Establishing the P–T path of UHT granulites by geochemically distinguishing peritectic from retrograde garnet

Shujuan Jiao$^{1, 2, 3*}$, Noreen J. Evans$^{3, 4}$, Jinghui Guo$^{1, 2, 6}$, Ian C. W. Fitzsimons3, Jian-Wei Zi$^{4, 5}$, Bradley J. McDonald$^{3, 4}$

1State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
2Innovation Academy for Earth Science, CAS, Beijing 100029, China
3School of Earth and Planetary Sciences, Curtin University, Perth 6845, Australia
4John de Laeter Center, Curtin University, Perth 6845, Australia
5State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
6College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Running title: Peritectic and retrograde garnet in UHT granulite

*Corresponding author.

Dr. Shujuan Jiao, jiaoshujuan0215@126.com
Abstract

The P–T evolution (and particularly the prograde path segment) of ultrahigh-temperature (UHT) granulites is commonly ambiguous, hampering our understanding of deep crustal processes. Here, we establish the P–T path by distinguishing garnet origin (peritectic or retrograde) based on the combined Ca, Ti, Zr and $Y +$ REE chemical signatures, using the residual UHT granulites of the Khondalite Belt, North China Craton as a test case. In these rocks, peritectic garnet is characterized by rare inclusions, whereas retrograde garnet has overprinted the main foliation, and is characterized by abundant biotite and sillimanite inclusions, which are interpreted to have grown together with retrograde garnet during cooling. Zirconium in peritectic garnet increases from 10 to 50 ppm with garnet growth. In contrast, Zr in retrograde garnet generally decreases from 60 to 10 ppm with garnet growth. A similar trend is observed for Ti. Temperatures calculated from the Ti-in-garnet geothermometer increase from 830 °C to 980 °C based on Ti in peritectic garnet, indicating prograde partial melting, whereas decrease from 900 °C to 700 °C based on Ti in retrograde garnet, indicating post-peak cooling. Peritectic and retrograde garnets show distinct Eu/Eu* (0.2–0.5 vs. 0.05–0.2, respectively) and Ca contents (6000–12000 ppm vs. 4000–6000 ppm, respectively), which generally decrease with progressive garnet crystallization. The pressures calculated from the Ca-in-garnet geobarometer in peritectic and retrograde garnet are 9–11 kbar and 7–9 kbar, respectively. Peritectic garnet shows a bell-shaped Y (80–340 ppm) pattern, whereas retrograde garnet shows an increase in Y content (20–100 ppm) toward rims. Taken together, these results establish a P–T path comprised of an earlier high-pressure peritectic garnet formation during prograde partial melting before the UHT peak and a late abundant retrograde formation.
during post-peak cooling stage. We conclude that change of Zr and other elements (e.g. Ti, Ca, Y, and Eu/Eu*) can well distinguish different garnet formation events in UHT granulites, which is critical for the $P-T$ path establishment, and further sheds light on the cause of UHT metamorphism and the geodynamic evolution.

Keywords: Garnet, $P-T$ path, Trace element, UHT, Khondalite Belt, North China Craton

Introduction

The metamorphic $P-T$ path is one of the fundamental features used to elucidate deep crustal geologic processes and major and trace element zonation in garnet can reveal metamorphic $P-T$–fluid evolution (e.g. Tuccillo et al. 1990; Spear and Kohn 1996; Kohn et al. 2001). Garnet in metapelites can be formed by sub-solidus reaction (e.g. Rivers 1983; Pyle and Spear 1999; Yang and Rivers 2001), defined as prograde garnet, and biotite dehydration melting (Otamendi et al. 2002; Bartoli et al. 2013), defined as peritectic garnet. Alternately, garnet can occur as a retrograde product of the reaction between sapphirine/spinel and quartz/liquid (White et al. 2002; Holder et al. 2018), and be defined as retrograde garnet. More than one garnet generation could be preserved in metapelitic granulite, and therefore determining garnet formation events and $P-T$ conditions will shed light on overall $P-T$ evolution.

Sufficient diffusion of major divalent cations at elevated temperatures (e.g. Florence and Spear 1991), retrograde exchange and net transfer reactions (Selverstone and Chamberlain 1990; Kohn and Spear 2000) can flatten garnet growth zoning in the case of granulites (Pattison et al. 2003). This can lead to potential misinterpretation of $P-T$ paths and inaccurate tectonic interpretations (Selverstone and Chamberlain 1990), and the
situation can be exacerbated in UHT granulites, where peak temperatures exceeded 900 °C (Harley 1998). Therefore, the P–T path experienced by UHT granulites (particularly the prograde segment) is commonly ambiguous. The larger ionic radius of Ca means it has an order of magnitude lower rate of diffusion in garnet compared to Fe and Mg (Vielzeuf et al. 2007), and therefore Ca content and zonation may reflect original garnet growth zoning. Rare-earth elements (REEs) have a slower diffusion rate than major divalent cations in garnet (i.e. Tirone et al. 2005; Carlson 2012). Moreover, garnet strongly fractionates HREE and Y, which can provide a record of formation history when coupled with Ca (Chernoff and Carlson 1997, 1999), and other trace elements (e.g. Axler and Ague 2015; Raimondo et al. 2017; George et al. 2018). The Khondalite Belt is one of the Paleoproterozoic orogens in the North China Craton (NCC) with predominant upper amphibolite- to granulite-facies metasedimentary rocks (Fig. 1a; e.g. Zhao et al. 2005; Peng et al. 2014). Evidence for UHT metamorphism has been recognized from several localities (Fig. 1b). These UHT granulites were interpreted to record an initial post-peak near isobaric cooling (IBC) P–T path, and followed by a stage of near isothermal decompression (ITD) or decompression–heating (as review in Jiao and Guo 2020). However, the prograde P–T path before the UHT-peak is poorly constrained. The UHT granulites have long been considered to have experienced an anticlockwise P–T path with near isothermal pressure increase before IBC stage (Santosh et al. 2007a, 2009a, 2012; Tsunogae et al. 2011), whereas a complex clockwise P–T path was proposed by more recent studies with a decompression–heating stage before the UHT-peak (Jiao et al. 2017; Li and Wei 2018). In this study, trace elements and Ca contents of garnet in the aluminous granulites from a
well-studied UHT locality (i.e. Dongpo; Fig. 1b) in the Khondalite Belt, NCC, were measured by laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). These data in combination with phase equilibria modeling and the application of Ti-in-garnet geothermometer and Ca-in-garnet geobarometer are used to document garnet formation events during the UHT metamorphic evolution, and better constrain the P–T path and shed light on the tectono-thermal evolution of the Khondalite Belt.

