The crystal chemistry of arsenian pyrites: A Raman spectroscopic study

He Zhang¹,², Gujie Qian², Yuanfeng Cai¹,* , Christopher Gibson³,⁴, Allan Pring²,*

¹State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
²College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
³Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
⁴Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia

ABSTRACT

A Raman spectroscopy study of the nature of the As-S substitution in natural arsenian pyrite (Fe(S,As)₂) is presented covering the compositional range (0.01 at% – 4.6 at% As). Three Raman-active modes were resolved in the spectrum of the nearly pure pyrite: the E₉ (344 cm⁻¹), A₉ (379 cm⁻¹), and T₉(3) (432 cm⁻¹) modes. The Raman vibrational modes exhibit the one-mode behavior and the wavenumbers of optical modes vary continuously and approximately linearly with the As content in the arsenian pyrite, correlating with the change in bond constants with increasing substitution of As for S. The linewidth of the A₉ mode was also found to increase with increasing As substitution and this is attributed to the increase in lattice strain associated with the substitution of As for S. This study provides experimental evidence for the As-induced structural evolution of pyrite from being stable to metastable before decomposing into other phases. This study illustrates that a
systematic Raman spectroscopic investigation of the crystal chemistry of arsenian pyrite enables us to further understand this process of the structural strain associated with elemental substitution. The results of this study and the results of another recent Raman study of arsenian pyrite where As substitution has a more complex form indicates that it is not possible to use the shift in the Raman bands to establish the As content, but rather for a given As content it is possible to establish the nature of the As substitution, As for S or As for Fe or both.

Keywords: arsenian pyrites, Raman spectroscopy, solid solution, lattice defects

INTRODUCTION

Arsenian pyrite (Fe(S,As)$_2$) is defined as pyrite containing anywhere from several ppm to ~19 wt% arsenic (e.g., Abraitis et al., 2004; Qian et al., 2013; Reich and Becker, 2006) and this substitution is commonly associated with the presence of economically important metals such as Au, Co, Ni, Ag, Cu etc (Deditius et al., 2014; Large et al., 2014; Reich et al., 2005, 2013). Understanding the crystal chemistry of arsenian pyrite can help design strategies to control the release of toxic metal(loid)s, explore the enrichment mechanism of valuable metals, and optimize the methods of mining and smelting of sulfide/pyritic ores. These factors have motivated the study of the crystal chemistry of arsenian pyrite over the last three decades (e.g., Abraitis et al., 2004; Cook and Chryssoulis, 1990; Deditius et al., 2008, 2011; Deditius and Reich 2016; Filimonova et al., 2020; Fleet et al., 1993; Merkulova et al., 2019; Reich et al., 2005; Reich and Becker, 2006; Simon et al., 1999a, b). Central to this issue is the nature of As incorporation and its effect on the pyrite structure. The pyrite structure is...
derived from the NaCl structure with Fe in the Na position in a face centered array while the Cl ion position is replaced by the disulfide ion, with the orientation of the S–S bond aligned with the body diagonal of the cell, but such that the symmetry is lower from \(Fm\overline{3}m\) to \(Pa\bar{3}\) (Fig. 1). This results in FeS\(_6\) octahedra with the corners linked by the \(S_2^{2-}\) ions. Each S is bonded to 3 Fe ions and a S in a tetrahedral arrangement. The Fe–S and S–S bond lengths are 2.262 Å and 2.177 Å, respectively (Brostigen and Kjekshus 1969, Vaughan and Craig 1978). Five Raman active modes \((A_g + E_g + 3T_g)\) are predicated for pyrite based on a group theory analysis of the lattice vibrations, with these modes involving only the movements of the S ions (Mernagh and Trudu, 1993; Sourisseau et al., 1991; Vogt et al., 1983). Arsenic can substitute for S in the disulfide ion or Fe in the octahedral site. Fe-S-As (at%) ternary diagram can be used to identify the nature of substitutions of As for either Fe or S for a series of compositional data from a sample; with As\(^{3-}\)-pyrite and As\(^{1-}\)-pyrite trends being parallel to the As-Fe and As-S joins, respectively (Deditius et al., 2008; Liang et al., 2013) (Fig. 2).

