Effects of arsenic on the distribution and mode of occurrence of gold during fluid–pyrite interaction: a case study of pyrite from the Qiucun gold deposit, China

He Zhang¹,², Yuanfeng Cai¹*, Gang Sha³, Joël Brugger⁴, Allan Pring², Pei Ni¹, Gujie Qian², Zhenjiao Luo³, Yang Zhang¹, Wei Tan⁵

¹State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
²School of Chemical and Physical Sciences, Flinders University, Adelaide, South Australia 5001, Australia
³Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
⁴School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria 3800, Australia
⁵Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

ABSTRACT

This paper presents the results of an investigation of the incorporation of Au within pyritic ore from the Qiucun epithermal Au deposit, China. The new data provide insights into the mode of occurrence of Au during fluid–rock interactions within epithermal systems. The distribution and mode of occurrence of Au within arsenian pyrite was investigated using a chemical and structural characterization based approach combining laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) trace element analysis, megapixel synchrotron X-ray fluorescence analysis (MSXRF), and atom probe tomography (APT). The resulting data indicate that invisible Au is present at elevated concentrations in the form of a homogeneous solid solution within As-rich pyrite domains, which yields Au concentrations that positively correlate with As. Arsenic-induced lattice defects, such as stacking faults and the expansion of the pyrite
unit-cell, provide evidence of the effect of As on the incorporation of Au into pyrite. The nucleation and crystallization of electrum preferentially occurred at the fluid–pyrite reaction interface, or along fractures and grain boundaries within the pre-existing pyrite. This study indicates that changes in physico-chemical conditions (e.g., temperature, pH, and sulfur fugacity) during fluid-pyrite interactions are key controls on the development of nano- or µm-scale clusters of gold. The systematic compositional and textural observations documented in this study provide new insights into the mechanisms responsible for the different modes of occurrence of Au (ionic versus particulate), and enable us to further understand the processes involved in the formation of Au mineralization.

Keywords: gold; arsenian pyrite; fluid–rock interaction; epithermal gold deposit

INTRODUCTION

Pyrite is one of the most important hosts of Au within Au mineralization, with Au either present as visible (>1000 Å) or “invisible” (<1000 Å) Au. Previous research suggests that the invisible Au in arsenian pyrite is present as either nanoparticles (Au⁰) or in the form of solid solution Au⁺ incorporated within the pyrite lattice (Aylmore, 1995; Bakken et al., 1989; Filimonova et al., 2020; Fleet et al., 1993; Merkulova et al., 2019; Palenik et al., 2004; Reich et al., 2005; Simon et al., 1999), or in the form of Au₂S-like clusters/inclusions (Filimonova et al., 2020; Pokrovski et al., 2019). Multiple possible mechanisms are thought to control the modes of Au incorporation into arsenian pyrite, with Palenik et al. (2004) and Reich et al. (2005) suggesting that Au solubility is the most important factor. The maximum content of solid solution Au within arsenian pyrite has been defined as a function of As content as follows: \(C_{Au} = 0.02C_{As} + (4 \times 10^{-5}) \), where...
C_{Au} and C_{As} represent the concentrations of Au and As within the arsenian pyrite, respectively (Reich et al., 2005). Gopon et al. (2019) suggested that point defects caused by the incorporation of As into the pyrite structure may also facilitate the solid solution incorporation of Au. The diffusion of Au ions within crystals is also an important control on the recrystallization and distribution of Au, as demonstrated by the coarsening of Au nanoparticles into larger size particles as a result of the diffusion of Au through pyrite during in situ heating (Reich et al., 2006). The combined action of crystal growth and Au ion surface diffusion may cause the dominance of different modes of Au incorporation, with slow crystal growth inducing the formation of Au nanoparticles by surface diffusion (Fougerouse et al., 2016b). The post-crystallization exsolution of solid solution Au from metastable arsenian pyrite may also occur during post-mineralization metamorphism (Palenik et al., 2004). Finally, fluid-mediated interface coupled dissolution–reprecipitation replacement (ICDR; e.g., Putnis, 2009) is thought to be a common mechanism for the release of trace elements from parental phases or hydrothermal fluids into product phases, in a process that is contemporaneous with changes in the distribution and mode of Au occurrence (Altree-Williams et al., 2015; Fougerouse et al., 2016a; Geisler et al., 2007; Harlov et al., 2011; Li et al., 2018a; Putnis, 2009; Wu et al., 2019a; Xia et al., 2009; Zhao et al., 2009, 2013, 2017).

Despite the significant amount of research undertaken on the nature of invisible Au in arsenian pyrite, little is known about the role of As on the incorporation of Au into this mineral. One key variable is the behavior of Au during fluid–rock interactions involving As, and the link between this behavior and whether Au is incorporated into arsenian pyrite in visible or invisible forms. This study presents new megapixel synchrotron-based
X-ray fluorescence (MSXRF) and atom probe tomography (APT) data that provide information on the distribution and modes of occurrence of Au in arsenian pyrite from epithermal Au deposits. These data provide insights into the controls on the different modes of Au incorporation into arsenian pyrite.

GEOLOGICAL SETTING

The Qiucun gold deposit

The Qiucun Au deposit is a low-sulfidation epithermal Au deposit located within the Dehua region of central Fujian Province, southeast China (Fig. 1; Huang et al., 2017; Ni et al., 2018; Zhang et al., 2017). The deposit is hosted by volcanic rocks of the Upper Jurassic Nanyuan Formation and sandstones of the Changlin Formation (Guilin Geology and Mining Limited Company, 2003) and has known reserves of 10 t Au (FIGSR, 2014). The Au mineralization at Qiucun is predominantly hosted by hydrothermal veins and locally developed breccias. The veins are subdivided into chalcedony, pyrite-rich, pyrite-poor, and calcite-bearing subtypes (Ni et al., 2018). The auriferous veins within the deposit at elevations of 712, 742, and 820 m above sea level (ASL) formed at temperatures of 180°C–250°C as determined by the homogenization temperatures of quartz-hosted fluid inclusions (Ni et al., 2018). Fluid inclusion, petrological, and textural evidence suggests that fluid boiling was the key control on Au precipitation within the deposit (Ni et al., 2018). This study used > 100 hand specimens that were collected from auriferous veins from ore bodies at elevations of 712, 742, 772, and 820 m ASL within the Qiucun Au deposit. This study focused on pyrite-rich and chalcedony vein subtypes (Fig. 2a–b), with the two sampled vein subtypes yielding Au grades of 3–11 and > 30 g/t,
respectively (Ni et al., 2018). These auriferous veins contain visible Au in the form of electrum closely associated with chalcopyrite and pyrite (Fig. 2c–e). In addition, pyrite in these veins is commonly growth zoned, with inclusion-rich cores and relatively intrusion-free (clean) rims (Fig. 2f). The zoned pyrite contains high concentrations of Au and is the main host of Au within the deposit, indicating they are a valuable source of information on the processes involved in the generation of Au-enriched pyrite during fluid–rock interactions.