Geological setting

The NCC is composed of multiple micro-blocks of Archean to Paleoproterozoic basement, separated by several Paleoproterozoic orogenic/mobile belts (Fig. 1a; e.g. Zhao et al. 2005; Zhai et al. 2014). The EW-trending Khondalite Belt is thought to have formed by continental–continental collision between the Yinshan Block in the north and the Ordos Block in the south at ca. 1.95 Ga (Fig. 1a; Zhao et al. 2005). The final amalgamation of the NCC was accomplished during continental–continental collision along the Trans-North China Orogen between the Western Block and the Eastern Block at ca. 1.85 Ga (Fig. 1a; e.g. Zhao et al. 2005).

The Khondalite belt is located adjacent to the western segment of the Trans-North China Orogen (Fig. 1b) and is commonly divided into three terranes from west to east: Helanshan–Qianlishan, Ulashan–Daqingshan and Jining–Liangcheng–Fengzhen (simplified here to Jining) terranes. The belt is mainly composed of ENE-trending upper amphibolite- to granulite-facies metasedimentary rocks including garnet-sillimanite gneiss, quartzo-feldspathic granofels, feldspathic quartzite, mafic granulite, marble, calc-magnesium silicate rocks and minor graphite gneiss (Fig. 1b; Lu and Jin 1993).
These rocks are usually associated with extensive garnet-bearing potassic granite and charnockite, and metamorphosed gabbroic and noritic to dioritic intrusions (Fig. 1b; Lu and Jin 1993). The protolith of the metasedimentary rocks in the Khondalite Belt was thought to have been deposited on an active continental margin at ca. 2.04–1.95 Ga (e.g. Dan et al. 2012).

The majority of metapelites consist of garnet + sillimanite-bearing assemblages in the Khondalite Belt, whereas minor high-pressure (HP) metapelites with garnet + kyanite + perthite assemblage were also recognized (Yin et al. 2015). The metapelites were suggested to have experienced clockwise P–T paths with peak P–T conditions of ca. 8–12 kbar and 750–880 °C, including near-isothermal decompression (ITD) stages (Yin et al. 2015). As stated above, the UHT granulites experienced post-peak cooling before the decompression–heating or ITD stages (e.g. Santosh et al. 2012; Li and Wei 2018; Jiao and Guo 2020), but the overall shape of the P–T path is controversial due to the ambiguity of the pre-peak prograde P–T path segment.

There are a wide range of metamorphic ages (ca. 1.96–1.80 Ga) reported from the Khondalite Belt (Peng et al. 2014; Jiao et al. 2020b). The timing of HP metamorphism was constrained to be 1.96–1.94 Ga (Yin et al. 2011), while the HT–UHT metamorphism was long-lived from 1.94–1.80 Ga (Santosh et al., 2007b, 2009b; Jiao et al. 2020a, b; Jiao and Guo, 2020).

At the Dongpo locality (GPS: 40°57′ 8.2″ N and 111°09′ 16.5″ E; Fig. 1b), garnetiferous leucogneiss, garnet-sillimanite gneiss, aluminous garnet-sapphirine or garnet-spinel granulite, mafic granulite and quartz-K-feldspar vein occur as layers in the host orthopyroxene-bearing orthogneiss (Fig. 1b; Jiao et al. 2020b). These rocks
commonly show a strong or weak NEE-trending, steeply dipping foliation. Three aluminous granulite samples that were interpreted to have experienced UHT metamorphism are studied here.

Sample description

The three samples (sample 10DP01 with three thin sections 10DP01a, 10DP01b, and 10DP01c, and samples 08JDP08 and 08JDP11, each with one thin section) are residual granulites, depleted in SiO$_2$ (39–40 wt.%) and K$_2$O (1–2 wt.%), but enriched in Al$_2$O$_3$ (28–30 wt.%), FeO (11–14 wt.%) and MgO (7–8 wt.) (Details in Jiao et al. 2017). They contain garnet (10–50 mass%; calculated by TIMA (TESCAN Integrated Mineral Analyser), sillimanite (1–7 mass%), plagioclase (15–47 mass%), biotite (10–27 mass%), spinel (1.4–4.7 mass%), sapphirine (3–17 mass%), and accessory minerals including rutile, ilmenite, cordierite, corundum, monazite and zircon. The samples contain very rare quartz as inclusions in garnet, and no K-feldspar. The only potassium-bearing mineral is biotite and the only leucocratic mineral is plagioclase.

Garnet, spinel, sapphirine and plagioclase occur as two different types. Garnet is variable in grain size (from less than 0.5 mm to 12 mm) and irregular in shape. The first type of garnet occurs as inclusion-rare single grains (Fig. 2a) or as cores that are mantled by the second type of garnet (Fig. 2b–c), rich in fibrous sillimanite and biotite inclusions and locally containing minor plagioclase, sapphirine and spinel inclusions. The major foliation, defined by oriented biotite, prismatic sillimanite and sometimes sapphirine and spinel, passes along the boundaries of the inclusion-rare garnet and sometimes forms pressure shadows (Fig. 2a), but the foliation is overprinted by the inclusion-rich garnet.
(Fig. 2b–c). Spinel occurs as irregular grains in the matrix, or occurs as intergrowths with plagioclase taking the shape of sillimanite. Sapphirine occurs as coronae on spinel, or as intergrowths with plagioclase replacing sillimanite. Plagioclase occurs as coarse-grained crystals in the matrix, or as fine-grained intergrowths with spinel and/or sapphirine. Zircon and monazite commonly occur as inclusions in inclusion-rich garnet, and in the matrix, but rarely as inclusions in inclusion-rare garnet.

