ATOMIC-SCALE STRUCTURE AND NON-STOICHIOMETRY OF METEORITIC
HIBONITE: A TRANSMISSION ELECTRON MICROSCOPE STUDY

Jangmi Han1,2,*, Ichiro Ohnishi3, Akira Yasuhara3, Lindsay P. Keller2

1Lunar and Planetary Institute, USRA, 3600 Bay Area Boulevard, Houston, TX 77058, USA
2Astromaterials Research and Exploration Science, NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, USA
3JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo, 196-8558, Japan

*Corresponding author. Email address: jhan28@central.uh.edu. Present address: Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA.

Submitted to American Mineralogist, February 12, 2021
Revised, April 19, 2021

ABSTRACT

Hibonite (CaAl\textsubscript{12}O\textsubscript{19}) is a common refractory mineral in Ca-Al-rich inclusions (CAIs) in primitive meteorites. Transmission electron microscope (TEM) studies have identified enigmatic planar defects in different occurrences of hibonite in the Allende meteorite that give rise to strong streaking along c* in electron diffraction patterns. Atomic resolution high-angle annular dark-field (HAADF) imaging and energy dispersive X-ray (EDX) analyses were used to
determine the nature and origin of these planar features. HAADF images of hibonite grains reveal lamellar intergrowths of common 1.6 nm spacing, and less commonly 2.0 nm and 2.5 nm spacings, interspersed in stoichiometric hibonite showing 1.1 nm (002) spacing. Stoichiometric hibonite consists of alternating Ca-containing (“R”) and spinel-structured (“S”) blocks stacked in a sequence RS. In contrast, the 1.6 nm layers result from a doubled S block such that the stacking sequence is RSS, while in the widest defect observed, the stacking sequence is RSSSS. These intergrowths are epitaxial and have coherent, low-strain boundaries with the host hibonite.

Meteoritic hibonite shows common Ti and Mg substitution for Al in its structure. Atomic-resolution EDX maps of hibonite grains in the Allende CAI confirm the preferred site occupancy of Mg on tetragonal M3 sites in S blocks and of Ti on trigonal bipyramidal M2 and octahedral M4 sites in R blocks. Mg is highly concentrated, but Ti is absent, in the planar defects where wider S blocks show Al-rich compositions compared to stoichiometric MgAl₂O₄ spinel. Therefore, Mg likely played the major role in the formation and metastability of planar defects in hibonite. Electron energy loss spectroscopy data from the Ti $L_{2,3}$ edge show the presence of mixed Ti oxidation states with ~15-20% of Ti as Ti$^{3+}$ in hibonite, suggesting a direct substitution of Ti$^{3+}$ ↔ Al$^{3+}$ in hibonite. The remaining ~80-85% of Ti is present as Ti$^{4+}$ and corresponding EDX analyses are consistent with the well-known coupled substitution 2Al$^{3+}$ ↔ Ti$^{4+}$ + Mg$^{2+}$ being the major mechanism for Ti and Mg substitution in hibonite.

The formation of planar defects in hibonite occurred during high-temperature nebular condensation or melting/crystallization processes. The occurrence of non-stoichiometric hibonite in the Allende CAI deviates from the mineral formation sequence predicted from equilibrium condensation models. Overall, our atomic resolution TEM observations signify non-equilibrium, kinetic-controlled crystal growth during high-temperature formation of refractory solids in the
INTRODUCTION