A suite of experimental studies, that include secondary ionization mass spectrometry (SIMS), electron microprobe analyzer (EMPA), X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), have confirmed that As\(^{1-}\) substitutes for S\(^{1-}\) in the disulfide ion \((S_2^{2-})\) as AsS\(^{2-}\) pairs (e.g., Cook and Chryssoulis, 1990; Deditius et al., 2008; Fleet and Mumin, 1993; Fleet et al., 1997; Manceau et al., 2020; Reich et al., 2005; Savage et al., 2000; Simon et al., 1999a). In contrast, a few studies have
indicated that As can also substitute Fe in pyrite as either As$^{3+}$ (Deditius et al., 2008) based on the XPS analysis, or As$^{2+}$ (Qian et al., 2013) based on the XPS and XANES analyses. The different valence states of As in arsenian pyrite have been linked to the physiochemical conditions of pyrite formation, with oxidizing and reducing conditions forming As$^{3+}$-pyrite and As$^{1-}$-pyrite, respectively (Deditius et al., 2008; Kesler et al., 2011). In addition, arsenic is identified as clusters (As0) in amorphous Fe-As-S nanoparticles (~50 nm in diameter) in pyrite (Deditius et al., 2009).

The anionic As$^{1-}$ substitution into pyrite causes the breaking of S–S bonds and hence point defects in pyrite (Fleet and Mumin, 1997). An expansion of the unit cell of As$^{1-}$-pyrite relative to end member pyrite has been identified based on the EXAFS data (Manceau et al., 2020; Savage et al., 2000). Such defects are expected to facilitate and accommodate larger-size ions (e.g., Au) within the structure. The positive As-dependence of Au in As$^{1-}$-pyrite is closely related to the As-induced defects (Arhart et al., 1993; Fleet et al., 1993; Gopon et al., 2019; Morishita et al., 2018; Reich et al., 2005) and recently interpreted as a possible signature for an atomic-scale AuAs$_6$ coordination (Merkulova et al., 2019). Additionally, local highly defective regions could be produced by As-induced lattice strain. Stacking faults (~10–12 Å wide) are observed within As$^{1-}$-pyrite and reflect the presence of unit-cell scale lamellae of marcasite (FeS$_2$) and/or arsenopyrite (FeAsS) (Cabri et al., 1989; Dodony et al., 1996; Fleet et al., 1989; Simon et al., 1999a). Atomistic calculations indicate energetically favored tendency of As to form arsenopyrite-type clusters in As$^{1-}$-pyrite (Manceau et al., 2020). Such marcasite-like interlayers were not observed...
in As$^{1-}$-pyrite in some other reports (e.g., Palenik et al., 2004; Savage et al., 2000), but two types of nanostructures were observed in As$^{1-}$-pyrite, with one polycrystalline matrix consisting of Fe-sulfides (arsenian pyrite and arsenopyrite/pyrrhotite), and the other highly crystalline matrices of pure arsenian pyrite (Palenik et al., 2004).

Despite the numerous studies undertaken into the nature of As substitution in pyrite, little is known about the As-induced variations in the pyrite structure. The positions and widths of the optical band gap are highly sensitive to structural evolution (e.g., Eyert et al., 1998; Yang et al., 1994) yet the only Raman spectroscopic study of As substitution in pyrite has only recently been published by Zhu et al. (2020). They studied arsenian pyrites from the Shizilishan Sr-(Pb-Zn) deposit in eastern China and found a significant correlation between an increase in As content and a downward shift of the position of the Raman bands for As substitution increased to up to 4.89 wt% (Zhu et al. 2020). The present work reports on the Raman active modes of As-pyrite and presents evidence for the As-induced structural variations in pyrite associated with the substitution of As for S in pyrite.

MATERIALS AND METHODS

Materials

Ore samples were collected from the Dongyang epithermal gold deposit that is in the Dehua prospecting region of central Fujian Province, southeast China. This deposit is a typical low sulfidation epithermal deposit, with characteristics of mineralization previously reported (Li et al., 2018; Xu et al., 2018, 2019; Zhang et al.,
2018). It should be noted that the conditions (e.g., temperature and pressure) of arsenian pyrite crystallization might cause variations in crystal chemistry of the mineral. Thus, this study mainly focuses on arsenian pyrites from the thin-section of sample DY1033-10 which was previously characterized in detail by Zhang et al (2018; 2020). The samples used in the current study were in the form of 100-μm-thick polished thin sections (Fig. 3). The pyrite grains were in the size range of 50–500 μm.