The Dongyang gold deposit

The Dongyang Au deposit is a recently discovered low-sulfidation Au deposit located near the Qiucun Au deposit (Li et al., 2018b; Xu et al., 2018, 2019; Zhang et al., 2018). The deposit hosts reserves of 22 t of Au at an average grade of 2.83 g/t Au (FIGSR, 2014). The majority of the mineralization is hosted by porphyritic rhyolite and volcanic rocks of the Upper Jurassic Nanyuan Formation (Li et al., 2018b; Xu et al., 2018, 2019; Zhang et al., 2018). The mineralization within the deposit is divided into two main stages (Zhang et al., 2018). The early, reduced stage is associated with arsenopyrite, arsenian pyrite, and marcasite mineralization, whereas the late oxidized stage is associated with Ag minerals and polymetallic sulfides such as pyrite, chalcopyrite, sphalerite, and galena. Microthermometric analysis of fluid inclusions within auriferous quartz–sulfide veins yielded homogenization temperatures of 172°C–217°C (mean of 192°C; Li et al., 2018b). The samples used in this study were taken from drill hole ZK1033 at an elevation of 303 m ASL.

This study mainly focused on samples from the Qiucun Au deposit, as the geology
and the morphologies, textures, and compositions of minerals within the samples from this deposit are more closely constrained with respect to fluid–rock interactions than the samples from the Dongyang deposit. However, the fact that the pyrite from the Dongyang deposit contains more As (~8 wt%) than those in the Qiucun deposit means the former is critical for the determination of the effects of As incorporation into the pyrite structure, as well as the interpretation of the behavior of Au–As at higher As concentrations.

ANALYTICAL METHODS

Scanning electron microscopy

Cut slabs of the mineralized samples from the Qiucun deposit were embedded in epoxy resin, mounted on 1 mm-thick quartz slides, and polished into ~100 μm-thick thin-sections. The sections were then carbon-coated, and their petrographic textures were characterized using a Zeiss supra 55 scanning electron microscope (SEM) in back-scattered electron (BSE) mode operated at an accelerating voltage of 15 kV. The SEM is also equipped with energy dispersive X-ray spectrometers (EDS) for semi-quantitative chemical analysis to aid mineral identification.

Electron microprobe analysis

The chemical composition of arsenian pyrite was determined using electron microprobe analysis (EMPA) employing a JXA 8230 instrument. The EMPA undertaken during this study used the same thin-sections as for SEM BSE imaging. These sections were re-polished, cleaned in ethanol to remove any oxide layers and impurities from the sample surface, and were then recoated with carbon. Elements, X-ray lines and standards used were: FeKα/pyrite, SKα/pyrite, AsLα/arsenopyrite, CoKα/(Co,Fe,Ni)9S8,
NiKα/(Co,Fe,Ni)9S8, SbLα/Sb2Te3, AgLα/Ag2S3. The analyses were undertaken using an accelerating voltage of 15 kV and a beam current of 20 nA. The beam spot diameter was set at 1 μm.

Laser ablation inductively coupled plasma mass spectrometry

The concentrations of trace elements within the pyrite analyzed previously by SEM and EMPA were determined using an Agilent 7700x quadrupole ICP–MS instrument coupled to a Photon Machines Excite 193 nm Excimer LA system. The analytical method is similar to that described by Gao et al. (2015). Two pumps (rotary vane and turbo-molecular pumps) were used for the vacuum system. Each analysis used a 40 μm diameter ablating spot with a laser frequency of 8 Hz and laser energy of ~5 mJ per pulse, with data acquired for 40 s after determining the gas blank for 15 s. Calibration was undertaken using USGS GSE-1G (synthetic basaltic glass) and GSC 12744 (pyrite) standards, both of which were analyzed along with unknowns. The ICPMSDataCal software package was used for off-line signal selection, integration, time-drift correction, and quantitative calibration (Liu et al., 2008). The resulting data has a precision of <±20% for most elements present at >1 ppm, and <±10% for the elements present at >50 ppm.

Megapixel synchrotron X-ray fluorescence and atom probe tomography

The distribution of individual elements within the samples from the study area was determined using MSXRF and APT. The As-free quartz slide-mounted ~100 μm-thick polished thin-sections described above were used for MSXRF analysis with X-ray elemental images collected in the Maia 384 (Sync)-HYMOD data acquisition format.
before being reduced at the Australian Synchrotron, Melbourne, Australia. The acquired data were analyzed using the CSIRO Dynamic Analysis approach within the GeoPIXE software package, which enables quantitative, true elemental concentration images to be unmixed from the generally complex PIXE/SXRF energy spectra. More details of the analytical procedures are given in Fisher et al. (2014) and Li et al. (2016). The resulting quantified images can be directly interrogated to determine the concentrations of all detected elements in portions of the images using the interactive GeoPIXE II software. Although the Au La emission line is partly obscured by the intense As Kα line (Merkulova et al., 2019), minor peaks and shoulders within the spectra are positively correlated to Au concentrations due to the full profile fitting approach (Fisher et al., 2014). The presence of the Au (Lα) peak was identified on the shoulder of the As (Kα) peak (Fisher et al., 2014), enabling the generation of Au distribution maps by removal of the interfering As (Kα) overlap.

Atom probe microscopy provides three-dimensional (3D) maps that indicate the distribution of individual atoms (e.g., Fougerouse et al., 2016b; La Fontaine et al., 2017; Wu et al., 2019b). Regions of interest (ROI) for atom probe specimens were selected from pyrite domains with high concentrations of As and Au and electrum (Au–Ag alloy; Fig. 3), respectively. Prior to analysis, three needle-shaped APT specimens were prepared by electro-polishing combined with the extraction of the ROI from the sample surface using an Auriga focused ion beam scanning electron microscope (FIB-SEM). The APT analysis was undertaken using a LEAP4000XSi atom probe equipped with a picosecond pulse ultraviolet laser (355 nm; spot size < 4 μm) at the Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, China. This
analysis used a specimen temperature of 40 K, a 60 pJ laser pulse energy, and a 200 kHz laser frequency, with a 0.4%–0.8% detection rate, 2×10^{-11} torr analysis chamber vacuum setting, and 14–40 M total ion collection. The data were reconstructed and visualized using the Integrated Visualization and Analysis Software (IVAS 3.6.8) developed by Cameca Scientific Instruments. The efficiency of the detector is about 55% and the instrument has a trace element detection sensitivity of ~ 50 ppm.