Photomicrograph scans of two representative thin section samples (i.e. 08JDP11 and 10DP01a) are shown in the Appendix materials (Figs. A1–A2).

Results

Garnet trace elements

A total of 234 analytical spots were measured by LA–ICP–MS along continuous traverses through 9 garnet grains in five thin sections, and the other grains were analyzed with a random spot distribution. Detailed methods, standards and analytical uncertainties are in the Appendix materials.

The results show that inclusion-rare garnet and inclusion-rich garnet have different chemical features that are generally not grain-size related. The inclusion-rare garnet is characterized by a high-Ca content (mostly 6000–12000 ppm), and the inclusion-rich garnet is low-Ca (mostly 4000–6000 ppm; Fig. 7b). The Ca content in the inclusion-rare garnet shows a range of Ca concentration patterns across grains. Ca can increase and then decrease rimwards (Fig. 3f), or remain constant and then decrease rimwards (Figs. 4c, 5c).
In contrast, the inclusion-rich garnet preserves consistent (Fig. 3f), and slightly decreasing Ca zoning rimwards (Figs. 4c, 5c, and 6c), and sometimes has Ca-enriched outermost rims (Figs. 4c, 6c).

The inclusion-rare garnet has high Eu/Eu* (Eu/√(Sm×Nd)); mostly in the range of 0.2–0.5, whereas inclusion-rich garnet has low Eu/Eu* (0.05–0.2). In general, zonation in Eu/Eu* varies consistently with Ca content (Figs. 3f, 4c, 5c, and 6c), with Eu/Eu* positively correlated with Ca (Fig. 7b).

The inclusion-rare garnet shows a large variation in Y content between samples, and the inclusion-rare garnet from sample 08JDP11 has a higher Y content (100–340 ppm) than that from samples 10DP01b and 08JDP08 (80–110 ppm) (Figs. 3g, 4d, 5d, and 7a). In contrast, the inclusion-rich garnet has a relatively uniform Y content (20 to 100 ppm) among samples, but can contain up to 180 ppm Y in some outermost rims (Figs. 3g, 4d, 5d, and 7a). The inclusion-rare garnet preserves bell-shaped (Figs. 3g, 4d) or flat Y zoning (Fig. 5d), and the inclusion-rich garnet preserves flat and increased Y zoning rimwards (Figs. 3g, 4d, 5d and 6d). The Y-enriched outermost rims (less than 0.8 mm) are preserved in both the inclusion-rich garnet and the inclusion-rare garnet (Fig. 5d).

The inclusion-rare garnet shows positive to flat HREE slopes (Figs. 3d–e, 4b, 5b), with Lu₅/Gd₅ in the range of 0.5–12, whereas the inclusion-rich garnet normally shows negative HREE slopes (Figs. 3d–e, 4b, 5b, and 6b) with Lu₅/Gd₅ mostly less than 0.6. In general, Lu₅/Gd₅ shows a consistent variation with Y (Figs. 3g, 4d, 5d, and 6d).

The inclusion-rare garnet contains less Gd (8–14 ppm) than inclusion-rich garnet (10–27 ppm). The inclusion-rare garnet shows a bowl-shaped Gd abundance pattern across a grain, whereas the inclusion-rich garnet shows variable and asymmetric Gd patterns, from
flat, to decreased or increased Gd contents toward the rims (Figs. 3h, 4e, 5e, and 6e). The inclusion-rare and inclusion-rich garnets contain comparable Sc (40–100 ppm), but the inclusion-rare garnet has a bowl-shaped Sc pattern (like Gd), whereas the inclusion-rich garnet shows variable and asymmetric patterns of Sc enrichment across grains, from flat, to decreased or increased contents toward the rims (Figs. 3h, 4e, 5e, and 6e).

The inclusion-rare garnet contains more Ti (140–280 ppm) than the inclusion-rich garnet (60–250 ppm) (Fig. 7c). The inclusion-rare garnet shows increased Ti toward garnet inner rims and decreasing Ti toward the outermost rims, whereas the inclusion-rich garnet shows complex Ti zoning which is generally characterized by less Ti toward the rims, but sometimes shows inflections (Figs. 3i, 4f, 5f, and 6f). The inclusion-rare garnet has slightly less Zr (10–40 ppm) than the inclusion-rich garnet (10–60 ppm) (Fig. 7f). The inclusion-rare garnet commonly shows a bowl-shaped Zr enrichment pattern across a grain, whereas the inclusion-rich garnet shows variable Zr, mostly decreasing trends toward the rims, but sometimes increasing rimwards, or with inflections (Figs. 3i, 4f, 5f, and 6f).

In summary, the inclusion-rare garnet and inclusion-rich garnet are characterized by different Ca (6000–12000 vs. 4000–6000 ppm), Eu/Eu* (0.2–0.5 vs. 0.05–0.2), Y (80–340 vs. 20–100 ppm), Lu_{N}/Gd_{N} (0.5–12 vs. 0.01–0.6), and Gd (8–14 vs. 10–27 ppm), respectively. The variation of these chemical components and Eu/Eu* ratios is generally consistent across all inclusion-rare garnets, but variable among inclusion-rich garnets as summarized in Table 1.
Two thin sections were selected for pseudosection calculations. Sample 10DP01b mainly consists of coarse-grained garnet and has the highest garnet abundance (~50 mass%), while sample 10DP01c mainly consists of fine-grained garnet and has the lowest garnet abundance (~10 mass%). The bulk compositions of these two thin sections were used for the calculations (Fig. 8). Detailed methods and procedures can be found in the Appendix materials. The \(P-T \) pseudosection was calculated in a \(P-T \) range of 6–14 kbar and 750–1100 °C, and we show the result from sample 10DP01c here, while results for sample 10DP01b can be found in the Appendix materials. The full topological characteristics can also be found in the Appendix materials.