Electron microprobe analysis

The chemical compositions of arsenian pyrite were determined using electron microprobe analysis (EMPA) employing a Cameca CAMEBAX SX51 instrument at Adelaide Microscopy, University of Adelaide. Prior to analysis, the thin-sections were re-polished, cleaned in ethanol to remove any oxide layers and impurities from the sample surface. The analytical points were chosen based on the series of the backscattered electron (BSE) images of arsenian pyrites (“brighter” contrast corresponding to higher As; Fig. 3). The analyses were undertaken using an accelerating voltage of 20 kV, a beam current of 20 nA, and a spot size of the electron beam of 1 μm in diameter. Elements, X-ray lines and standards used were: Fe Kα/chalcopyrite, S Kα/chalcopyrite, As Lα/gallium arsenide (Astimex Standards Ltd.), Co Kα/pyrite, Ni Kα/nickel, Sb Lα/stibnite (Astimex), Ag Lα/silver. The degree of As substitution was calculated in terms of at% based on Fe + S + As = 3 rather than assuming a simple binary As for S solid solution.
Electron backscatter diffraction analysis

Crystallographic orientation data of pyrite were collected by indexing electron backscatter diffraction (EBSD) Kikuchi patterns using the SEM-EBSD facility at the State Key Laboratory for Mineral Deposition Research, Nanjing University, China. The diffraction patterns were generated by the interaction of a vertical incident electron beam with a highly polished thin section tilted at 70° in high vacuum mode by using a scanning electron microscope (JEOL JSM-6490). The analyses were operated at 20 kV and 17-25 mm working distance.

Laser Raman analysis

Raman spectra were measured on the polished thin sections of arsenian pyrite using a Witec alpha300R Raman microscope at an excitation laser wavelength of 532 nm using a 100x objective (numerical aperture 0.90) at Flinders University given a beam diameter of around 500 nm. Typical integration times for single Raman spectrum were 30 s for 2-3 accumulations. The highest resolution grating available on the instrument was used which is 1800 grooves mm\(^{-1}\) and gave a spectral resolution of \~\!1 cm\(^{-1}\). Laser power levels were kept as low as possible to prevent sample damage with the power equal to approximately 1.5 mW. Laser power was kept constant during measurements. A recent article by Bryant et al., (2018) demonstrated that for a pyrite grain size \~\!1 \mu m then a laser power \~\!0.8 mW should avoid or reduce heating effects while for a pyrite grain size \~\!100 \mu m then up to 2.6 mW could be used without adverse heating effects. Zhu et al., (2020) observed that for their samples, which had
grain sizes greater than 100 μm, 3.5 mW could be used without significant heating effects. The effect of laser power was further investigated on two of our samples (one with ~3.8 at% As and the other ~0.4 at% As) using a Renishaw RW2000 laser Raman microscope at an excitation wavelength of 514 nm using a 50x objective (numerical aperture 0.75) at Nanjing University. Typical integration times for single Raman spectrum were 30 s for 2 accumulations. The highest resolution grating available on the instrument was used which is 1800 grooves mm$^{-1}$. It was found that laser induced heating effect was not significant below 4.5 mW (Fig. S1). This data in combination with the observations of Bryant et al. (2018) and Zhu et al. (2020) and the grain size of our samples (50 to 500 μm) indicates our estimated laser power will not cause significant laser heating of the sample surface. All spectral measurements reported in this work were fitted using combined Gaussian/Lorentzian amplitude functions using PeakFit (version 4.12).

RESULTS

Chemistry of arsenian pyrite

The samples were examined by reflected light microscopy, where the arsenian pyrite occurs as light brass-yellow subhedral and anhedral grains or aggregates with no obvious inclusions of other sulfides. Figure 3 shows arsenic-rich pyrites (Py1) overgrown by As-deficient pyrite aggregates (Py2), with their chemical compositions given in Table S1. Arsenic concentrations range from effectively zero (0.01 at%) to 4.55 at%. The compositions fall close to the FeS$_2$-FeAsS join as the concentrations of
most other impurity elements are at least one order of magnitude lower than the As concentrations. The antimony levels should, however, be noted with some anomalies (e.g., 0.49 at% in the sample DY1033-10-2), which also probably has an effect on the pyrite structure by isomorphic substitution.

