Interfacial structures and acidity constants of goethite from first principles molecular dynamics simulations

YINGCHUN ZHANG,† XIANDONG LIU,*† JUN CHENG,‡ XIANCAI LU†

†State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China

‡College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China

*Corresponding author: xiandongliu@gmail.com. Tel: +86 25 83594664, Fax: +86 25 83686016.
ABSTRACT

In this paper, we report a first principles molecular dynamics (FPMD) study of interfacial structures and acidity constants of goethite. The pKas of the groups on (010), (110), and (021) surfaces (in Pbnm) are derived with the FPMD based vertical energy gap technique. The results indicate that major reactive groups include ≡Fe\textsubscript{2}OH\textsubscript{2} and ≡FeOH\textsubscript{2} on (010), ≡FeOH\textsubscript{2}, ≡Fe\textsubscript{3}O\textsubscript{L}H, and ≡Fe\textsubscript{3}O\textsubscript{U}H on (110), and ≡Fe\textsubscript{0}H\textsubscript{2} and ≡Fe\textsubscript{2}OH on (021). The interfacial structures were characterized in detail with a focus on the hydrogen bonding environment. With the calculated pKa values, the point of zero charges (PZCs) of the three surfaces are derived and the overall PZC range of goethite is found to be consistent with the experiment. We further discuss the potential applications of these results in future studies towards understanding the environmental processes of goethite.

Keywords: Goethite, acidity constant, interfacial structure, first principles molecular dynamics
INTRODUCTION

Goethite is the most thermodynamically stable iron oxyhydroxides at ambient temperature (Cornell and Schwertmann, 2003; Majzlan et al., 2003; Gleason et al., 2008). It is ubiquitous in soils (Sparks, 2003), lakes and marine sediments (van der Zee et al., 2003), acid mine drainage precipitates (McCarty et al., 1998; Peretyazhko et al., 2009), and on Mars (Klingelhoefer et al., 2005). Goethite usually expresses acicular habit and is enclosed by (110), (010), and (021) surfaces (Cornell and Schwertmann, 2003). Due to its high specific surface area (up to 200 m2/g) (Schwertmann and Taylor, 1989) and reactivity (Schwertmann and Cornell, 2000), goethite has a profound effect on the retention of heavy metals cations and negatively-charged moieties (e.g., As/P oxyanions and organic acids) (Fendorf et al., 1997; Randall et al., 1999; Filius et al., 2000; Ostergren et al., 2000; Kaiser and Guggenberger, 2007).

Due to the presence of amphoteric surface groups (i.e. OH/OH$_2$ of singly, doubly, and triply coordinated Fe sites), goethite surfaces can both donate and accept protons, and the interfacial properties including complexing of cations and anions are pH-dependent. For example, the adsorption capacities of heavy metal cations and oxyanions increase and decrease with pH, respectively (Grossl et al., 1997; Kim et al., 2011; Mamindy-Pajany et al., 2011; Komárek et al., 2018). It was also found that As/P oxyanions and carboxylate groups can form bidentate complexes at low pH and monodentate or hydrogen-bonded outer-sphere complexes at high pH (Fendorf et al., 1997; Manning et al., 1998; Filius et al., 2000; Ona-Nguema et al., 2005; Persson and...
Axe, 2005; Hanna et al., 2014; Marsac et al., 2016; Yang et al., 2016; Yan and Jing, 2018). As common heavy metal contaminants in water and soils, Pb(II) and Cd(II) were selected as model cations in many experimental and modeling studies (Spadini et al., 1994; Venema et al., 1997; Randall et al., 1999; Ostergren et al., 2000; Elzinga et al., 2001; Boily et al., 2005; Granados-Correa et al., 2011; Leung and Criscenti, 2017; Liu et al., 2018). Using extended x-ray absorption fine structure (EXAFS) spectroscopy, it was found that Pb(II) and Cd(II) form predominantly edge-sharing and corner-sharing complexes on goethite, respectively (Randall et al., 1999; Ostergren et al., 2000). Despite the extensive studies, the microscopic complexation mechanisms of heavy metal cations, including the complexing sites and structures on different facets and the corresponding pH-dependence were still poorly understood.