Electron backscatter diffraction, transmission electron microscopy, and X-ray powder diffraction

The structural characterization of arsenian pyrite was undertaken using electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), and X-ray powder diffraction (XRD). Pyrite EBSD orientation maps were acquired using an Oxford Instruments HKL Nordlys II EBSD detector coupled to a FEI Quanta 450 field emission gun SEM at the China University of Geosciences, Wuhan, China. This analysis was undertaken in automatic mode using a step size of 2 μm and an operating voltage of 15 kV.

Six $\sim 8 \times 3$ μm TEM foils from the high Au and As areas of pyrite were prepared using FIB-SEM on a Zeiss Auriga Compact instrument at the Institute of Geology and Geophysics, Beijing, China. These TEM foils were extracted using an Omniprobe AutoProbe200 micromanipulator before being attached to a copper TEM grid with support film and being thinned down to a suitable thickness range (50–100 nm) at various accelerating voltages and beam currents. These foils were stored in an anoxic glove box filled with N$_2$ gas prior to analysis. They were imaged using a FEI Tecnai F20 TEM at
Nanjing University, and a Thermo Fisher Titan Themis 80-200 (equipped with a probe corrector) at Adelaide University. Both instruments were operated at 200 kV for bright-field (BF) TEM observations, selected-area electron diffraction (SAED), high-angle annular dark-field (HAADF) observations, and energy-dispersive X-ray analyses (~1 wt% detection limit). The latter two observations and analyses were conducted under scanning TEM (STEM) mode. The calibration was performed on the basis of the ring pattern of the standard Au specimen. Elemental mapping was performed under scanning TEM mode using an Oxford Aztec software.

Individual arsenian pyrite grains separated from crushed mineralized samples were milled in acetone prior to XRD analysis. This approach used pyrite spiked with 50 wt% corundum and employed a Bruker D8 Advance Eco X-ray diffractometer using CoKα radiation (λ = 1.7902 Å) generated at 35 kV and 28 mA at Flinders University. The cell parameters were determined using a full-pattern fitting Rietveld method (Hunter, 1998; Rietveld, 1969) with the aid of TOPAS version 6.0. A Pseudo-Voigt function and a fifth-order Chebychev polynomial were used to model peak shapes and background, respectively. Zero shifts were taken from refinements of the powder diffraction pattern for the spiked corundum powders and the crystal structural data for the refinement were taken from the Crystallography Open Database (pyrite code: 9000594; corundum code: 1000017).

RESULTS

Textures and compositions of arsenian pyrite: SEM, EMPA, and LA-ICP-MS data

The textural characteristics of the arsenian pyrite from the Qiucun deposit were
determined at the micrometer and sub-micrometer scales using SEM imaging (Fig. 3).

The pyrite is either subhedral or anhedral and contains other metal-bearing grains (e.g., electrum; Fig. 3), either in the form of micrometer- or sub-micrometer-sized inclusions (Fig. 3) or as fracture-filling veins (Fig. 3a, c, f).

EMPA indicates that the pyrite within the deposit is As-rich (up to ~5 wt%; Appendix Table S2). Arsenic is unevenly distributed throughout the pyrite at the μm-scale and is concentrated in either zones or patches (Fig. 3). The As-rich domains within the pyrite contain 0.1–5 wt% As, with As-deficient domains containing < 0.1 wt% As (Fig. 3; Appendix Table S2). Local interfaces between As-rich and -deficient pyrite domains (Fig. 3) host the majority of the electrum. Electrums also occur as sub-micrometer-sized spheroidal inclusions (Fig. 3c), or as fracture-filling veins (Fig. 3a, c, f) within the As-deficient pyrite domains. These features suggest the importance of metasomatic processes associated with the interaction between As-rich hydrothermal fluids and pre-existing pyrite in controlling As and Au distribution.

The trace element analysis of the As-rich zones yielded an average Au concentration of 18 ppm (Appendix Table S1). There is a strikingly positive correlation between the invisible Au and As within pyrite ($R^2 = 0.79$; Figs. 4 and S1). These data suggest that Au values lie below the solubility limit predicted by Reich et al. (2005), consistent with Au being incorporated via solid solution in these As-rich pyrites (Fig. 4). The LA–ICP–MS analysis also yielded mean concentrations of 283(28) ppm Cu, 97(10) ppm Ag, 96(10) ppm Sb, 16(3) ppm Te, 4(1) ppm Se, and 476(48) ppm Pb. The presence of coexisting elemental anomalies within these data, including for analyses QCPY-21 (2006(200) ppm Cu, 542(54) ppm Ag, 358(36) ppm Sb, and 455(46) ppm Pb) and QCPY-32 (559(56)
ppm Ag, 344(34) ppm Te, and 1360(136) ppm Pb; Appendix Table S1), suggest that the As-rich pyrite domains may contain Cu–Ag–Sb–Pb–Te-rich zones or clusters.

MSXRF elemental mappings

The MSXRF red–green–blue (RGB) image shows the distribution of K, Au, and As within samples from the study area (Fig. 5), with K used as a proxy for sericite (Fig. S2). Pyrite is shown in blue (As) as the pyrite in the study area commonly contains elevated concentrations of As (Fig. 3). The pyrite contains cyclical, oscillatory, and irregular As zonation (Fig. 5). The oscillatory zones are of particular interest and usually record pulsed As-rich fluid flow and/or changes in the prevailing physico-chemical conditions, both of which can affect the incorporation of As into pyrite. Auriferous minerals (green) are also visible in the RGB image (Fig. 5), with SEM imaging and EMPA indicating that these minerals are electrum. The electrum within the pyrite is spatially associated with the distribution of As, where the majority of electrum is located at the interface between As-rich and -deficient pyrite domains. The high penetration ability of hard X-rays during MSXRF and the associated ability to measure subsurface features in samples (e.g., for AuLα (9.712 keV), ~56% of characteristic X-ray escape from a depth of 10 μm; del Real et al., 2019; Etschmann et al., 2010; Fisher et al., 2014; Li et al., 2016; Sutton et al., 2002) mean that those metal-bearing inclusions (Fig. 3a, c, d, f) within the As-deficient pyrite interior most likely were associated with As-rich sections that are not able to be identified using SEM. In addition, the zoned distribution of invisible Au within pyrite is readily visible in the MSXRF Au maps (Fig. 5a–c), with the coupled distribution of invisible Au and As identified within pyrite.
EBSD orientation mapping

EBSD mapping indicates that the most pyrite crystals (Fig. 6a) are actually an aggregate of smaller crystals in different crystallographic orientations, as indicated by the random distribution of pyrite grain orientations within the pole figures (Figs. 6b and S3). A comparison between the colored EBSD map and BSE map indicates that the incorporation of As does not cause variations in the crystallographic orientation of the pyrite. It is also worth noting that the electrum is located along subgrain boundaries with grain misorientations of > 5°.

