2 - F_c^2)^2 \}^{1/2}}{\sum \{ w(F_o^2 + (aP)^2 + bP) \}^{1/2}}, \quad \text{where}\ P = (F_o^2 + 2F_c^2)/3; \quad \text{GOF} = \frac{\sum \{ w(F_o^2 - F_c^2)^2 \}}{\sum \{ w(F_o^2 + (aP)^2 + bP) \}^{1/2}}\).
\(n \) is the number of reflections and \(p \) is the number of refined parameters.

Table 2. Cation composition of todorokite and kutnohorite

<table>
<thead>
<tr>
<th></th>
<th>Todorokite</th>
<th>Kutnohorite</th>
<th>Todorokite</th>
<th>Kutnohorite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cation content, wt. %</td>
<td>Cation content in formula, apfu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>59.41</td>
<td>28.22</td>
<td>5.53</td>
<td>0.97</td>
</tr>
<tr>
<td>Na</td>
<td>1.62</td>
<td>0</td>
<td>0.36</td>
<td>0</td>
</tr>
<tr>
<td>Ca</td>
<td>0.69</td>
<td>16.37</td>
<td>0.09</td>
<td>0.77</td>
</tr>
<tr>
<td>Fe</td>
<td>0</td>
<td>4.18</td>
<td>0</td>
<td>0.14</td>
</tr>
<tr>
<td>Mg</td>
<td>2.23</td>
<td>1.40</td>
<td>0.47</td>
<td>0.11</td>
</tr>
<tr>
<td>Sr</td>
<td>0.59</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>Ba</td>
<td>0.43</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td>K</td>
<td>0.42</td>
<td>0</td>
<td>0.06</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3. Relative abundance of the crystalline products of the reaction between Ca, Mn-minerals with \(A. \ niger \) versus pH of crystallization medium

<table>
<thead>
<tr>
<th>Days</th>
<th>Todorokite</th>
<th>pH</th>
<th>Phase composition</th>
<th>Kutnohorite</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Wh*>>Wd*</td>
<td>4</td>
<td>Wh</td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>Wh>>Wd, L*</td>
<td>4</td>
<td>Wh, Mn,Ca biogenic oxide</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Wh>>Wd, L>F*</td>
<td>3</td>
<td>Wh>>Wd, L=F, Mn,Ca biogenic oxide</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Wh>>Wd, F</td>
<td>4.5</td>
<td>Wh, L</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Wh>>Wd, F=L</td>
<td>6</td>
<td>Wh, L</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>