The identities and intrinsic acidity constants of surface groups on goethite are central to the understanding of the pH-dependent interfacial processes. Unfortunately, current experimental techniques are unable to distinguish the pKas of minerals with so many facets and surface sites. Several theoretical approaches including MUSIC method, static density functional theory (DFT) calculations, and first-principles molecular dynamics (FPMD) simulations have been utilized to calculate the pKas of goethite. MUSIC method (Hiemstra et al., 1989) correlates the surface pKa with the undersaturation of surface oxygen based on bond valence and it is able to calculate the acidities of groups on different surfaces (Hiemstra et al., 1996). With this method, the pKas of the groups on (110), (021), and (100) surfaces were obtained, and the corresponding point of zero charge (PZC) matched with the measured values.
(Venema et al., 1998; Gaboriaud and Ehrhardt, 2003). Despite this agreement, the pKas cannot be uniquely determined using MUSIC method. For example, essentially different pKas were obtained for several groups when hydrogen bond contributions and Fe-O distances derived from classical molecular dynamics simulations were used as the input of MUSIC (Boily, 2012). According to previous studies, the pKa values predicted by MUSIC with different proton bond valences and hydrogen bonding environments can vary up to 5 and 8 pKa units, respectively (Boily et al., 2001; Gaboriaud and Ehrhardt, 2003). Aquino et al. (2008) derived pKa values based on the deprotonation free energies from static DFT calculations with cluster surface models and simplified continuum solvent models. However, the cluster models cannot distinguish the pKas of different surfaces.

In recent years, FPMD method with periodic surface model and explicit solvent have been applied to calculate the free energies for a variety of chemical processes at mineral-water interfaces (Boulet et al., 2006; Watts et al., 2014; Churakov, 2015; Gaigeot and Sulpizi, 2016; Pouvreau et al., 2017; Churakov and Liu, 2018; Gaigeot and Sulpizi, 2020). For example, by employing FPMD based free energy calculations, Klyukin et al. (2018) investigated the release of iron from goethite (110) and (021) facets. Leung and Criscenti (2012) calculated the potential of mean force associated with the deprotonation of \equivFeOH$_2$ on (110) surface and obtained a pKa of 7.0. However, to our knowledge, a dataset of pKas at the FPMD level is still lacking for goethite surfaces.
FPMD based vertical energy gap method developed by Sprik group at Cambridge has proven powerful in pKa prediction (Sulpizi and Sprik, 2008; Costanzo et al., 2011). This method has been validated on molecular acids spanning over 20 pKa units with an accuracy of 2 pKa units (Park et al., 2006; Cheng et al., 2009; Sulpizi and Sprik, 2010; Costanzo et al., 2011; Mangold et al., 2011; Cheng et al., 2014). It has been successfully applied to derive the pKas of surface groups of oxides (Cheng and Sprik, 2010; Gaigeot et al., 2012; Sulpizi et al., 2012; Liu et al., 2014a; Gittus et al., 2018), hydroxides (Liu et al., 2013a) and clay minerals (Liu et al., 2013b; Liu et al., 2014b). In the present study, this technique was applied to calculate the pKas of major surfaces of goethite (i.e. (010), (110), and (021)). The interfacial structures are characterized in detail and the reactive groups have been identified based on the calculated pKas.

COMPUTATIONAL METHODS

The models

The crystal parameters of goethite used to build surface models are $a=4.616\ \text{Å}, b=9.956\ \text{Å}, c=3.025\ \text{Å}$ and $\alpha=\beta=\gamma=90^\circ$ (in $Pbnm$) (Alvarez et al., 2008). The (010) surface (Figure 1a) consisted of $2\times1\times3$ unit cells and it was cut from the bulk crystal based on the structure from crystal truncation rod analysis (Ghose et al., 2010). Singly and doubly coordinated groups exist on this surface (i.e. \equivFeOH$_2$ and \equivFe$_2$OH). (110) and (021) surfaces were cleaved from the bulk crystal according to the structures available in the literature (Aquino et al., 2007; Rustad and Boily, 2010; Boily, 2012; Kubicki et al., 2012; Leung and Criscenti, 2012; Alexandrov and Rosso, 2015;
Kubicki et al., 2017). One singly coordinated group (≡FeOH), one doubly coordinated group (≡Fe₂OH), and three triply coordinated groups (lower site: ≡Fe₃OH; upper site: ≡Fe₃OH₂; site without proton: ≡Fe₃O) are present on (110) surface (Figure 1b).