Arsenic substitution in arsenian pyrite

Fe-S-As (at%) ternary diagram is used to identify the nature of substitutions of As for either Fe or S, with As\(^{3+}\)-pyrite and As\(^{1-}\)-pyrite trends being parallel to the As-Fe and As-S joins, respectively (Deditius et al., 2008; Liang et al., 2013). Our data shows a dispersed trend approximately parallel to the As-S join (arrow 1) in this diagram (Fig. 2), consistent with the As\(^{1-}\) substitution for S\(^{1-}\) within the structure. The deviation from the arrow 1, that indicates ideal one-for-one substitution, might be caused by the substitution of other trace elements (e.g., Sb) or vacancies in the Fe and S sites (Deditius et al., 2008). A notable negative correlation (R\(^2\) = 0.98) in this binary diagram (Fig. 2b) does confirm that the substitution takes the form of As\(^{1-}\) for S\(^{1-}\) in the disulfide ion, but a poor negative correlation for As for Fe ((R\(^2\) = 0.38) (Fig. 2c)).

The compositional data of Zhu et al., (2020) is also plotted on Fig 2 and shows that in their samples the As substitutes both for Fe and S. This is highlighted in Figures 2b and c, which shows a strong correlation of As for Fe (R\(^2\) = 0.90) and As for S (R\(^2\) = 0.95).

Raman scattering spectra
Previous studies have reported five Raman-active modes in pyrite (Sourisseau et al., 1991; Vogt et al., 1983), a doubly degenerate mode (E_g, 343 cm$^{-1}$), three triply degenerate modes ($T_g(1)$, 350 cm$^{-1}$; $T_g(2)$, 377 cm$^{-1}$; $T_g(3)$, 430 cm$^{-1}$), and a totally symmetric mode (A_g, 379 cm$^{-1}$). The E_g vibrational mode is attributed to displacements of S^- ions perpendicular to the S–S bond axis. The A_g and $T_g(2)$ modes represent in-phase and out-of-phase S–S stretching vibrations, respectively. $T_g(1)$ and $T_g(3)$ correspond to a combination of vibrational and stretch motions (Sourisseau et al., 1991). Of these, only three vibrational modes (E_g, A_g and $T_g(3)$) have been reported to be easily observed with the sequence of band energies commonly defined as $\nu(A_g) > \nu(E_g) > \nu(T_g)$ (Anastassakis and Perry, 1976; Bryant et al., 2018; Kleppe and Jephcoat, 2004; Mernagh and Trudu, 1993; Ushioda, 1972; Zhu et al., 2020). It is difficult to resolve the A_g and $T_g(2)$ modes due to their frequencies being only ≤ 2 cm$^{-1}$ apart and the A_g mode has a stronger intensity than the $T_g(2)$ mode and dominates the spectrum (Kleppe and Jephcoat, 2004). The $T_g(1)$ mode is also difficult to be observed due to its low intensity, and is only distinguishable under compression (Kleppe and Jephcoat, 2004).

The ambient Raman vibrational spectra of the natural As-pyrites (arsenic concentrations of 0.4–4.6 at%) were recorded over the 500 cm$^{-1}$ and 250 cm$^{-1}$ spectral range in this study. Representative Raman spectra of the As-pyrite samples are shown in Figure 4. Three Raman bands are observed in this spectrum at 344, 379, and 432 cm$^{-1}$ for 0.4 at% As sample (Fig. 4b). These bands are in good agreement with the previously published data and assigned to the S_2 vibration in the E_g mode, the S–S
in-phase stretching in the A_g mode, and the coupled vibration and stretch in the $T_g(3)$ mode, respectively (Kleppe and Jephcoat, 2004; Mernagh and Trudu, 1993; Vogt et al., 1983). In comparison, three Raman bands at 331, 363, and 414 cm$^{-1}$ for 4.6 at% As samples (Fig. 4a) should be assigned to E_g, A_g and $T_g(3)$ modes, respectively. The shifts in the Raman spectra with the increasing As concentration are shown in Figure 5, including (1) Raman band positions shifting to the lower wavenumbers; (2) Raman band broadening; (3) the E_g and $T_g(3)$ modes gradually weakening with increasing As substitution.