The predominant mineral assemblage is in the Grt + Sil + Bt + Spr + Liq field, defined as M2 (the second metamorphic stage), while spinel belongs to an early stage, defined as M1 (the first metamorphic stage). Mineral growth and consumption are inferred based on the change of mineral modes in the pseudosection. Garnet mode does not change much in the Grt + Bt + Spr + Liq and Grt + Sil + Bt + Spr + Liq fields, but it is clear that garnet mode increases during cooling and decreases during decompression (Fig. 8b). Change of biotite mode is mainly \(T \)-related in Crd-absent fields (Fig. 8c). Biotite mode increases during cooling, and distinctly changes across the Sil-in line (Fig. 8c). Change of plagioclase mode is also \(T \)-related in Crd-absent, Crn-absent fields (Fig. 8d). Plagioclase mode increases during cooling, and is stable across the Sil-in line (Fig. 8d). In summary, it is inferred that garnet, biotite, plagioclase and sillimanite grew during a cooling stage. During this cooling stage, Ca-in-Grt (= Ca/(Ca + Mg +Fe) ≈ Grs mol.%) decreased at first, then stabilizes and finally increases a little based on the change of modeled
Ca-in-Grt isopleths (Fig. 8a).

Discussion

A metamorphic framework of the Dongpo UHT granulite

Previous works found that the Dongpo granulites experienced Paleoproterozoic UHT metamorphism with peak P–T conditions of 8–12 kbar and 910–980 °C, constrained by pseudosection calculations (Tsunogae et al. 2011; Guo et al. 2012; Jiao et al. 2017; Jiao and Guo 2020) and using the Zr-in-rutile geothermometer (Jiao et al. 2011). It is quite clear that there were two retrograde stages of post-peak IBC (M2) from ca. 980 °C to ca. 830 °C at ca. 9 kbar, and subsequent decompression–heating (i.e. M3) to ca. 7 kbar and ca. 900 °C, based on phase equilibria modeling using effective bulk compositions of three sapphire-bearing microdomains (Jiao and Guo 2020). The P–T pseudosections modeled here show that garnet, together with biotite, plagioclase, and sillimanite, grew during a cooling stage (Fig. 8), which further supports the conclusion of post-peak IBC stage (M2) by Jiao and Guo (2020).

Two types of garnet are recognized here based on textural and geochemical features, with the inclusion-rare garnet forming prior to the major foliation defined by aligned biotite and sillimanite, and the inclusion-rich garnet forming after, or concurrently with, the foliation (Fig. 9). The inclusion-rich garnet occurs in higher abundance than the inclusion-rare garnet, and is commonly associated with biotite and sillimanite, and therefore we suggest that the modeled pseudosections show the inclusion-rich garnet formation process. However, the formation of inclusion-rare garnet (only a small percentage of the whole thin section) is unclear in the pseudosections, because these
granulites are strongly evolved residual melt phases, and domainal in compositions (Jiao and Guo 2020). For this reason, prograde metamorphism cannot be well constrained. Tsunogae et al. (2011) have inferred a nearly isothermal compression before the thermal peak, whereas Jiao et al. (2017) proposed two alternative scenarios; decompression–heating or an early decompression followed by heating before the UHT peak. The pseudosections generally represent the metamorphic evolution of these granulites, considering the consistency between observed and modeled mineral assemblages and their modes. However, two major inconsistencies still exist. First, spinel, a common mineral in these rocks, was only calculated to be stable at lower pressure and/or higher temperature, and no spinel + garnet stable fields were calculated. Second, retrograde garnet that makes up a significant proportion of the total garnet in the rocks only shows a few percent growth with cooling in the pseudosections. The limitation and uncertainty associated with the phase equilibria modeling mean that the exact mineral assemblage cannot be always reproduced. Importantly, however, retrograde garnet growth is predicted, even if the amount of garnet growth is not modeled accurately, because the precise predicted amount of retrograde garnet growth depends significantly on the details of the interpreted P–T path (Fig. 8). Some of the modeling limitations might be related to the highly residual composition of these rocks (low-Si, low-K, high-Al, high-Fe and high-Mg), which differs substantially from the average pelite for which current a–x models are typically applied.

Comparison between pseudosections based on datasets of ds55 and ds62 is shown in the Appendix materials. An in-depth discussion of the uncertainties associated with phase equilibria modeling using different datasets were discussed by Korhonen et al. (2014) and
Guevara and Caddick (2016). Korhonen et al. (2014) concluded that ds62 provided better
agreement to their interpreted metamorphic reaction history than ds55s, although several
observations were not successfully accounted for in their ds62 models. Guevara and
Caddick (2016) showed that generally similar interpretations were obtained with ds55
and ds62, but the absolute values of P and T for interpreted parageneses differed and
some interpreted parageneses were not successfully modeled in ds62. Using ds62 in this
study, garnet + spinel, but not sapphirine, were calculated to be stable within the
investigated P–T range; retrograde garnet growth within the biotite stability field was not
predicted either. In contrast, ds55 calculations predict garnet–sapphirine stability and
retrograde garnet growth within the biotite stability field, but not garnet–spinel stability.
Thus, neither dataset predicts all of the interpreted parageneses, requiring independent
verification of the estimated P–T conditions (i.e. the Ca and Ti in garnet in the following
sections), which support the overall interpretation of a UHT clockwise P–T path and two
generations of garnet growth.