On (021) surface (Figure 1c), there are two kinds of singly coordinated groups (≡FeOH₂ coordinated with water and ≡FeOH coordinated with OH) and two doubly coordinated groups (≡Fe₂OH at structural O site and ≡Fe₂OH₂ at structural OH site).

All of the surface models created in the present study bear no net charge.

The surface models were placed in 3D periodically repeated orthorhombic cells with a solution region of 16 Å. The dimensions of the simulation cells are 9.074×9.233×28.000 Å³ for (010) system, 9.074×10.975×26.000 Å³ for (110) system, and 9.233×11.650×26.000 Å³ for (021) system. 45, 53, and 58 water molecules were randomly placed in the solution regions of (010), (110), and (021) systems respectively. These numbers were determined from the density of bulk water. The water density profiles derived from the trajectories (Figure S1 in the Supplemental material) suggested that the ambient water density was reached in the bulk regions.

FPMD Details

The CP2K/QUICKSTEP package (VandeVondele et al., 2005; Hutter et al., 2014) was used to conduct all FPMD simulations. In this package, the electronic structures were calculated with the hybrid Gaussian and Plane Wave (GPW) approach (Lippert et al., 1997). A double-ζ Gaussian-type orbital basis (VandeVondele and Hutter, 2007) with polarization functions (DZVP) was employed to construct the electronic wavefunctions. The plane wave basis was expanded to 360 Ry to represent the...
electron density. The Goedecker-Teter-Hutter (GTH) pseudopotentials (Goedecker et al., 1995) were used to represent the core electrons states. The Perdew–Burke–Ernzerhof (PBE) functional (Perdew et al., 1997) was used to describe the exchange-correlation interaction. Van der Waals interactions were taken into account by using the DFT-D3 dispersion corrections (Grimme et al., 2010). Wave functions were optimized to a tolerance of 1.0E-6.

All calculations were spin-polarized with the spin multiplicity set to unity. Antiferromagnetic ordering was adopted as the initial spin configurations for all the systems with up/down spin Fe atoms locating at alternating layers along [010] direction (Kubicki et al., 2008; Martin et al., 2009; Kerisit et al., 2016; Bylaska et al., 2020) (Figure 1). The antiferromagnetic configuration was maintained during the simulations. Our calculations predicted a pKa of 7.3 for \equivFeOH$_2$ on (110) surface, which is consistent with 7.0 obtained by Leung and Criscenti (2012) using DFT+U based FPMD simulation. This agreement indicates that the Hubbard U correction does not have obvious influence on the pKa estimate for the current systems.

Born-Oppenheimer type molecular dynamics (BOMD) simulations were carried out with a time step of 0.5 fs. NVT ensemble with the Nosé-Hoover chain thermostat was adopted to propagate the simulations. The temperature was controlled at 330 K. This temperature was intended to avoid the glassy behavior of liquid water at a lower temperature (VandeVondele et al., 2004). For each FPMD simulation, an equilibration runs for at least 2.0 ps was conducted, followed by a production run for over 10.0 ps.
The pKa values of goethite surface groups were evaluated with the half-reaction scheme of the vertical energy gap method (Sulpizi and Sprik, 2008; Cheng et al., 2009; Costanzo et al., 2011; Cheng and Sprik, 2012). With this method, the free energy change of the deprotonation reaction is calculated as the integral of the ensemble averages of the vertical energy gaps obtained from a series of FPMD trajectories along the alchemical path from reactant state to product state. The details are given in section S2 in the Supplemental material.