The mineralogy and petrography of primitive carbonaceous chondrite meteorites provide a window into events that occurred at the birth of our Solar System ~4.567 billion years ago (Connelly et al. 2012). A pivotal event in meteorite studies was the fall of the Allende meteorite in 1969 and the recognition of inclusions of high-temperature refractory minerals that formed by gas-solid condensation reactions in the early solar nebula (e.g., Grossman 1972). These refractory inclusions are referred to as Ca-Al-rich inclusions (CAIs) and consist of complex assemblages of minerals such as spinel, melilite (gehlenite (Ca$_2$Al$_2$SiO$_7$) - åkermanite (Ca$_2$MgSi$_2$O$_7$) solid solution), Al-Ti-rich diopside, perovskite, and other less refractory minerals. The most refractory earliest-formed minerals include corundum and Ca-aluminates such as hibonite (CaAl$_{12}$O$_{19}$), grossite (CaAl$_4$O$_7$), and krotite (CaAl$_5$O$_4$) (Grossman 2010). The Zr- and/or Sc-rich ultrarefractory minerals such as allendeite (Sc$_4$Zr$_5$O$_{12}$), panguite ((Ti,Al,Sc,Mg,Zr,Ca)$_{1.8}$O$_3$), and warkite (Ca$_2$Sc$_6$Al$_6$O$_{20}$) are also present in various CAIs (e.g., Krot et al. 2019; Ma et al. 2020).

Hibonite is of particular interest because it is one of the most important and common primary refractory phases that occurs in many CAIs from different primitive meteorite groups (MacPherson 2014). Hibonite is predicted as one of the earliest phases to condense from a cooling gas of solar composition (e.g., Grossman 2010) and therefore likely records conditions and processes of early and high-temperature events during the Solar System formation. Previous
studies of hibonite crystals and hibonite-bearing CAIs from carbonaceous chondrites have shown that they preserve a diversity of trace element abundance patterns and Ca, Ti, and Mg isotopic compositions that can be directly linked to the chemical and isotopic evolution of the early solar nebula (e.g., Ireland 1988, 1990; Sahijpal et al. 2000; Liu et al. 2009; Davis et al. 2018; Kööp et al. 2018). For example, Liu et al. (2019) found two populations of small fine-grained CAIs in the pristine ALHA77307 CO3.0 chondrite that have well-defined $^{26}\text{Al}/^{27}\text{Al}$ ratios of 5.4×10^{-5} and 4.9×10^{-5}. The former value is interpreted as the timing for the onset of dust condensation in the protoplanetary disk and the latter value associated with a later thermal isotopic re-equilibration event that affected early-formed CAIs. In addition, the presence of mixed Ti$^{3+}$-Ti$^{4+}$ oxidation states in hibonite provides a measure of the oxygen fugacities that existed at the time when hibonite formed and was subsequently processed in the early solar nebula (e.g., Ihinger and Stolper 1986; Beckett et al. 1988; Simon et al. 1997, 2001; Giannini et al. 2011; Zega et al. 2012; Doyle et al. 2016).

In addition to chemical and isotopic tracers of nebular processes, the microstructures of refractory minerals in CAIs as revealed by transmission electron microscope (TEM) studies also provide unique insights into the formation and evolution of early formed nebular phases (e.g., Barber et al. 1984; Doukhan et al. 1991; Bolser et al. 2016; Zega et al. 2016; Han and Brearley 2017). Previous TEM observations of CAIs showed two important microstructures of hibonite compared to other common CAI minerals such as spinel and melilite. First, hibonite in CAIs and their rims from carbonaceous chondrites contains abundant planar defects along the (001) plane that are often correlated with Mg enrichments and Ti depletions (Keller 1991; Han et al. 2015, 2017; Needham et al. 2017; Han et al. 2020). The defects were interpreted to have the compositional characteristics of Mg-enriched, non-stoichiometric hibonite, separated by regions
of normal hibonite stoichiometry (Schmid and De Jonghe 1983; Han et al. 2015). Second, hibonite in spinel-rich CAIs from carbonaceous chondrites often shares a consistent crystallographic orientation relationship with adjacent spinel, such that (001)\text{hibonite}||(111)\text{spinel} (Han et al. 2015, 2017; Needham et al. 2017; Han et al. 2019). This relationship provides strong evidence that the structural similarity between hibonite and spinel enabled epitaxial nucleation and growth of spinel on hibonite surfaces, thereby kinetically inhibiting melilite formation (MacPherson et al. 1984; Beckett and Stolper 1994; Simon et al. 2006; Han et al. 2015). Overall, these observations highlight the notable deviations from the mineral formation sequence predicted from equilibrium condensation calculations, implying that non-equilibrium, kinetically controlled growth modes were important during high-temperature events in the early solar nebula (Toppani et al. 2006; Han et al. 2015).