Mechanisms controlling trace element distribution in garnet
Trace element distribution in garnet is complex and commonly shows decoupling
between elements. Related to the variable length scale of chemical equilibrium, garnet
trace element distribution is controlled by a number of factors including elemental
partition coefficients between garnet and the matrix, limited intergranular diffusion of
cations, changes of intensive parameters (i.e. P, T), changes of major and accessory
mineral assemblages, and (potentially) fluid infiltration (Lanzirotti 1995; Pyle and Spear
1999; Otamendi et al. 2002; Konrad-Schmolke et al. 2008; Moore et al. 2013; Rubatto et
The chemical composition of garnet in the Dongpo granulites is Alm (50–60 mol.%)–Prp (37–47 mol.%) solid solution with X_{Mg} of 0.38–0.51, Grs content of 2–4 mol.% and Sps content of 0.6–1.0 mol.% (Jiao and Guo 2020). Zonation of Mg, Fe and Mn has been flattened by strong diffusion and, while the outermost rims were affected by retrograde Fe–Mg exchange, Ca zonation is preserved (Jiao et al. 2017; Jiao and Guo 2020). A change in garnet major element composition is therefore not considered to be the major mechanism controlling trace element distribution. A recent study has certified that diffusion-limited uptake is not a dominant mechanism at high T (Rubatto et al. 2020).

There is no evidence of a sharp peak or spike in trace element zonation, also arguing against the mechanisms of limited intergranular diffusion and fluid alteration. In summary, the observed trace element (i.e. HREE + Y, Ti, Zr, and Sc) zonation in garnet from the Dongpo granulites mainly reflects growth zoning since garnet formation, and the equilibrium partitioning of these elements between garnet and the matrix, preserves indicators of P–T condition change, and was influenced by the formation and breakdown of other major and accessory minerals. However, diffusion relaxation under UHT conditions may have smoothed the patterns somewhat, and the characteristic diffusion length scales are less than 2.2 mm, calculated using a duration of 100 Myr by both zircon and monazite U–Pb dating (Jiao et al., 2020a, b) and T of 900 °C, with Y diffusion coefficient (i.e. $\log(D_Y) = -21.45$) from Carlson (2012) and Ca diffusion coefficient (i.e. $\log(D_{\text{Ca}}) = -21.43$) from Vielzeuf et al. (2007).

Manganese and Y are strongly compatible in garnet, and therefore garnet growth causes progressively depleted Mn and Y, and generates bell-shaped zonation across the grain
Manganese is commonly used as a chemical proxy to represent progressive garnet growth in low-grade metamorphism, while Y is used for high-grade metamorphism. In this study, Eu/Eu* is used as a proxy to represent progressive garnet growth, which commonly decreases from core to rim (like Y) in the two types of garnet (Fig. 7a), with Y being enriched in garnet outermost rims. The other trace elements and Ca are plotted against Eu/Eu* to show changes with garnet growth (Fig. 7), as discussed in more detail below.

Peritectic garnet formation during prograde partial melting

The bell-shaped HREE + Y zoning has been attributed to Rayleigh fractionation during garnet formation (where mineral assemblages remain unchanged), commonly under sub-solidus conditions (Pyle and Spear 1999; Otamendi et al. 2002; Moore et al. 2013; Rubatto et al. 2020). The inclusion-rare garnet shows bell-shaped or sometimes flat Y zoning, irrespective of grain size, indicating that Rayleigh fractionation is not the sole explanation. Some other considerations are discussed below.

Scandium is strongly compatible in garnet, like Y and Mn, but the variation in Sc content from core to rim is in contrast to the variation in Y + HREE (Figs. 3g, 4d, 5d and 6d), and similar to the variation in Gd content (representative of MREE)(cf. Figs. 3h, 4e, 5e and 6e). The transition from bell-shaped to bowl-shaped zonation with decreased REE atomic number is consistent with observations of garnet zoning in other studies (Lapen et al. 2003; Skora et al. 2006; Konrad-Schmolke et al. 2008; Moore et al. 2013; Raimondo et al. 2017; George et al. 2018), with general core–rim decreases in Y + HREE and increases in M–LREE due to REE fractionation during garnet growth (e.g. Lapen et al. 2003) with
possible variability due to superimposed effects of matrix-mineral reactions (e.g. Konrad-Schmolke et al. 2008).

The zonation of Ca and Ti in garnet (Figs. 7b–e) reflects a change of metamorphic P and T. The P results are calculated to be 9.2–11.4 kbar (at 900 ºC) using a newly calibrated Ca-in-Grt geobarometer (Wu 2019), which are consistent with the pressure results of 9.6–10.9 kbar (at 900 ºC) calculated using the GASP geobarometer (Holdaway 2001). These P results are taken as maximum estimates considering the silica-undersaturated conditions, but phase equilibria modeling using the whole-rock composition constrains similar P conditions at 9–10 kbar with T estimates of 850–920 ºC (Jiao et al. 2017).

An experimental study has shown that Ti in garnet is positively correlated with metamorphic T (Kawasaki and Motoyoshi 2016). The Ti content slightly increases in the inner part of inclusion-rare garnet, followed by sharp Ti content decrease at the rim (Figs. 3i, 7c), confirming that metamorphic T increased during prograde metamorphism. The T calculated by the Ti-in-Grt geothermometer (calibrated by Kawasaki and Motoyoshi (2016)) increases from 830 to 980 ºC across the inclusion-rare garnet (Fig. 7d). These are minimum estimates due to the absence of quartz and may show bias because of the absence of orthopyroxene, but these temperature results are consistent with T calculated from rutile without adjacent ilmenite or zircon using the Zr-in-rutile geothermometer (850–980 ºC), and with the results from pseudosection modeling (Jiao et al. 2017; Jiao and Guo 2020). The Ti-depleted outermost rims may reflect decreased T during the subsequent retrogression, or may indicate Ti interface coupled dissolution–reprecipitation (Ague and Axler 2016). The latter is more likely given the fact that the outermost rims of most analyzed garnets have decreased Ti contents (e.g., Figs. 3i, 4f, 5f, and 6f).
Zirconium zonation in garnet is similar to that of Ti, and also regarded as temperature-dependent (Kohn et al. 2015), if zircon exists during the whole metamorphic evolution, that means the ZrO$_2$ activity is unity. The increase of Zr content with garnet growth in inclusion-rare garnet (Fig. 7f), supports the conclusion of peritectic garnet formation during prograde partial melting. The increase of V, Cr, Zr, Y and M-HREE in peritectic garnet was also recognized by Rubatto et al. (2020), but they suggest that it is related to the dehydration melting of biotite and the solubility of accessory minerals in the melt, such as zircon and monazite.