RESULTS AND DISCUSSION

Interfacial structures and pKas

(010) surface. During the free MD simulation, two H2O ligands out of 12 ≡FeOH2 groups left from the Fe atoms, indicating a weak interaction between Fe and the coordinated water. Similar detachment was also observed in the FPMD study of Chen et al. (2017). ≡FeOH2 can donate hydrogen bonds to solvent water and the average coordination number (CN) of water O around the H of ≡FeOH2 is 0.5 (Figure 3a). ≡Fe:OH donates a hydrogen bond to ≡Fe:O in the bulk and at the same time it accepts on average 0.7 hydrogen bonds from the solvent water (Figure 3b).

The calculated energy gaps and deprotonation free energies of (010) surface groups are listed in Supplemental Table S2, and the obtained pKas are summarized in Table 1. It can be seen that the vertical energy gaps converge within 0.26 eV (Supplemental Table S2) and the calculated pKas have statistical errors within 2.0 pKa units (Tables 1-3). The calculated pKa of ≡FeOH2 is 10.9, indicating that this group remains protonated in the near neutral pH range and the deprotonated form can
occur under basic conditions. The pKas of $≡\text{Fe}_2\text{OH}$ and $≡\text{Fe}_2\text{OH}_2$ are 15.4 and 4.7, respectively, implying that $≡\text{Fe}_2\text{OH}$ is the most possible form, whereas $≡\text{Fe}_2\text{OH}_2$ mainly occurs in acidic pH range. Using hydrogen bond valence derived from classical molecular dynamics simulations, MUSIC method predicted a pKa of 4.3 for $≡\text{Fe}_2\text{OH}_2$, which is consistent with our prediction (Boily, 2012). No MUSIC result was reported for $≡\text{Fe}_2\text{OH}$ to the best of our knowledge.

(110) surface. Most of the OHs of $≡\text{FeOH}$ sites show orientations parallel to the surface and the rest pointed towards the solution region (Figure 4). Therefore, the parallelly orientated $≡\text{FeOH}$ can accept hydrogen bonds from both $≡\text{Fe}_3\text{O}_4\text{H}$ groups and solvent water while the others donate hydrogen bonds to solvent water (Figure 4). The different orientations of OHs were also observed on other (hydr)oxides surfaces, e.g., gibbsite (Liu et al., 2013a), corundum (Gaigeot et al., 2012), and hematite (von Rudorff et al., 2016). The OHs of $≡\text{FeOH}$ can switch between the two orientations and the overall CN between water H and the O of $≡\text{FeOH}$ is 0.97 (Figure 5a). The OHs of $≡\text{Fe}_2\text{OH}$ and $≡\text{Fe}_3\text{O}_4\text{H}$ point towards the solution region, and both donate hydrogen bonds to solvent water, with an average CN of 0.97 (Figure 6b) and 0.85 (Figure 5b) respectively. $≡\text{Fe}_2\text{OH}$ also accepts one hydrogen bond from solvent water (Figure 6a). $≡\text{Fe}_3\text{O}$ has no contact with water because of the steric hindrance (Figure 5c).

The pKas of $≡\text{FeOH}$ and $≡\text{FeOH}_2$ are 15.0 and 7.3 respectively (Table 2). Although the computed pKa of $≡\text{FeOH}$ is smaller than the MUSIC prediction 19.6 (Venema et al., 1998), they both indicate that $≡\text{FeOH}$ is inert. The pKa of $≡\text{FeOH}_2$ is
similar to the previous FPMD result 7.0 (Leung and Criscenti, 2012) and the MUSIC result 7.7 (Venema et al., 1998). However, the MUSIC prediction for these groups will be significantly different if a different hydrogen bonding environment was used (11.7 or 3.7 and 23.6 or 15.6 would be obtained for \(\equiv{\text{FeOH}}_2 \) and \(\equiv{\text{FeOH}} \) when it was assumed that 1 or 3 hydrogen bonds were formed with water) (Gaboriaud and Ehrhardt, 2003). Nevertheless, the calculated pKas suggest that \(\equiv{\text{FeOH}} \) can get protonated and therefore both \(\equiv{\text{FeOH}} \) and \(\equiv{\text{FeOH}}_2 \) can exist in normal pH range.