The Raman band positions, intensities, and the full widths at half maximum (FWHMs) for As-pyrite samples are summarized in Table S2. Figure 6 shows that the Raman band wavenumbers and FWHMs plotted against the atomic fraction of As. The strikingly inverse correlation between As-content and the wavenumbers of the E_g, A_g and $T_g(3)$ modes of As-pyrite confirms the As-induced redshift of the Raman bands (Fig. 6a-c), with the maximum offset values of approximately 25 cm$^{-1}$, 27.5 cm$^{-1}$ and 30 cm$^{-1}$ for the three Raman modes, respectively. The effect of the minor substitution of antimony should also be considered, since it produces some anomalies in the data with Sb outliers highlighted in red in Figure 6. The distinct influence of Sb substitution on the correlation between position of the Raman bands and As content in pyrite is, however, negligible. The deviation from an ideal correlation (Fig. 6a-c), that would represent an ideal one-for-one shift, possibly results from additional trace elements in the pyrite or vacancies in the Fe and S sites. The uneven As distribution at the μm-scale may also be linked to deviation from an ideal correlation.
The FWHMs of the Raman active modes is weakly dependent on the As content: the A_g mode shows some indication of positive correlation but those of the E_g and $T_g(3)$ modes seem random (Fig. 6d-f). The FWHMs of the E_g, A_g and $T_g(3)$ modes increase from approximately 9.5 cm$^{-1}$, 12.6 cm$^{-1}$, and 14 cm$^{-1}$ at 0.4 at% As, to 18.5 cm$^{-1}$, 29 cm$^{-1}$, and 33.8 cm$^{-1}$ at 4.6 at% As, respectively, but the scatter of values is high. With the As content increase a splitting of these Raman bands into possible impurity modes cannot be excluded. However, it should be noted that the Raman spectra are characterized by symmetric bands and absence of obvious new impurity-induced bands.

The intensity ratio of A_g mode relative to E_g mode is moderately dependent on the As content (Fig. 7). Band intensity ratios in Raman spectra for pyrite are recently reported to markedly depend on the unit cell orientation with respect to the plane of polarization of the laser (Bryant et al., 2018). EBSD data were acquired for some of those pyrite grains analyzed by Raman in this study (Table S3). The results of the orientational dependence is illustrated by the Raman spectra for two pyrite grains with ~ 3.7 at% As but with a difference in orientation of 21° (Fig. 8b) and one exhibits markedly stronger intensities of A_g and E_g modes but a lower intensity ratio, but there is no shift in the position of the bands. Another crystal with 1.5 at% As, with an rotation angle 6° (Fig. 8c) has weaker intensities and intensity ratio of A_g and E_g modes. In comparison, the spectra for two grains – that contain the same As content with minor orientational difference (4°) – show nearly identical intensity of A_g mode, but different intensities of E_g and intensity ratio of A_g relative to E_g (Fig. 8d). These
results suggest a combined effect of crystal orientation and As contents on the band intensity in pyrite Raman spectra, but that orientational differences do not affect the band positions.

DISCUSSION

Interpretation of Raman spectra

Based on “harmonic oscillator model” and Hooke’s law, the wavenumber of Raman vibrational modes can be shifted with the isomorphic substitution of one element for another, towards lower wavenumbers with decrease of bond strength and increase of atomic mass (e.g., Kharbish et al., 2007). The As-induced shifts of the Raman vibrational modes of pyrite are attributed to the greater atomic mass of As (74.92) than S (32.01), which results in the lower wavenumbers of the Raman bands (Figs. 5 and 6), and also affected by the bond strength that is closely related to the valence, electronegativity, coordination number and, most notably, bond length between atoms or ions (Eyert et al., 1998; Gordy, 1946). In the case of pyrite, the stretching vibration (A_g) is strongly controlled by the S–S force constant (Lutz and Zwinscher, 1996); while the vibrational mode (E_g), and coupled vibrational and stretching mode ($T_g(3)$) are controlled by the Fe–S force constant (Lutz and Zwinscher, 1996; Sourisseau et al., 1991). Kleppe and Jephcoat (2004) attributed a pressure-induced blueshift of the Raman vibrational modes of pyrite to a shortening of the Fe–S and S–S bonds under compression. Pačevki et al. (2008) attributed a redshift of the Raman modes of Cu-bearing pyrite to an elongating and weakening of bonds caused by substitution of Fe by Cu. Arsenic substitution into pyrite induces an
expansion of the unit-cell (Blanchard et al., 2007; Manceau et al., 2020; Savage et al., 2000), the dimension of which is proportional to the As concentration, as As–S and As–Fe bonds are approximately 4.6% and 2.8% longer than S–S and Fe–S bonds, respectively (see Introduction) (Blanchard et al., 2007). Thus, the substitution of As for S changes the Fe–S and S–S bond constants, and hence causes the redshifts of Raman vibrational modes observed in this study. Similar phenomenon has been recently reported by Zhu et al. (2020), with possible effect of other factors (e.g., laser powers and polishing) also discussed on pyrite Raman band positions. The redshift they observed were significantly lower than those we found, (~10 cm$^{-1}$ vs ~20 cm$^{-1}$ for similar levels of As substitutions (~3 at%). The compositional data from Zhu et al. (2020) is included in Figure 2 and show strong correlations for As replacing S, and As replacing Fe in the octahedral sites and it appears that the two modes of As substitution can occur simultaneously on a submicron scale, given the 1 µm laser beam diameter in the Raman system.