XRD patterns of arsenian pyrite

Unit cell parameters retrieved from the Rietveld refinement of Powder XRD patterns for arsenian pyrite (5.41887(10) Å; Fig. S4) are significantly larger than those reported for As-free pyrite in previous studies (e.g., 5.4151 Å, Wu et al., 2004; 5.4160 Å, Li et al., 2018c). The Rp, Rwp, and GOF values of the Rietveld refinement are 1.89, 1.39, and 2.87, respectively.

TEM study

The HAADF-STEM analysis of the foil was extracted from the ROI with ~4 wt% As and ~40 ppm Au (Fig. 7a) identified very few bright nanoparticles with higher average atomic masses (Z) than the As-pyrite matrix (Fig. 7b–c). These nanoparticles range in size from 20–200 nm and have well defined boundaries with the As-pyrite matrix. Combining EDS and SAED analyses with this HAADF-STEM analysis identified a Ag–Sb phase and chalcopyrite, but provided no evidence of any auriferous phases (Figs. 7d–e).
and S5. The absence of Au nanoparticles throughout the As-rich pyrite matrix is consistent with the incorporation of all of the invisible Au within this sample by solid solution.

Crystal–chemical considerations suggest that the incorporation of As in the pyrite structure should generate significant numbers of defects as a result of different effective ion radii (e.g., Cook and Chryssoulis, 1990; Dubosq et al., 2019; Fleet and Mumin, 1997; Liang et al., 2013; Simon et al., 1999). The SAED patterns generated during this study indicate that the As-pyrite is highly crystalline (Fig. 7d), but the HRTEM imaging identified local crystal misorientations with d-spacings of 0.19 and 0.31 nm associated with the \{220\} and \{111\} planes of pyrite, respectively (Fig. 7f–h).

A FIB-cut was also extracted from an area containing the interface between As-deficient and -rich pyrite domains (Fig. 8). The epitaxial growth of As-pyrite is evidenced by a comparison of two patterns that provide evidence of consistent orientation on both sides of the interface in a [0 1 1̅] projection (Fig. 8b–c). In addition, the unit-cell parameters of both two pyrite domains were obtained using the UnitCell program (Holland and Redfern, 1997) on the basis of the SAED patterns, with As-induced expansion identified by differences in face intercepts of As-rich (5.46(2) Å) and -deficient (5.42(2) Å) pyrite domains.

A third FIB-cut was extracted from highly As-enriched (~8 wt% As; Fig. 9) pyrite from the Dongyang Au deposit to further investigate the effect of As on the pyrite structure and provide more information on fluid–rock interface features. The combined HAADF imaging and EDS data indicate the presence of a sharp interface between As-rich and -deficient pyrite domains in this sample. Fine layers of arsenopyrite or
marcasite-type phases have been previously identified within arsenian pyrite (e.g., Dodony et al., 1996; Simon et al., 1999). Our HAADF–STEM images (Fig. 10) reveal that stacking faults at the periphery of this interface are parallel to one another, are filled with galena nanoparticles, and terminate at the interface in a [0 1 1] projection. This atomic arrangement suggests the presence of a planar fault parallel to the (2 0 0) plane with local narrowing (0.23 nm) and widening (0.32 nm) of lattice rows (Fig. 10e). There is no obvious lattice mismatch at the interface, but instead this area contains long-range ordered atomic arrangements on both sides of the boundary (Fig. 10d–e). In addition, local highly-crystalline As-rich and -deficient pyrite domains are present (Fig. 10f–g), with the As-rich domains characterized by a larger d-spacing than the As-deficient ones.

APT study

Three needle-shaped specimens were prepared using FIB-SEM with two specimens extracted from As-rich pyrite domains (S1 and S2; 20–30 ppm Au) and the final one extracted from electrum for Au peak calibration (S3; Fig. 3). We only describe the results for S1, as the data for S1 and S2 are very similar. The APT data suggest that the analyzed region contains 1.57 at% As, but no significant Au levels (Appendix Fig. S6; Appendix Table S4). The detection limit for Au was estimated to be 60 ppm with the given mass spectrum background level, indicating that a Au concentration of ~30 ppm would only yield detectable Au if the Au present was in the form of nanoparticles or highly enriched domains (Appendix Fig. S6; Appendix Table S4). Although the concentrations of Cu, Pb, As, Sb, Ge, and Se are generally homogeneous (Fig. 11), the upper end of the Cu map suggests the presence of Cu-rich clusters. The further analysis of these clusters involved
the creation of an isoconcentration surface (i.e., an isosurface) at the location with a
combined Cu, Se, and Pb concentration of 0.2 at% (Fig. 12). The enrichment of Cu and
Sb in this area is identified by proxigrams across the isosurface (Fig. 12c), representing
the presence of atomic clustering. However, there is no obvious atomic clustering in other
areas, with a nearest neighbor analysis finding no statistical evidence for the clustering of
Cu, Pb, As, Sb, Ge, and Se (Fig. 13). This indirectly suggests that the invisible Au within
these samples is present in a homogeneous solid solution form rather than as
nanoparticles.

DISCUSSION

Incorporation of arsenic within arsenian pyrite

Arsenic is one of the most significant impurities in pyrite and is thought to be
incorporated into the pyrite structure by the substitution of As\(^{-}\) for S\(^{-}\) (e.g., Blanchard et
al., 2007; Deditius et al., 2008; Fleet and Mumin, 1997; Liang et al., 2013; Pals et al.,
2003; Reich et al., 2005; Savage et al., 2000; Simon et al., 1999; Zachariáš et al., 2004),
by substituting for Fe\(^{2+}\) in the form of As\(^{3+}\) (Deditius et al., 2008) or As\(^{2+}\) (Qian et al.,
2013), or by incorporation as amorphous nanoparticles (As\(^{0}\); Deditius et al., 2009).
Plotting the pyrite from the study area in an Fe–S–As (at%) ternary diagram provides
evidence of whether As is substituting for S and/or Fe. Here, As\(^{3+}/2+\)-pyrite would define a	rend parallel to the Fe–As join, indicative of the presence of As within octahedral Fe
sites, whereas As\(^{\\text{I}}\)-pyrite would plot close to the As–S join, indicating the presence of As
within the octahedral S site (Deditius et al., 2008; Liang et al., 2013). The As-pyrite from
the study area defines a dispersed trend parallel to the As–S join in the Fe–S–As (at%)
ternary diagram (Fig. 14a), suggesting that As is substituting for S within the pyrite structure (Fig. 14a). The EMPA-determined concentrations of As and S within the pyrite also strongly negatively correlate ($R^2 = 0.92$), again suggesting that As is substituting for S (Fig. 14b).