\(\equiv{\text{Fe}_2\text{OH}} \) and \(\equiv{\text{Fe}_2\text{OH}}_2 \) have pKas of 13.9 and -0.5, respectively, which are close to the MUSIC predictions 12.3 and 0.4 (Venema et al., 1998). Such a low acidity constant for \(\equiv{\text{Fe}_2\text{OH}}_2 \) indicates that \(\equiv{\text{Fe}_2\text{OH}} \) hardly accepts a second proton at common pH.

The pKa values of \(\equiv{\text{Fe}_3\text{O}_L\text{H}} \), \(\equiv{\text{Fe}_3\text{O}_U\text{H}} \), and \(\equiv{\text{Fe}_3\text{OH}} \) are calculated to be 10.7, 9.7, and 0.3, respectively. MUSIC method cannot discriminate \(\equiv{\text{Fe}_3\text{O}_L\text{H}} \) and \(\equiv{\text{Fe}_3\text{O}_U\text{H}} \) and gave a pKa of 11.7 (Venema et al., 1998). This value agrees with the pKas obtained for \(\equiv{\text{Fe}_3\text{O}_L\text{H}} \) and \(\equiv{\text{Fe}_3\text{O}_U\text{H}} \). However, this should be considered fortuitous as the hydrogen bonding environments are different for these two groups: \(\equiv{\text{Fe}_3\text{O}_L\text{H}} \) forms a hydrogen bond with \(\equiv{\text{FeOH}} \) while \(\equiv{\text{Fe}_3\text{O}_U\text{H}} \) donates a hydrogen bond to water. For \(\equiv{\text{Fe}_3\text{OH}} \), the MUSIC result was -0.2 (Venema et al., 1998), close to our prediction. Overall, the calculated pKas indicate that \(\equiv{\text{Fe}_3\text{O}_L\text{H}} \) and \(\equiv{\text{Fe}_3\text{O}_U\text{H}} \) are stable in common pH.

(021) surface. On (021) surface, the coordinated H\(_2\)O of \(\equiv{\text{FeO}_b\text{H}}_2 \) sites are loosely bound and can leave the surface spontaneously during the free MD simulation. This
observation is consistent with the low desorption energy of \(~0.5\) kcal/mol for H$_2$O on this site (Alexandrov and Rosso, 2015). \(\equiv\text{FeO}_\text{H}_2\) accepts hydrogen bonds from solvent water with a CN of 0.3 (Figures 7a and 8a). The two OHs of \(\equiv\text{FeO}_\text{H}_2\) also donate hydrogen bonds to the nearby \(\equiv\text{FeOH}\) and \(\equiv\text{Fe}_2\text{OH}\) groups (Figure 7b). \(\equiv\text{FeOH}\) can donate and accept hydrogen bonds to/from solvent water, with a CN of 0.7 and 0.3, respectively (Figures 7a and 9). \(\equiv\text{Fe}_2\text{OH}\) and \(\equiv\text{Fe}_2\text{O}_\text{H}\) donate hydrogen bonds to \(\equiv\text{FeOH}\) (Figure 7b). \(\equiv\text{Fe}_2\text{OH}\) also donates hydrogen bonds to solvent water with a CN of 0.3 (Figure 8b), while \(\equiv\text{Fe}_2\text{O}_\text{H}\) accepts hydrogen bonds from solvent water with a CN of 0.4 (Figure 8c). Overall, the interaction between the first layer water and surface groups on (021) surface is weaker compared to those on (010) and (110) surfaces, as revealed by the smaller CNs between surface groups and water.

The calculated pKa of \(\equiv\text{FeO}_\text{H}_2\) is 10.0 (Table 3), close to the MUSIC result 11.9 (Venema et al., 1998). \(\equiv\text{FeOH}\) and \(\equiv\text{Fe}_2\text{OH}\) have pKas of 12.2 and 2.3, respectively, indicating that \(\equiv\text{FeOH}_2\) rarely happens and \(\equiv\text{FeOH}\) is the most possible form in common pH range. MUSIC results were 20.0 and 8.1 for \(\equiv\text{FeOH}\) and \(\equiv\text{Fe}_2\text{OH}_2\), respectively (Venema et al., 1998), which are substantially higher than our results.