The As–S substitution may cause local strains and structural variations in pyrite (e.g., Fleet and Mumin, 1997; Gopon et al., 2019). The crystal quality is expected to be reflected in line-shapes of Raman spectra, with the shifting and broadening Raman bands of amorphous material relative to the well-crystalline bulk (Kumar et al., 2010, 2014; Smith et al., 1971; Temple and Hathaway, 1973). Yang et al. (1994) investigated porous silicon and found that built-in lattice strain causes Raman redshift and line broadening. Pring et al. (2008) identified a slight line broadening of the infrared absorption bands for Fe-doped sphalerite and attributed it to the minor structural
distortions due to Fe$^{2+}$ substitution for Zn$^{2+}$, due to a small discrepancy between Fe–S (2.357 Å) and Zn–S (2.345 Å) bond lengths. As such, the remarkable line broadening (Fig. 5) most likely reflects strain associated with As$^{1-}$ in pyrite. The difference of atomic size between S (1.03 Å) and As (1.20 Å; Manceau et al., 2020) also supports the generation of strain associated with the substitution of As$^{1-}$ for S$^{1-}$ in the pyrite structure.

Arsenic-induced structural evolution of pyrite

Ternary compounds are classified into two major classes on the basis of the behavior of optical phonons (e.g., Chang and Mitra, 1968; Kang et al., 2009; Pring et al., 2008; Peterson et al., 1986; Stingl et al., 1992), including (1) the one-mode behavior that optical mode wavenumbers vary continuously and approximately linearly with the concentration between the wavenumbers of the two end-members; (2) the two-mode behavior that two sets of optical phonon modes occur at wavenumbers close to two pure end-members, with the intensity of each mode approximately proportional to the concentration between the wavenumbers of the two end-members. The premise behind the discussion above is that the two end-members should have the same structure and similar force constants for a given mixed ternary crystals (e.g., Pring et al., 2008). However, arsenic is commonly incorporated into pyrite as a trace or minor element with a restricted solubility (e.g., Abraitis et al., 2004). A continuous solid-solution series from pyrite (FeS$_2$; $Pa\bar{3}$), through arsenopyrite (FeAsS; $P2_1/c$), to löllingite (FeAs$_2$; $Pnnm$) is not observed in nature due to their different structural
topologies. Hence, our study only investigates arsenian pyrites with the As content up
to 4.6 at% (8.2 wt%). The continuous redshifts with the increasing As content are
presented for all Raman bands (Figs. 5 and 6), and no impurity-induced Raman bands
occur, and this corresponds to the one-mode behavior. If that is the case, one would
expect that the As–S substitution would not cause the pyrite structure to transform to a
new structure or separate into two separate phases, as consistent with the maximum
solubility of As (~5 at%; Reich and Becker, 2006). Above the maximum As solubility,
for the As for S substitution, fine scale intergrowth of arsenopyrite or marcasite-like
lamellae (~10–12 Å) occur (e.g., Dodony et al., 1996; Fleet et al., 1989; Simon et al.,
1999a). Furthermore, the lower sulfur fugacity in hydrothermal systems not only
facilitates increasing substitution of As for S in pyrite (Spycher and Reed, 1989; Reich
et al., 2005), but also stabilizes the marcasite form of FeS$_2$ over pyrite form, as
marcasite is slightly S-deficient and thermodynamically stable at lower sulfur fugacity
than pyrite (Buerger, 1934).