Savage et al. (2000) demonstrated that As substitutes S with significant As–As clustering in the As-pyrite samples from tailings of the Clio Mine of the Mother Lode Gold District, with the formation of As–As pairs being energetically favorable on the basis of the thermodynamic calculations by Manceau et al. (2020). In contrast, Filimonova et al. (2020) reported the absence of As–As clustering in the synthetic and natural As-pyrite samples from the Samolazovskoe Au-sulfide deposit and the Vorontsovka Carlin-type deposit. The homogeneous distribution of As atoms (or ions) within the As-pyrite matrix in our samples from the study area was identified through APT mapping and nearest neighbor distribution analysis (Figs. 11–13). Arsenic-induced expansion of pyrite structure was evident, with the cell parameter (5.41887(10) Å) of As-pyrite derived by Rietveld refinement of powder XRD patterns (Fig. S4) being larger than those reported for As-free pyrite in previous studies (e.g., 5.4151 Å, Wu et al., 2004; 5.4160 Å, Li et al., 2018c). The expansion was also identified based on the SAED patterns (Fig. 8) where the cell parameter (5.46(2) Å) of the As-rich pyrite domain (~2 wt% As) was larger than the one (5.42(2) Å) of the As-deficient domain (< 0.1 wt% As; Table S3).

Controls on arsenic-rich zones in pyrite

The precipitation of As-pyrite on the surface of pre-existing As-free pyrite has been
identified during previous studies (e.g., Wu et al., 2019b). The pyrite shown in Figs. 3 and 5 contains cyclical, oscillatory, and irregular As-rich zones. These zones can form in various ways that can be divided into external and internal factors. External factors include temporal and spatial fluctuations in pressure, temperature, and As concentrations within the pyrite-forming fluids (Chouinard et al., 2005; Shore and Fowler, 1996; Wu et al., 2019a; Xing et al., 2019). In comparison, internal factors include the formation of As-rich growth zones, patches, and oscillations as a result of crystal surface structure effects (Chouinard et al., 2005; Dowty, 1976; Wu et al., 2019b), heteroepitaxial Stranski–Krastanov (SK) growth (e.g., Kaiser, 2002; Mo et al., 1990; Wu et al., 2019b), and diffusion-limited self-organization (e.g., Putnis et al., 1992; Wu et al., 2019b), respectively. All of these previous research suggest that As is likely to be incorporated into growing pyrite by fluid–pyrite interaction; in the fluid As exists most likely as the neutral As$^3^+$(OH)$_3$(aq) complex, whereas Au exists as bisulfide complex (Au$^+$HS(aq) or Au$^+$$(HS)_2^-$; James-Smith et al. 2010; Liu et al. 2014; Pokrovski et al. 2014; Zhong et al. 2015). In particular, ICDR can be an important control on phase transformation during fluid–rock interactions (e.g., Altree-Williams et al., 2015; Putnis, 2009). Sung et al. (2009) suggested that the primary zoning of As within pyrite is disturbed by ICDR processes that generate permeable porosity within regions undergoing replacement. It is likely that ICDR formed some of the As-rich rims within the Qicun pyrite due to the typical textural features including (1) sharp and curvilinear interfaces (Figs. 3, 8–10) rather than diffuse phase boundaries between As-rich and -deficient pyrite domains, (2) As-rich zonal rims that preserve the morphology of the As-deficient pyrite interior (Fig. 3d, f), (3) the epitaxial growth of As-rich zonal rims around early As-deficient cores (Figs. 6, 8,
10), and (4) fissures and pore spaces within the region undergoing reaction, facilitating fluid access to the reaction interface, and leading to increased replacement of the parent pyrite (Fig. 3d, f). However, some As-rich zones within this pyrite are free of significant porosity (Fig. 3b, e). These zones suggest that As-pyrite may have grown on the surfaces of pre-existing pyrite. It is also possible that these zones are controlled by ICDR, with solid-state diffusion processes causing the reduction of porosity (Zhao et al., 2014). This means that it is difficult to determine the role of hydrothermal alteration in the formation of As-rich pyrite zones, but the fact that variations in conditions (e.g., pressure, temperature, pH, and composition) at fluid–pyrite reaction interfaces are certainly key in controlling the incorporation of As into pyrite.

Incorporation of invisible gold within arsenian pyrite

Multiple forms of invisible Au occur in natural or synthetic pyrite samples, including solid solution (Au⁺), nanoparticles (Au⁰), and Au₂S-like clusters as outlined in the introduction. As such, one key variable is the form of invisible Au which predominates within As-pyrite. Wu et al. (2019b) utilized APT to show that Au atoms were bound with As atoms and hosted in solid solution (Au⁺) within As-pyrite from the Daqiao Au deposit. Gapon et al. (2019) also used APT to report the absence of Au nanoclusters within As-pyrite from some Carlin-type Au deposits. Any Au nanoclusters (~50 nm; Palenik et al., 2004) present within pyrite should be detectable by a combination of APT and TEM analyses of the auriferous pyrite (as identified using MSXRF and LA–ICP–MS) analyzed during our study. In addition, the Au/As ratios of the samples analyzed during our study all plot beneath the solubility limit above which Au is present as nanoparticles (Reich et
al., 2005), explaining the absence of these nanoparticles from the pyrite in the study area. The data presented in this study cannot preclude the presence of Au or Au₂S-like nanoparticles, but it is probable that the invisible Au within the As-rich pyrite in the study area was mainly incorporated by solid solution.

The solid solution incorporation of Au in pyrite is thought to occur as a result of the substitution of monovalent Au for Fe²⁺ (e.g., Filimonova et al., 2020; Merkulova et al., 2019; Trigub et al., 2017). However, this substitution is expected to be inhibited by the size discrepancy between the Au–S bond (2.41 Å) and Fe–S bond (2.26 Å) within pyrite (Filimonova et al., 2020), and by ion charge imbalance (e.g., Deditius et al., 2008; Merkulova et al., 2019; Simon et al., 1999). Previous research has identified a close association between Au and As within arsenian pyrite (e.g., Arehart et al., 1993; Deditius et al., 2014; Fleet et al., 1993; Fleet and Mumin, 1997; Morishita et al., 2018; Reich et al., 2005). This is thought to represent the geochemical signature for atomic scale Au–As coordination (Merkulova et al., 2019). Gopon et al. (2019) identified areas of increased concentration of As surrounding Au ions within an APT reconstruction, validating the hypothesis (Fleet and Mumin, 1997) that Au ions could be incorporated into As-rich, Fe-deficient pyrite growth surfaces where Au is hosted in vacancies in nearest neighbor cation sites and is fixed by soft Lewis bases (e.g., As₂ and AsS). The marked positive correlation between As and Au (Figs. 4–5) within the samples from the study area can be explained by the processes outlined above. The coupled substitution of \(\text{As}^{3+} + \text{Au}^{+} \leftrightarrow 2\text{Fe}^{2+} \) (Deditius et al., 2008) is unlikely to have occurred as \(\text{As}^- \) occupies the S site in the pyrite from the study area as outlined above.