The calculated pKas for \(\equiv\text{Fe}_2\text{O}_\text{H}/\equiv\text{Fe}_2\text{O}_\text{H}_2\) and \(\equiv\text{Fe}_2\text{OH}/\equiv\text{Fe}_2\text{OH}_2\) are 13.2/0.8 and 5.2/-1.3, respectively. The higher pKa value of \(\equiv\text{Fe}_2\text{O}_\text{H}\) compared to \(\equiv\text{Fe}_2\text{OH}\) is consistent with the different roles they played in hydrogen bonding, that is, \(\equiv\text{Fe}_2\text{O}_\text{H}\) was proton acceptor while \(\equiv\text{Fe}_2\text{OH}\) was proton donor. MUSIC predictions were 19.6/7.7 for \(\equiv\text{Fe}_2\text{O}_\text{H}/\equiv\text{Fe}_2\text{O}_\text{H}_2\) and 11.9/0.0 for \(\equiv\text{Fe}_2\text{OH}/\equiv\text{Fe}_2\text{OH}_2\) (Venema et al., 1998). Although these values were different from our results, the MUSIC predictions...
also demonstrated a decreasing trend from \(\equiv \text{Fe}_2\text{O}_8\text{H} \) to \(\equiv \text{Fe}_2\text{OH} \). Overall, our calculated pKas suggest that the protonated \(\equiv \text{Fe}_2\text{O}_8\text{H}_2 \) and \(\equiv \text{Fe}_2\text{OH}_2 \) rarely occur; \(\equiv \text{Fe}_2\text{O}_8\text{H} \) is inactive in normal pH range and \(\equiv \text{Fe}_2\text{OH} \) can get deprotonated in slightly acidic conditions.

Surface charging

PZC is an important parameter in surface complexation reactions because it determines the sign of surface charges at a certain pH. PZC of a certain surface can be estimated based on the surface pKas (Table 4). For the (010) surface, the PZC is estimated to be 7.8, which is determined by the pKas of \(\equiv \text{FeOH}_2 \) and \(\equiv \text{Fe}_2\text{OH}_2 \).

Similarly, the PZCs of (110) and (021) are 8.5 and 3.8, respectively. Therefore, the PZC of a whole goethite should be in the range of 3.8~8.5, which is consistent with the experimental range of 5.6~9.5 (Lutzenkirchen, 2002; Lützenkirchen et al., 2008; Kosmulski, 2009). The PZC values of (010) and (110) surfaces are very close, and they are significantly higher than the PZC of (021) surface.

At pH below 3.8 (i.e. PZC of (021) surface), all three surfaces are positively charged and therefore adsorption of heavy metal cations is inhibited. This is consistent with the fact that heavy metals do not show adsorption (e.g. Cd, Zn) or only marginal adsorption (e.g. Pb, Cu) on goethite at pH below 3.8 (Komárek et al., 2018).

As pH increases, the net charges on (010) and (110) surfaces decrease and they bear net negative charges at pH above 7.8 and 8.5, respectively. These values are in general coincidence with the pH range where the adsorption capacity reached the maximum (Komárek et al., 2018).

Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld
Based on the computed pKas, the surface sites available for complexing metal cations can be derived and they include \(\equiv \text{FeOH} \) on (010) surface, \(\equiv \text{FeO} \), \(\equiv \text{Fe:O} \), and \(\equiv \text{Fe:O} \) on (110) surface, and \(\equiv \text{Fe:O}, \equiv \text{FeOH}, \) and \(\equiv \text{FeO} \) on (021) surface. The complexation mechanisms of heavy metals at a certain pH can be deduced based on the distributions of available complexing sites. As an example, the distance between two neighboring \(\equiv \text{FeOH} \) groups on (110) surface is ~3.0 Å, and therefore a bidentate corner-sharing complex can form on these sites in near-neutral conditions (Randall et al., 1999). The relative stabilities of the complexes on different sites can be obtained by comparing FPMD calculated free energies. For example, with such an approach we investigated the thermodynamics of Cd(II) and Ni(II) complexes formed on clay edge sites (Zhang et al., 2016; Zhang et al., 2017).