Recent advances in TEM imaging and microanalysis have enabled sub-angstrom resolution imaging and atomic-scale X-ray analysis (Ohnishi et al. 2018). Here we present the TEM results of atomic resolution imaging and elemental mapping of hibonite in a melilite-rich CAI from the Allende meteorite to better characterize the crystal structure and chemistry of hibonite, as well as spinel that is commonly associated with hibonite in many CAIs from carbonaceous chondrites. Of particular interest for this study is the crystal chemical role of Ti and Mg substitution in the formation of hibonite and comparative TEM analyses of synthetic hibonite. The microstructural features in hibonite provide important constraints on the astrophysical conditions that existed during the formation of refractory solids in the early solar nebula.

SAMPLES
Meteoritic hibonite

The CAI LK44 is a partial fragment of a large cm-sized compact Type A CAI from the oxidized CV3 carbonaceous chondrite Allende (Fig. 1a). This inclusion is dominated by coarse-grained gehlenitic melilite (Åk \textasciitilde 15-20) with fine-grained inclusions of spinel, hibonite, perovskite, paqueite, and grossmanite, which is overlain by an altered Wark-Lovering (WL) rim. Hibonite also occurs as the base layer of the WL rim from this CAI, where Keller (1991) previously reported TEM observations of stacking disorder in hibonite. For this study, we focused on a cluster of spinel and hibonite grains embedded in melilite, in which elongated hibonite grains are partially surrounded by spinel and minor perovskite (Fig. 1b). The electron microprobe measurements show a narrow range of compositions for spinel and hibonite: the spinel is close to end-member MgAl$_2$O$_4$ with FeO \leq$ 1$ wt\%, while the hibonite grains contain 3.4-3.7 wt\% MgO and 6.7-7.5 wt\% TiO$_2$ (Table 1). However, scanning electron microscope (SEM) X-ray mapping reveals an oscillatory Ti and Mg zonation in hibonite grains (Fig. 1c), and quantitative TEM energy-dispersive X-ray (EDX) analyses show a range in their composition of \~2-8 wt\% TiO$_2$ and \~1-5 wt\% MgO.

Synthetic hibonite

Synthetic hibonite was prepared following the procedures in Schmid and DeJonghe (1983) by reacting pure alumina crucibles with a 2CaO-Al$_2$O$_3$ composition eutectic melt \pm 5 wt\% MgO \pm CaTiO$_3$ in air for 4 hours or 5 days at 1530°C, followed by air quenching. The run products were cross-sectioned, mounted in epoxy, and polished for detailed petrologic and mineralogical descriptions, as well as for TEM section preparation. In all experiments, the reaction zone adjacent to alumina shows a similar mineral sequence from hibonite, grossite, to krotite with a
quenched melt glass. Experiments where MgO was added also produced spinel laths intergrown
with hibonite in experiment (2) and euhedral spinel grains in the quenched melt in experiments
(2-4). A summary of the experimental conditions and results for the five experiments is given in
Table 2, and representative SEM back-scattered electron (BSE) images of the reaction zones are
shown in Figure 2.

ANALYTICAL METHODS

For a detailed TEM analysis, two sections, FIB-A and FIB-B, were prepared from a
single hibonite crystal in the CAI LK44 (Fig. 1b), using a FEI Quanta 3D 600 dual beam focused
ion beam (FIB)/SEM at NASA Johnson Space Center (JSC). Additional FIB sections were
prepared from hibonite crystals in the reaction zone of the five run products using the same
FIB/SEM instrument. All the FIB sections were cut normal to the elongation direction of the
hibonite crystals.