Additionally, calculations by Manceau et al. (2020) indicate the lowest energy
bonding environment of As in pyrite is similar to local structure of As in arsenopyrite.
Blanchard et al. (2007) predicted that AsS$_2^-$ unit is energetically more favored than
the AsAs$_2^-$ by density functional theory (DFT) calculations. Are the As-induced
Raman features perhaps indicative of some clustering of As atoms in the pyrite
structure? Here Fe-bearing sphalerite (Fe,Zn)S is taken as a comparison with
As-bearing pyrite. Fe$^{2+}$–Fe$^{2+}$ pairs and Fe$^{2+}$ clusters were identified in the Fe-bearing
sphalerite ((Fe,Zn)S; Balabin and Sack, 2000; Di Benedetto et al., 2005; Twardowski
et al., 1988), which is reflected by non-monotonic behavior of Raman intensities with increasing Fe substitution for Zn (Osadchii and Gorbaty, 2010). In the case of As1–-pyrite, both the Raman band positions and FMHWs appear to vary in a continuous and linear manner upon As-S exchange, indicating the absence of As1––As1– clusters in the pyrite structure. In conclusion, the linear behavior of As-induced band redshifts and line broadening should reflect the structural evolution of pyrite from being stable to metastable before decomposing into marcasite and/or arsenopyrite.

IMPLICATIONS

In this contribution, the innovative use of Raman spectroscopy has captured pyrite structural variations associated with As-S substitution. As-induced lattice defects and strains within pyrite are potentially crucial in enhancing the capacity of arsenian pyrite to incorporate valuable metal ions with large effective ionic radii. The As-induced lattice defects are also inferred to play an important role in accelerating the weathering of arsenian pyrite and thus releasing of toxic heavy ions into the environment, with previous study reporting faster oxidation, hydrolysis, and dissolution of arsenian pyrite than pure pyrite (e.g., Savage et al., 2000). This study provides experimental evidence for the As-induced structural evolution of pyrite before decomposing into other mineral phases. Such information is of significance in understanding the mechanisms of isomorphic substitution in solid solution series. Generally, the further application of Raman spectroscopy has the potential to intuitively clarify the effects of elemental substitution on the crystal structure. Our
results and those of Zhu et al (2020) show that it is not possible to simply use the size of the Raman redshift on the arsenian pyrite spectra to simply determine the As composition, as the nature of the substitution mechanism has a major effect on redshift. Rather it should be possible from the redshift and compositional data to establish the nature of the substitution As for S or As for Fe.

ACKNOWLEDGEMENTS

We thank Benjamin Wade for his assistance with EMPA, Juan Li for assistance with EBSD, and Junying Ding for assistance with laser Raman. This paper greatly benefited from constructive comments and thorough reviews from Ray Frost, Wei Tan and two anonymous referees. This study was financially supported by the Australian Research Council (Grants DP140102765, DP200102248), the NSFC projects (Grants 41830426 and 41272055), National Key R&D Program of China (Grant 2016YFC0600205), the China Geological Survey (Grant 12120115034601), and joint Ph.D. project funding from the China Scholarship Council (Grant 201806190162). The authors also acknowledge the expertise, equipment and support provided by Microscopy Australia at the South Australian nodes under the National Collaborative Research Infrastructure Strategy.

REFERENCES CITED

pyrite-type compounds. The Journal of Chemical Physics, 64, 3604–3609.

sulfides from sediment-hosted disseminated gold deposits: Implications for

approach with large basis clusters. Mineralogical Magazine, 64, 923–943.

Arsenic incorporation into FeS₂ pyrite and its influence on dissolution: a DFT study.

Acta Chemica Scandinavica, 23, 2186–2188.

of unpolished growth and fracture surfaces of pyrite due to laser heating and crystal
orientation. Applied Spectroscopy, 72, 37–47.

61.

Cabri, L.J., Chryssoulis, S.L., de Villiers, J.P., Laflamme, J.G., and Buseck, P.R.
(1989) The nature of "invisible" gold in arsenopyrite. The Canadian Mineralogist, 27,
353–362.

Atom-Scale Elemental and Isotopic Perspective. Economic Geology, 114, 1123–1133.

geologically important sulphide minerals. Chemical Geology, 103, 113–127.