There is a consensus that anionic groups (e.g. soil organic matters (SOMs), As/P oxyanions) can form inner-sphere complexes on goethite via ligand exchange reactions (Gu et al., 1994; Grossl et al., 1997; Kaiser et al., 1997; Kaiser et al., 2007; Kim et al., 2011). pH dependence of complexation of anionic groups can be derived by integrating surface pKas and FPMD computed adsorption free energies, e.g. with this approach we investigated the complexation mechanisms of acetate, quinone, and phosphate on clay edges as a function of pH (Liu et al., 2017; Lützenkirchen et al., 2018; Zhang et al., 2020).

The pKas calculated in the present study are of high accuracy and can be directly applied with SCMs (Nie et al., 2017; Han and Katz, 2019) to investigate the
adsorption behaviors. For example, based on the surface sites and pKas derived in our prior studies (Liu et al., 2012a; Liu et al., 2012b; Liu et al., 2013b; Liu et al., 2014b). Tournassat et al. developed a SCM for clay edges, that successfully reproduced the experimental acid-base titration data of montmorillonite (Tournassat et al., 2016) and the adsorption of uranyl over a wide range of pH and concentration conditions (Tournassat et al., 2018; Zhang et al., 2018). The integration of the computed intrinsic pKas into the SCM modeling can establish direct links between macroscopic experiments and microscopic properties, that can thus help uncover the adsorption mechanisms. Overall, the structures and pKas obtained in the present study form a microscopic basis for understanding the environmental and geochemical processes at goethite interfaces.
ACKNOWLEDGMENTS AND FUNDING

This study was supported by the National Natural Science Foundation of China (No. 41872041 and 41572027). We acknowledge the financial support from the State Key Laboratory for Mineral Deposits Research at Nanjing University. We are grateful to the High Performance Computing Center (HPCC) of Nanjing University for doing the numerical calculations in this paper on its blade cluster system.
REFERENCES CITED

of Chemical Physics, 131, 154504.

Kim, J., Li, W., Philips, B.L., and Grey, C.P. (2011) Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH), akaganeite (β-FeOOH), and lepidocrocite.

Endnote:

1Supplemental Material.
FIGURE 1. The surface models used in the study. O = red, H = white, Fe = blue-violet. Green arrows indicate the electron spin orientations.
FIGURE 2. Snapshot of the (010) surface. Atoms are color-coded by element as described in Figure 1. Only the water molecules that hydrogen-bonded with surface groups are depicted and the others are removed for clarity.
FIGURE 3. Radial distribution function (RDF) and coordination number (CN) for
(a) water O around H of \equivFeOH$_2$ and (b) water H around O of \equivFe$_2$OH on (010) surface.
FIGURE 4. Snapshot of the (110) surface. Atoms are color-coded by element as described in Figure 1. Only the water molecules that hydrogen-bonded with surface groups are depicted and the others are removed for clarity.
FIGURE 5. RDF and CN for (a) water H around O of \(\equiv \text{FeOH} \), (b) water O around H of \(\equiv \text{Fe}_3\text{O}_4\cdot\text{H} \), and (c) water H around O of \(\equiv \text{Fe}_3\text{O} \) on (110) surface.
FIGURE 6. RDF and CN for (a) water H around O of \equivFe$_2$OH and (b) water O around H of \equivFe$_2$OH on (110) surface.
FIGURE 7. Snapshot of the (021) surface. (a) side view showing the hydrogen bonds between surface groups and water molecules; (b) top view showing the hydrogen bonds between surface groups. Atoms are color-coded by element as described in Figure 1. Only the water molecules that hydrogen-bonded with surface groups are depicted and the others are removed for clarity.
FIGURE 8. RDF and CN for (a) water H around O of ≡FeO$_n$H$_2$, (b) water O around H of ≡Fe$_2$OH, and (c) water H around O of ≡Fe$_2$O$_n$H on (021) surface.
FIGURE 9. RDF and CN for (a) water O around H of $≡$FeOH and (b) water H around O of $≡$FeOH on (021) surface.
TABLE 1. Calculated pKa values of groups on (010) surface in comparison with MUSIC results