Furthermore, decoupling of As and Au chemistry was also demonstrated within some
As-pyrites (Filimonova et al., 2020). Nonetheless, As–S substitution is expected to create a more favorable local environment for hosting Au in As-pyrite than pure pyrite, as arsenic can stabilize Au-bearing phases and result in a higher solubility of Au (Deditius et al., 2014; Reich et al., 2005; Trigub et al., 2017). Further evidence is from calculations by Blanchard et al. (2007) and Manceau et al. (2020) which predicted that the lowest energy bonding environment of As in pyrite is similar to local structure of As in arsenopyrite, with chemically bound Au reported to be thermodynamically more stable in arsenopyrite or löllingite than in pyrite (Filimonova et al., 2020; Trigub et al., 2017).

In principle, the more As is incorporated into pyrite by substitution for S, the higher the density of defects within the crystal structure (Fleet and Mumin, 1997; Gopon et al., 2019). Planar structures such as stacking faults and dislocations record a monotonic increase in As concentrations as evidenced by APT analysis (Dubosq et al., 2019). Other APT analysis indicates that impurities such as Pb and Sb also occur as 5–10 nm clusters within dislocations and high-angle grain boundaries (Fougerouse et al., 2019). The new data presented in this study indicate that stacking faults are present in As-pyrite (~ 8wt% As; Fig. 10), but absent in this sample (~ 4 wt% As; Fig. 7). These stacking faults reflect the presence of single (1 0 1) layers of marcasite that disrupt the regular sequence of (0 0 2) layers in pyrite (Dodony et al., 1996), which is related to the introduction of As into the pyrite structure (Reich and Becker, 2006; Simon et al., 1999). The presence of galena nanoparticles within these fine layers suggests that As-induced marcasite-type lamellae act as a preferential conduit for the migration and enrichment of trace elements (e.g., Au) within the pyrite lattice. The stacking faults within arsenian pyrite crystals also favor the incorporation of impurity elements as nanoparticles, leading to not only the
heterogeneous distribution of trace elements, but also changes in the mode of occurrence of these elements.

Gold nanoparticles are thought to preferentially occur in polycrystalline As-rich pyrite domains instead of highly crystalline domains within pyrite (Palenik et al., 2004). Combining this previous research with the data presented in this study suggests that As controls the mode of Au incorporation into pyrite in two different ways. The first of these is the solubility limit defined by As contents (Reich et al., 2005) and the associated As-induced expansion of pyrite unit-cells. This affects highly crystalline pyrite domains and limits the presence of Au nanoparticles in these areas. In comparison, poorly crystalline domains have As-induced faulted structures (e.g., stacking faults) that preferentially host Au nanoparticles. This hypothesis can explain the presence of Au nanoparticles below the solubility limit within the high-As pyrite (e.g., Fougerouse et al., 2016b). This in turn means that the model of Reich et al. (2005) should be used with caution when discriminating between the different modes for the incorporation of Au into pyrite.

Fluid evolution and gold scavenging processes

The Qiucun deposit records two stages of hydrothermal fluid activity, which are (1) early fluids that formed As- and Au-deficient pyrite and (2) late fluids that formed As- and Au-rich pyrite. The formation of electrum is closely associated with the later stage fluid as evidenced by (1) the presence of the majority of electrum inclusions at the interface between As-rich and -deficient domains (Figs. 3 and 5), (2) the replacement of early-formed pyrite by electrum along fractures in the former (Fig. 3), and (3) the
presence of electrum inclusions along grain boundaries within As-deficient pyrite domains (Fig. 6), most likely reflecting Au enrichment by diffusion along grain boundaries (e.g., Dubosq et al., 2019; Fougerouse et al., 2019). All of this indicates that the Au mineralization within the Qiucun deposit was associated with late-stage hydrothermal fluid activity.

Multiple factors influence the incorporation of As and Au into pyrite. Reich and Becker (2006) used first principle calculations to suggest that decreasing temperature favors the ongoing ordering of As within the pyrite structure. The invisible Au in pyrite also presented a retrograde behavior which means that elevated temperature results in a decrease of invisible Au concentration in pyrite (Filimonova et al., 2020; Pokrovski et al., 2019; Trigub et al., 2017). Additionally, fluid boiling within epithermal systems results in the escape of volatile components (e.g., H2S and CO2) from hydrothermal fluids, causing a decrease in sulfur fugacity and an increase in pH, and favoring the development of As ordering within the pyrite structure (Spycher and Reed, 1989; Reich et al., 2005). Fluid boiling is also an effective way of scavenging metals (e.g., Au) from hydrothermal fluids (Brown, 1986; Cooke, 2000; Simmons et al., 2005), as a result of changes in physico-chemical conditions (e.g., pH, temperature, and sulfur fugacity; Heinrich et al., 2007). Fluid boiling is thought to be the main control on Au mineralization within the Qiucun Au deposit as evidenced by data from fluid inclusions and petrographic and textural analysis (Ni et al., 2018). Combining the results of this previous research with the data presented in this study suggests that interfaces where As significantly substituted for S within pyrite may reflect a period of fluid boiling that causes an abrupt drop in either S fugacity or temperature or an increase in pH. These abrupt physico-chemical changes also
cause the destabilization of metal complexes (e.g., Au hydrosulfide complexes) and the formation of a layer supersaturated in Au that precipitates numerous electrum inclusions along this interface. From the perspective of the interface itself, fluid–rock interfaces can stabilize the formation of metastable products and can cause the scavenging of trace elements from hydrothermal fluids (Altree-Williams et al., 2015; Li et al., 2015; Ruiz-Agudo et al., 2014; Tooth et al., 2011; Wu et al., 2019a). This interface associated with the low effective surface energy facilitates the nucleation and crystallization of Au ionic species as secondary phases.