The inclusion-rare garnet coexists with spinel and plagioclase in the matrix of the Dongpo granulites, and all are assigned as M1 phases (Fig. 9). These mineral assemblages can be produced by biotite dehydration melting at high-pressure (ca. 10 kbar) and high-temperature (> 1000 ºC; Patiño Douce and Johnston 1991), probably under silica-undersaturated conditions. A decrease in Eu/Eu* with garnet formation (Figs. 3f and 4c) suggests K-feldspar grew together with inclusion-rare garnet during biotite dehydration melting (Patiño Douce and Johnston 1991). K-feldspar is absent from the Dongpo granulites, but K-feldspar could have been produced by biotite dehydration melting, but have been extruded during melt loss. Alternatively, the Eu content could simply be a function of the grossular content, because trace-element incorporation into pure grossular is different from that in pure almandine or pyrope.

In summary, we interpret the inclusion-rare garnet to have formed as a peritectic phase, by biotite dehydration melting reaction during the high-pressure, high-temperature prograde metamorphism before the UHT peak.
Retrograde garnet formation and garnet resorption during post-peak retrograde stages

Abundant aligned biotite and sillimanite inclusions occur in inclusion-rich garnet but are rarely found in the inclusion-rare garnet, indicating that there could have been a cooling stage between the two garnet generations, or that the inclusion-rich garnet formed together with sillimanite and biotite during the cooling stage (Fig. 9). Boger et al (2012) has reported similar garnet with aligned sillimanite and biotite inclusions and some garnet surrounding magnetite, ilmenite and spinel, and suggested that these garnets have formed by biotite dehydration melting. However, we think the former is more likely given the following considerations.

The zonation of Gd, Sc, Ti and Zr in the inclusion-rich garnet is variable and complex compared to that in the inclusion-rare garnet. The Zr content in inclusion-rich garnet generally decreases toward the rim, indicating that temperature decreases with garnet formation (Fig. 7f).

Temperatures calculated from Ti-in-Grt geothermometer (Kawasaki and Motoyoshi 2016) are 700–900 °C, lower than those calculated from inclusion-rare garnet (Fig. 7d). Pressure results calculated by the Ca-in-Grt geobarometer (Wu 2019) are 7–9 kbar (at 900 °C), and 7–8 kbar by GASP geobarometer (Holdaway 2001), both also lower than estimates from inclusion-rare garnet. The inflection of Ca/Ti ratios between inclusion-rare garnet and inclusion-rich garnet represents the transition from prograde partial melting with decreased P/T, to post-peak cooling with increased P/T (Fig. 7e). The Y content of inclusion-rich garnet is relatively homogeneous compared to that of inclusion-rare garnet, with the exception of occasional Y-enriched outermost rims (Fig. 7a), implying bulk
equilibrium as garnet formed during slow cooling from UHT conditions. The Eu/Eu* in
inclusion-rich garnet mostly decreases toward the rim (Fig. 7a–f), which can be explained
by plagioclase formation together with garnet during the cooling stage (Fig. 8).

Biotite occurs as inclusions in inclusion-rich garnet and extensively in the matrix in the
Dongpo granulites, and contains consistent and enriched TiO$_2$ (3–7 wt%), indicating that
the two occurrences of biotite were likely formed simultaneously (Jiao and Guo 2020).
Petrographic study indicates that the inclusion-rich garnet is in straight contact with
biotite in the matrix, suggesting they were in equilibrium. Taken together, the results
support the coeval formation of inclusion-rich garnet with biotite, both as inclusions and
in the matrix. A similar case should be true for sillimanite. These petrographical
observations are consistent with the change of mineral mode in the pseudosection (Fig.
8).

Therefore, the inclusion-rich garnet and extensive biotite and sillimanite, together with
sapphirine coronae after spinel in the matrix, was more likely to have formed during the
post-peak IBC stage (Jiao and Guo 2020). Minor spinel and sapphirine inclusions in
garnet support this conclusion (Holder et al. 2018). Change of Ca in retrograde garnet
(Table 1), is also consistent with the modeled isopleths along the post-peak IBC stage
(Fig. 8a).

The Y-enriched outermost rim in garnet from the Dongpo granulites can be explained by
garnet resorption and back diffusion (Fig. 7a), following similar explanations elsewhere
(e.g. Hickmott and Spear 1992; Rubatto et al. 2006). The formation of sapphirine ± spinel
+ plagioclase intergrowths, plagioclase coronae and minor cordierite supports garnet
breakdown during the M3 stage (Fig. 9) and indicates a decompression–heating stage to
ca. 7 kbar at ca. 900 °C in the $P–T$ pseudosection calculated using effective bulk composition of the sapphireine + plagioclase symplectite-dominated microdomain (Jiao and Guo 2020).

Interpretation of HP partial melting before UHT metamorphism

Given the evidence discussed above, we have documented early high-pressure, high-temperature peritectic garnet formation during prograde partial melting before the UHT peak (M1 stage), and late retrograde garnet formation during the post-peak low-pressure IBC processes (M2 stage), and garnet resorption during decompression–heating (M3 stage) (Figs. 8, 10). This high-pressure prograde partial melting before UHT metamorphism is the first documented example in the Khondalite Belt, NCC. A pre-UHT high-pressure partial melting stage to UHT thermal peak along decompression clarifies the previous debate over the overall shape of the $P–T$ path, and therefore the clockwise $P–T$ path is certified (Fig. 10).