<table>
<thead>
<tr>
<th>Groups</th>
<th>This study</th>
<th>MUSIC<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>≡FeOH<sub>2</sub></td>
<td>10.9±1.8</td>
<td></td>
</tr>
<tr>
<td>≡Fe<sub>2</sub>OH<sub>2</sub>/≡Fe<sub>2</sub>OH</td>
<td>4.7±0.8/15.4±0.7</td>
<td>4.3/-</td>
</tr>
</tbody>
</table>

^a(Boily, 2012).
TABLE 2. Calculated pKa values of surface groups on (110) surface in comparison with literature results

<table>
<thead>
<tr>
<th>Groups</th>
<th>This study</th>
<th>MUSIC<sup>a</sup></th>
<th>FPMD<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>≡FeOH₂/≡FeOH</td>
<td>7.3±0.5/15.0±0.7</td>
<td>11.7/23.6</td>
<td>7.0/-</td>
</tr>
<tr>
<td>≡Fe₂OH₂/≡Fe₂OH</td>
<td>-0.5±1.3/13.9±0.7</td>
<td>0.4/12.3</td>
<td></td>
</tr>
<tr>
<td>≡Fe₃O₅H</td>
<td>10.7±0.5</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>≡Fe₃O₄H</td>
<td>9.7±0.7</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>≡Fe₃OH</td>
<td>0.3±0.8</td>
<td>-0.2</td>
<td></td>
</tr>
</tbody>
</table>

^a(Venema et al., 1998; Gaboriaud and Ehrhardt, 2003): I, II, and III mean that 1, 2, and 3 hydrogen bonds are presumed between surface groups and water, respectively. ^b(Leung and Criscenti, 2012).
TABLE 3. Calculated pKa values of surface groups on (021) surface in comparison with MUSIC results

<table>
<thead>
<tr>
<th>Groups</th>
<th>This study</th>
<th>MUSICa</th>
</tr>
</thead>
<tbody>
<tr>
<td>≡FeO$_2$H$_2$</td>
<td>10.0±1.5</td>
<td>11.9</td>
</tr>
<tr>
<td>≡FeOH$_2$/≡FeOH</td>
<td>2.3±1.2/12.2±1.7</td>
<td>8.1/20.0</td>
</tr>
<tr>
<td>≡Fe$_2$OH$_2$/≡Fe$_2$OH</td>
<td>-1.3±2.0/5.2±1.3</td>
<td>0.0/11.9</td>
</tr>
<tr>
<td>≡Fe$_2$O$_4$H$_2$/≡Fe$_2$O$_4$H</td>
<td>0.8±1.7/13.2±1.0</td>
<td>7.7/19.6</td>
</tr>
</tbody>
</table>

a(Venema et al., 1998).
TABLE 4. Calculated pKa values of surface groups and PZC of individual surfaces

<table>
<thead>
<tr>
<th>Surface</th>
<th>Groups</th>
<th>pKa</th>
<th>PZC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(010)</td>
<td>≡FeOH₂</td>
<td>10.9</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>≡Fe₂OH₂/≡Fe₂OH</td>
<td>4.7/15.4</td>
<td></td>
</tr>
<tr>
<td>(110)</td>
<td>≡FeOH₂/≡FeOH</td>
<td>7.3/15.0</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>≡Fe₂OH₂/≡Fe₂OH</td>
<td>-0.5/13.9</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>≡Fe₃O₂H</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≡Fe₃O</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>(021)</td>
<td>≡FeO₃H₂</td>
<td>10.0</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>≡FeOH₂/≡FeOH</td>
<td>2.3/12.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≡Fe₂OH₂/≡Fe₂OH</td>
<td>-1.3/5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≡Fe₂O₃H₂/≡Fe₂O₃H</td>
<td>0.8/13.2</td>
<td></td>
</tr>
</tbody>
</table>