IMPLICATIONS

This study confirms that As can be used as a proxy for Au within the Qiucun Au deposit as the concentrations of these two elements have a strong positive correlation and a coupled distribution. The new MSXRF, LA–ICP–MS, APT, and TEM data indicate that invisible Au is mostly present as a homogeneous solid solution rather than as nanoparticles within the hosting arsenian pyrite. Arsenic-induced changes in the pyrite structure are potentially significant for the interpretation of the coupled geochemical behavior of Au and As, especially as Au ions with larger effective ionic radii than both Fe and S take up more space within the pyrite structure. Further research is needed to investigate the Au and As occupations within the pyrite structure and the relationship between these elements and lattice defects in various geological settings, all of which will improve our understanding of the incorporation of invisible Au within sulfide minerals and provide new insights into the effective processing of refractory Au-bearing ores.

The samples from the study area contain visible electrum inclusions that are
concentrated either at the interface between As-rich and As-deficient pyrite domains or in fractures and along grain boundaries within As-deficient pyrite domains. This distribution of visible electrum probably reflects the fluid boiling process that caused Au supersaturation and the precipitation of Au from hydrothermal fluids onto the fluid–pyrite interface as a result of changes in physico-chemical conditions (e.g., pH, temperature, and/or pressure).

Here, we present a conceptual model that outlines the processes involved in the scavenging of Au from hydrothermal fluids (Fig. 15). Initially intense fluid–pyrite reactions proceeded on the surface of pre-existing pyrite crystals and along grain boundaries that provided ‘pathways’ for the diffusion of fluids into the pyrite. An abrupt change in physico-chemical conditions (e.g., temperature, pH, and/or sulfur fugacity) caused the supersaturation of Au ionic species at these sites. This, combined with low effective surface energy, caused the nucleation of Au ions and the crystallization of secondary electrum. Continuing fluid–pyrite reaction and a decrease in Au supersaturation caused the system to evolve to As-assisted incorporation of Au into pyrite. This study not only demonstrates the genetic relationship between the formation of visible and invisible Au from hydrothermal fluids, but also emphasizes the significance of systematic compositional and textural observations in interpreting fluid–rock interactions and understanding the processes involved in the incorporation of trace elements into other minerals. This indicates that determining mineral paragenetic sequences solely based on the distribution and mode of mineral occurrences should be approached cautiously in future research into ore-forming processes.
ACKNOWLEDGEMENTS

This study was financially supported by two NSFC projects (Grants 41272055, 41672037, and 41830426), National Key R&D Program of China (Grant 2016YFC0600205), China Geological Survey project (Grant 12120115034601), and joint Ph.D. project funding from the China Scholarship Council (Grant 201806190162). We are grateful to Juan Li for assistance during SEM imaging, Lixin Gu for assistance with FIB-SEM analysis, Wenlan Zhang and Wendi Chen for assistance with EMPA, Jianfeng Gao for assistance with LA–ICP–MS analysis, Baohong Zhang for EBSD analysis, Ashley Slattery, Zhidong Xie, Jiani Chen, and Xu Tang for TEM analysis, and Zhen He and Xiaoke Zhang for XRD analysis. Part of this research was undertaken at the XFM beamline at the Australian Synchrotron, Melbourne, Victoria, Australia, part of ANSTO. The authors also acknowledge Maarten Broekmans, Artur Deditius and three anonymous reviewers for their constructive comments on an earlier version of the manuscript.

REFERENCES CITED

Fisher, L., Fougerouse, D., Cleverley, J., Ryan, C., Micklethwaite, S., Halfpenny, A.,
X-ray fluorescence element mapping using the Maia detector array: Application to

Arsenian pyrite from gold deposits; Au and As distribution investigated by SIMS and
EMP, and color staining and surface oxidation by XPS and LIMS. The Canadian
Mineralogist, 31, 1–17.

Fleet, M. E. and Mumin, A. H. (1997) Gold-bearing arsenian pyrite and marcasite and
arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. American
Mineralogist, 82, 182–193.

Fougerouse, D., Micklethwaite, S., Tomkins, A. G., Mei, Y., Kilburn, M., Guagliardo, P,
and formation of high grade ore shoots driven by dissolution-reprecipitation
replacement and Ni substitution into auriferous arsenopyrite. Geochimica et

Fougerouse, D., Reddy, S. M., Kirkland, C. L., Saxey, D. W., Rickard, W. D., and Hough,
Witwatersrand pyrite. Geoscience Frontiers, 10, 55–63.

Fougerouse, D., Reddy, S. M., Saxey, D. W., Rickard, W. D., Van Riessen, A., and
Micklethwaite, S. (2016b) Nanoscale gold clusters in arsenopyrite controlled by
growth rate not concentration: Evidence from atom probe microscopy. American

Targeted geoscience initiative, 4, 157–175.

Merkulova, M., Mathon, O., Glatzel, P., Rovezzi, M., Batanova, V., Philippe, M., Boiron, M. C., and Manceau, A. (2019) Revealing the Chemical Form of “Invisible” Gold in Natural Arsenian Pyrite and Arsenopyrite with High Energy-Resolution X-ray...

Geochimica et Cosmochimica Acta, 75, 5423–5443.

Xu, N., Li, S. R., Santosh, M., and Tong, B. (2018) Petrology, geochemistry and zircon U-Pb geochronology of the Jurassic porphyry dykes in the Dehua gold field,

Dissolution-reprecipitation vs. solid-state diffusion: Mechanism of mineral transformations in sylvanite, (AuAg)$_2$Te$_4$, under hydrothermal conditions. American Mineralogist, 98, 19–32.

Figure Captions

Fig. 1. (a) Map showing the location of Fujian Province in China. (b) Map showing the major geological units, regional structures, and distribution of Au deposits within Fujian Province, China (after Li et al., 2018b).

Fig. 2. (a–b) Photographs and (c–f) photomicrographs of polished thin-sections taken under reflected light showing representative examples of mineralization within the Qiucun deposit. (a) Pyrite-rich vein containing colloform-banded quartz. (b) Pyrite-bearing quartz–chalcedony vein (modified after Ni et al., 2018). (c) Electrum and chalcopyrite inclusions within pyrite crystals or present as fracture-filling veins. The pyrite also contains minor amounts of sphalerite. The locations of LA–ICP–MS analyses are indicated, along with measured Au concentrations (in ppm; Appendix Table S1). (d) Electrum and sphalerite inclusions within pyrite. (e) Electrum and Ag sulfosalt association present as inclusions within pyrite. (f) Pyrite with growth zoning from an inclusion-rich core to a relatively clean rim. The dashed line indicates the boundary between pyrite core and rim. Abbreviations: Ilt = illite, Py = pyrite, Qtz = quartz, Chc = chalcedony, Ccp = chalcopyrite, Sp = sphalerite, Elc = electrum, and J3n = Jurassic Nanyuan Formation.