Osadchii, E.G., and Gorbaty, Y.E. (2010) Raman spectra and unit cell parameters of sphalerite solid solutions (Fe\textsubscript{x}Zn\textsubscript{1−x}S). Geochimica et Cosmochimica Acta, 74, 568–573.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
mixing properties of arsenic incorporation into pyrite and marcasite. Chemical Geology, 225, 278–290.

valence force fields of FeS$_2$, RuS$_2$ pyrites and FeS$_2$ marcasite. Journal of Physics and
Chemistry of Solids, 52, 537–544.

Spycher N.F. and Reed M.H. (1989) As(III) and Sb(III) sulfide complexes: an
evaluation of stoichiometry and stability from existing experimental data. Geochemica

Stingl, T., Müller, B., and Lutz, H.D. (1992) Pyrite-type RuS$_{2-2x}$Se$_{2x}$ and Ru$_{1-x}$Os$_x$S$_2$
solid solutions: X-ray structure determination and raman spectra. Journal of alloys and
compounds, 184, 275–284.

Thermodynamic properties of iron-based II–VI semimagnetic semiconductors. Solid
state communications, 65, 235–239.

Ushioda, S. (1972) Raman scattering from phonons in iron pyrite (FeS$_2$). Solid state
communications, 10, 307–310.

spectra of the pyrite structure compounds FeS$_2$, MnS$_2$ and SiP$_2$. Journal of physics
and chemistry of solids, 44, 869–873.

U–Pb geochronology of the Jurassic porphyry dykes in the Dehua gold field,

Figure Captions

Fig. 1. The structure of pyrite represented in terms of FeS$_6$ octahedra projected along [0 0 1]. Yellow spheres correspond to sulfur ions and red ones to iron ions. The unit cell is indicated by black lines.

Fig. 2. Results of electron microprobe analyses (EMPA) of arsenian pyrite (in at%). (a) Ternary Fe-S-As diagram. The compositions of arsenian pyrites from the Dongyang gold deposit (black circle) (arrow 1) were compared with those from Deditius et al. (2008) (grey triangle) and Zhu et al. (2020) (open circles). The former indicates substitution of As$^{1–}$ for S$^{1–}$ (arrow 1), whereas the Detitius et al. (2008) indicates the substitution of As$^{3+}$ for Fe$^{2+}$ (arrow 2). The compositional trend from Zhu et al. (2020) indicates a mixture of As$^{1–}$ for S$^{1–}$ and As$^{3+}$ for Fe$^{2+}$ substitutions (arrow 3). (b) Diagram showing variations in the concentrations of As$^{1–}$ and S$^{1–}$ within arsenian pyrite for this study and Zhu et al. (2020). (c) Diagram showing variations in the concentrations of As$^{3+}$ and Fe$^{2+}$ within arsenian pyrite for this study and Zhu et al. (2020).

Fig. 3. Backscatter electron (BSE) images showing the As distribution within investigated arsenian pyrite. EMPA positions and associated As concentrations are highlighted in yellow circles and values (in at%). Abbreviations: Py = pyrite.

Fig. 4. Fitting of As$^{1–}$-pyrite (0.4 at% As and 4.6 at% As) Raman spectrum using the PeakFit program. Goodness of fitting (r^2) > 0.998.

Fig. 5. Representative room-temperature Raman spectra of natural As$^{1–}$-pyrites between 250 and 500 cm$^{-1}$. Composition expressed as at% As in FeS$_{2}$.

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2021-7806. http://www.minsocam.org/

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Fig. 6. Variation in wavenumber and FWHM of Raman bands as a function of atomic fraction of arsenic in pyrite. A linear baseline was subtracted from all the spectra.

Fig. 7. (a) Variation in intensity ratios of the A_g band relative to the E_g band as a function of atomic fraction of arsenic in pyrite. (b-d) Comparison of wavenumber and intensity of Raman bands for pyrite grains with different crystal orientations and As contents. Crystal orientation expressed as Euler angles. The intensity ratio of A_g relative to E_g is calculated for each spectrum.
Figure 1
Figure 2
Figure 3

As-deficient

As-rich

Py

0.4

0.7

1.5

1.6

4.6

3.0

3.6

3.5

50 µm

100 µm

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Figure 4
Figure 5
Figure 6
Figure 7