The clockwise $P–T$ path documented here is distinct from that in high-pressure metapelites in Helanshan and Qianlishan Terranes, for which post-peak ITD has been shown (Yin et al. 2015). High-pressure granulite-facies metamorphism was dated at 1.96–1.95 Ga by zircon and monazite U–Pb geochronology (Fig. 10; Yin et al. 2011; Gou et al. 2019), representing the timing of collision between the Yinshan Block and the Ordos Block within the Nuna supercontinent. The timing of prograde partial melting before UHT peak was constrained at 1.94–1.90 Ga, whereas the timing of post-peak long-lived cooling at 1.90–1.80 and thermal peak very close to ca. 1.90 Ga (Jiao et al. 2020b). The high-pressure prograde partial melting metamorphism before UHT peak confined here
implies the regional HP granulite-facies metamorphism and UHT metamorphism occurred in sequence in the same tectono-thermal scenario in the Khondalite Belt, and argue against an inferred paired metamorphic belt during Late Paleoproterozoic orogenesis. The temporal change from HP partial melting to achieving UHT conditions along decompression, indicates that the transition of compressed to extensional tectonic regime occurred as early as ca. 1.94 Ga, whereas these granulites have retained in lower crust level at high-temperature conditions for protracted timescale, until another decompression–heating metamorphic episode. This case study sheds light on the cause of UHT metamorphism and favors the post-collisional extension environment and possible asthenospheric upwelling for the cause of UHT metamorphism, following initial heating and higher-pressure granulite metamorphism during collision.

Implications

We investigated garnet behavior using samples of Dongpo residual UHT granulites in the Khondalite Belt, NCC. The Ca, Ti, Zr and Y + REE chemical signatures, coupled with the application of the Ti-in-Grt geothermometer and the Ca-in-Grt geobarometer, can distinguish garnet origin and determine P–T conditions. The integrated results allow us to formulate an earlier, high-pressure, high-temperature garnet formation and a later abundant retrograde garnet formation during post-peak cooling. This is the first time high-pressure peritectic garnet formation before UHT metamorphism has been documented in the Khondalite Belt. It attests to the genetic correlation between HP granulite-facies and UHT metamorphism, which, otherwise, do not constitute an ancient paired metamorphic belt.
Our study also argues that garnet with abundant sillimanite and biotite inclusions can be retrograde rather than peritectic. The inclusions and partial inclusions in garnet are not always formed as prograde mineral assemblages.

Garnet commonly occurs in UHT granulites in other Khondalite Belt localities and the new approach introduced here can be used to constrain the $P–T$ paths in other high-grade terranes. Moreover, the identification of garnet origin is significant for future studies involving Lu–Hf, Sm–Nd, O and Fe isotopic investigations of garnet, and understanding the petrogenetic link between zircon/monazite and garnet.

Acknowledgments

This work is funded by research grants No. 41672189 and 41890832 from the National Natural Science Foundation of China (NSFC), and Youth Innovation Promotion Association, Chinese Academy of Sciences (CAS; No. 2018089), as well as Australian Research Council Discovery Project grant DP150102773. Robert M Holder, Harold Stowell, and an anonymous reviewer of a previous version of the manuscript are thanked for constructive comments. Kelly Merigot is thanked for her help with the TESCAN Integrated Mineral Analysis (TIMA) in the JdLC. The GeoHistory Facility in the John de Laeter Centre, Curtin University is supported by AuScope (auscope.org.au) and the Australian Government via the National Collaborative Research Infrastructure Strategy (NCRIS). The NP II multi-collector was obtained via funding from the Australian Research Council LIEF program (LE150100013).
Appendix A. Supplementary material

Supplementary material related to this article can be found online.

References

Chernoff, C.B., and Carlson, W.D. (1999) Trace element zoning as a record of chemical
disequilibrium during garnet growth. Geology, 27(6), 555-558.

Jiao, S., Guo, J.H., Evans, N.J., Mcdonald, B.J., Liu, P., Ouyang D.J., and Fitzsimons,
I.C.W. (2020b) The timing and duration of high-temperature to ultrahigh-temperature metamorphism constrained by zircon U-Pb-Hf and trace element signatures in the Khondalite Belt, North China Craton, Contributions to Mineralogy and Petrology, online, doi.org/10.1007/s00410-020-01706-z

mechanisms in metamorphic garnet by high-resolution trace element mapping with LA-ICP-TOFMS. Contributions to Mineralogy and Petrology, 175(7), 61.

Figure captions

Figure 1. (a) Location of the North China Craton (NCC), and its simplified tectonic subdivisions (modified after Zhao et al. 2005). Abbreviations: EB = the Eastern Block.

TNCO = the Trans-North China Orogen. WB = the Western Block which is composed of YB, OB and the Khondalite Belt. YB = the Yinshan Block. OB = the Ordos Block. H–Q
= the Helanshan–Qianlishan Terrane, U–D = the Ulashan–Daqingshan Terrane, J = the Jining Terrane. (b) Sample locations and distribution of high-grade metamorphic rocks in the eastern segment of the Khondalite Belt, NCC (modified after Jiao and Guo 2020). All samples studied here were collected from the Dongpo locality.

Figure 2. Representative photomicrographs showing microtextures of the two types of garnet. (a) Inclusion-rare garnet surrounded by biotite in sample 08JDP11. Analytical traverse results shown in Fig. 3c–i. (b) Inclusion-rare garnet core mantled by inclusion-rich garnet rim in sample 08JDP11. Analytical traverse results shown in Figs. 3b, 3d–i. (c) Inclusion-rare garnet core mantled by inclusion-rich garnet rim in sample 10DP01b. Analytical traverse results shown in Fig. 4. Mineral abbreviations follow Whitney and Evans (2010).