Fig. 3. BSE images showing the distribution of As and metal-bearing grains within pyrite from the Qiucun deposit. (a–c) As-rich patches within pyrite showing that the majority of electrum grains are located at the interface between As-rich and -deficient pyrite domains (a–b), present as inclusions in the As-deficient pyrite interior (a, c), or present as fracture-filling veins (a, c). The inset in (c) shows the distribution of sub-micrometer-scale electrum. (d–f) As-rich zoned rims surrounding As-deficient pyrite.
cores. The inset in (d) suggests that sphalerite and hessite are associated. The majority of the electrum is located at the interface between As-rich and -deficient domains (e–f), with some electrum present as fracture-filling veins (f). Local interfaces between As-rich and -deficient pyrite domains are highlighted by white dashed lines. EMPA locations and associated As concentrations are shown as orange circles and associated values (in wt%), with the locations of the three areas used for APT analysis (S1–S3) shown as orange rectangles. Abbreviations are as in Fig. 2 with b.l. = below detection limit and Hes = hessite.

Fig. 4. Diagram showing variations in the concentrations of Au and As within pyrite from the Qiucun deposit. The inferred solubility limit for Au is approximated by the line $C_{Au} = 0.02C_{As} + (4 \times 10^{-5})$, where C_{Au} and C_{As} represent the concentrations of Au and As, respectively (modified after Reich et al., 2005).

Fig. 5. K–Au–As RGB (red = K; green = Au; blue = As) image derived from the MSXRF mapping of an Au ore sample from the Qiucun deposit. The location of the three Au MSXRF images (a-c) and the BSE image (c–2) are shown as white rectangles in the main K–Au–As MSXRF image. (d) Close-up image of the region shown in the main RGB image. Abbreviations are as in Fig. 2.

Fig. 6. Results of the EBSD analysis of selected arsenian pyrite from the Qiucun Au deposit. (a) BSE image showing the analyzed pyrite grains. (b) Colored EBSD image showing the crystallographic misorientation within selected pyrite grains. The majority of crystallographic misorientations are $> 5^\circ$ other than those highlighted by the green dashed lines, which indicate misorientations of $> 2^\circ$. The regions chosen for LA–ICP–MS analysis are shown as white crosses. Abbreviations are as in Fig. 2 with FIB-cut =
focused ion beam cut.

Fig. 7. (a) BSE image showing the location of FIB-cut analysis in As-pyrite from the Qiucun deposit. (b–c) HAADF images showing the location of Ag–Sb and chalcopyrite nanoparticles within As-pyrite, as well as associated SAED patterns (d–e). The EDS spectra of the As-Sb nanoparticles are shown in appendix Fig. S5. (f) Image showing the presence of polycrystalline domains within As-pyrite. (g–h) Fast-Fourier transform images for the regions highlighted with dash lines in (f). Abbreviations are as in Fig. 2 with NP = nanoparticle.

Fig. 8. (a) Plan view of the location of the FIB-cut within an arsenian pyrite from the Qiucun deposit. (b–c) SAED patterns for As-deficient and -rich pyrite domains of the arsenian pyrite shown in (a), respectively. Abbreviations are as in Fig. 2.

Fig. 9. (a) Plan view of the location of the FIB-cut within an arsenian pyrite from the Dongyang deposit. (b) HAADF image showing the As distribution within the FIB-cut. (c) Close-up of the region highlighted with a rectangle in (b). (d–f) EDS STEM maps. Abbreviations are as in Fig. 2 with Gn = galena.

Fig. 10. (a–c) HAADF–STEM images showing the distribution of stacking faults and nanoparticles at this interface (Fig. 9). The insets show the atomic arrangements of the Pb–Sb–S phases, with their EDS spectra shown in appendix Fig. S5. (d) Atomic arrangements at the interface. (e) Close-up of the region highlighted with a rectangle in (d) with a planar fault marked using an arrow. The inset shows the fast Fourier transformation (FFT) image for As-pyrite. The d-spacings of the (2 0 0) plane are shown as associated values. (f–g) Atomic arrangements in As-deficient and -rich pyrite domains, respectively, with the associated d-spacings and FFT image.
Fig. 11. Results of the APT analysis of S1 showing maps of As, Ge, Sb, Cu, Pb, and Se concentration where each sphere represents one atom. Scale bar is 40 nm.

Fig. 12. (a) Image showing the analysis location within the reconstructed volume of the APT dataset. (b) 0.2 at% isosurface of combined Cu, Se and Pb atoms in the region shown in (a). (c) Proximity histogram profile across the isosurface.

Fig. 13. (a) Image showing the analysis location within the reconstructed volume of the APT dataset. (b) Nearest neighbor distribution analysis of the abundance of As, Sb, Pb, Se, Ge, and Cu atoms for the region shown in (a).

Fig. 14. Results of the EMPA of arsenian pyrite from the Qiucun deposit. (a) Ternary Fe–S–As (in at%) diagram comparing the composition of arsenian pyrite from the Qiucun Au deposit (black circles) with data from Deditius et al. (2008; gray triangles). The former indicates substitution of As for S (arrow 1), whereas the latter indicates substitution of As for Fe (arrow 2). (b) Diagram showing variations in the concentrations of As and S within arsenian pyrite.

Fig. 15. Schematic diagram showing the behavior of Au during the reaction between pyrite and As–Au-rich fluids within the Qiucun Au deposit. Light gray areas indicate early-formed As-deficient pyrite, dark gray areas indicate As-rich phases produced during the reaction, black lines indicate grain boundaries, orange ellipsoids indicate visible electrum inclusions, and orange crosses indicate Au ions. See text for detailed explanation.
Figures

Figure 1
Figure 2
Figure 3

Figure 4

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Figure 7

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Figure 8
Figure 9
Figure 10

(a) As-deficient PbS with stacking faults. Scale bar: 200 nm.
(b) Interface and stacking faults in Pb-Sb-S (1). Scale bar: 100 nm.
(c) As-deficient Pb-Sb-S (2) with interface. Scale bar: 50 nm.
(d) Interface and stacking faults in Pb-Sb-S (2). Scale bar: 5 nm.
(e) FFT images showing the crystal structure. Scale bar: 2 nm.
(f) As-deficient region with stacking faults. Scale bar: 1 nm.
(g) As-rich region with stacking faults. Scale bar: 1 nm.
Figure 11

Figure 12
Figure 13

![Image of a and b graphs showing d-pair distributions and counts.]

Figure 14

![Image of a ternary plot showing As, Fe, and S distributions and a bivariate scatter plot with a linear regression line.]

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Figure 15