Figure 3. (a–c) X-ray mapping of Ca showing three analyzed garnets in sample 08JDP11, with stars marking zircon localities. The yellow arrows indicate the path of the analytical traverse. A thin section image is shown in Fig. A2. (d) Chondrite-normalized REE patterns for Grt1 and Grt3. (e) Chondrite-normalized REE pattern for Grt2. (f) Eu/Eu* and Ca zoning along analytical traverses. (g) Y and Lu_N/Gd_N zoning. (h) Gd and Sc zoning. (i) Ti and Zr zoning. Chondrite values taken from Sun and McDonough (1989).

Figure 4. (a) TIMA image showing the analyzed garnet in sample 10DP01b, with stars marking zircon localities. The yellow arrow shows the path of the analytical traverse. (b) Chondrite-normalized REE pattern for the analyzed garnet. (c) Eu/Eu* and Ca zoning along the analyzed traverse. (d) Y and Lu_N/Gd_N zoning. (e) Gd and Sc zoning. (f) Ti and Zr zoning. Chondrite values taken from Sun and McDonough (1989).

Figure 5. (a) TIMA image showing analyzed garnet from sample 08JDP08, with stars
marking zircon localities. The yellow arrows mark analytical traverses. Mineral legend the same as Fig. 4. (b) Chondrite-normalized REE pattern. (c) Eu/Eu* and Ca zoning along analyzed traverses. (d) Y and Lu_N/Gd_N zoning. (e) Gd and Sc zoning. (f) Ti and Zr zoning. Chondrite values taken from Sun and McDonough (1989).

Figure 6. (a) TIMA image showing analyzed garnet in sample 10DP01c, with stars marking zircon localities. The yellow arrows show analytical traverses. Mineral legend the same as Fig. 4. (b) Chondrite-normalized REE pattern. (c) Eu/Eu* and Ca zoning along analyzed traverses. (d) Y and Lu_N/Gd_N zoning. (e) Gd and Sc zoning. (f) Ti and Zr zoning. Chondrite values taken from Sun and McDonough (1989).

Figure 7. The Ca and trace element chemical features in terms of Eu/Eu* in the two types of garnet. Light shaded region denotes peritectic garnet while darker shaded region encompasses retrograde garnet. The arrows represent changes of Ca and trace elements during progressive garnet growth from core to rim in each garnet type. (a) Y (ppm) versus Eu/Eu*. (b) Ca (ppm) versus Eu/Eu*. (c) Ti (ppm) versus Eu/Eu*. (d) The Ti-in-Grt temperatures (°C) (calculated using the Kawasaki and Motoyoshi (2016) model) versus Eu/Eu*. (e) Ca/Ti ratios versus Eu/Eu*. (f) Zr (ppm) versus Eu/Eu*.

Figure 8. (a) P–T pseudosection calculated based on the bulk composition of sample 10DP01c. Isopleths of Ca-in-Grt (= Ca/(Ca + Mg +Fe) ≈ Grs mol.%) in the range of 0.014–0.086 are shown. The interval is 0.002. (b) Change of Grt mode in the range of 0.02–0.25. The interval is 0.01. (c) Change of Bt mode in the range of 0.02–0.24. The interval is 0.02. (d) Change of Pl mode in the range of 0.21–0.47. The interval is 0.01. The interpreted retrograde P–T path from Jiao and Guo (2020) is shown.

Figure 9. The summarized sketch map showing garnet behavior during the metamorphic
evolution of the Dongpo UHT granulite. At M1 stage (decompression–heating), peritectic
garnet formed together with spinel; At M2 stage (Post-peak IBC), retrograde garnet
formed together with abundant sillimanite, biotite and plagioclase and sapphire coronae
on spinel; At M3 stage (decompression–heating), garnet broke down and
sapphire/spinel + plagioclase symplectites formed.

Figure 10. The overall $P–T$ path of Dongpo UHT granulites involving peritectic garnet
formation at M1 stage and retrograde garnet formation at M2 stage documented here and
garnet resorption at M3 stage from Jiao and Guo (2020). Previous $P–T$ paths (grey
colored) of HP granulite-facies metamorphism (Yin et al. 2015) and of UHT
metamorphism at this locality (Tsugogae et al. 2011; Jiao et al. 2017) and from the
Tuguiwula locality (Li and Wei, 2018) are compared.
Table 1 Chemical features of two types of garnet in Dongpo granulites

<table>
<thead>
<tr>
<th>Classification</th>
<th>Inclusion-rare garnet</th>
<th>Inclusion-rich garnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>> 6000 ppm; consistent/increased and then decreased zoning rimwards</td>
<td>4000-6000 ppm; flat, consistent or slightly decreased zoning rimwards and sometimes Ca-enriched outermost rims</td>
</tr>
<tr>
<td>Eu/Eu*</td>
<td>0.2-0.5; decreased zoning rimwards</td>
<td>0.05-0.2; consistent or slightly decreased zoning rimwards and sometimes higher Eu/Eu* outermost rims</td>
</tr>
<tr>
<td>Y</td>
<td>80-340; bell-shaped or flat zoning, and sometimes sharply enriched outermost rims</td>
<td>20-100; flat or increased zoning rimwards</td>
</tr>
<tr>
<td>Lu/Gd_N</td>
<td>0.5-12; bell-shaped or flat zoning, and sometimes sharply enriched outermost rims</td>
<td><0.6; flat or increased zoning rimwards</td>
</tr>
<tr>
<td>Gd</td>
<td>8-14; bowl-shaped zoning</td>
<td>10-27; variable zoning</td>
</tr>
<tr>
<td>Sc</td>
<td>40-100; bowl-shaped zoning</td>
<td>40-100; variable zoning</td>
</tr>
<tr>
<td>Ti</td>
<td>140-280; increased and then decreased trends rimwards</td>
<td>60-250 ppm; complex but generally decreased zoning rimwards</td>
</tr>
<tr>
<td>Zr</td>
<td>10-40; bowl-shaped zoning</td>
<td>10-60 ppm; variable but generally decreased zoning rimwards</td>
</tr>
</tbody>
</table>
Fig. 3
Fig. 5
Fig. 6
Fig. 10