Initial structural and chemical characterization of all FIB sections from both meteoritic
and synthetic hibonites was performed using a JEOL 2500SE 200 kV field-emission scanning
TEM (STEM) at NASA JSC. Bright-field (BF) STEM and high-resolution (HR) TEM images
and selected area electron diffraction patterns were collected. Elemental mapping and
quantitative microanalyses were carried out using a Thermo-Noran thin-window EDX
spectrometer. Elemental X-ray maps were obtained using STEM raster mode with a scanned
probe size of 2 nm and a dwell time of 50 μs/pixel. Successive rasters were added until <1%
counting statistical errors were achieved for major elements. Data reduction was performed using
the Cliff-Lorimer thin film approximation with experimental and theoretical K-factors
determined from natural and synthetic standards.
For atomic resolution high-angle annular dark-field (HAADF) imaging and elemental X-ray mapping, two TEMs were utilized at JEOL in Japan. In the first session, FIB-A was analyzed using a JEOL JEM-F200 STEM. This instrument is a 200 kV cold field emission gun STEM, equipped with HAADF detector, dual 100 mm2 silicon drift detectors, and a Gatan imaging filter for electron energy loss spectroscopy (EELS). Regions of interest were mapped using a probe of 150 pA current and 0.1 nm size, with a dwell time of 20 μs/pixel. Successive image frames were added until acceptable counting statistics were achieved (typically <5 minutes). In the following session, FIB-B was analyzed using a JEOL JEM-ARM300F GrandARM STEM. This instrument is an aberration-corrected electron microscope, equipped with a cold field emission gun, HAADF detector, dual 158 mm2 silicon drift detectors, and a Gatan imaging filter for EELS. Regions of interest were mapped using a probe of 85 pA current and ~80 pm size, with a dwell time of 10 μs/pixel, by operating at 200 kV accelerate voltage. Successive image frames were added until acceptable counting statistics were achieved (typically <2 minutes). All hibonite crystals in both FIB sections were tilted into the [110] zone for the record of imaging and X-ray mapping.

RESULTS AND DISCUSSION

Planar defects in hibonite

In low magnification BF STEM images, hibonite grains in the CAI LK44 exhibit planar defects normal to the c axis, in contrast to coexisting spinel, melilite, and perovskite that are featureless and defect-free (Fig. 3). Most defects are developed along the full length of the hibonite grains, but a few show terminations within the grains. The defect density varies among and within the hibonite grains. In FIB-A, only one hibonite grain (HIB-1; Figs. 3a-c) contains a high density of defects along one edge that results in strong streaking along the c axis in electron
diffraction patterns. In FIB-B, a much lower density of defects is observed along the edge of one hibonite grain (HIB-2; Figs. 3d-f), with very weak streaking along the c axis in electron diffraction patterns. Similar TEM observations were made from hibonite in different carbonaceous chondrites (Han et al. 2015, 2017; Needham et al. 2017; Han et al. 2020), suggesting the common occurrence of planar defects in meteoritic hibonite.

An unusual observation in another hibonite grain in FIB-B (HIB-3; Figs. 3d-e) is the occurrence of defects that are associated with a distinct spinel inclusion (Fig. 4a). The spinel inclusion is anomalously Al-rich with a composition of \(\text{Mg}_{0.5}\text{Al}_{2.3}\text{O}_4 \) and contains minor \(\text{V}_2\text{O}_3 \) (<1 wt%), based on TEM EDX analyses, and should be accompanied by cation vacancies. While exceedingly rare, \(\text{Al}_2\text{O}_3 \) excesses up to \(~10\) mol\% of the \(\text{Al}_{8/3}\text{O}_4 \) component in spinel are reported from a few CAIs in carbonaceous chondrites (El Goresy et al. 1984; Simon et al. 1994; Kööp et al. 2016). In general, spinel intergrown with hibonite in least altered CAIs from carbonaceous chondrites is close to pure stoichiometric \(\text{MgAl}_2\text{O}_4 \) (e.g., Han et al. 2015, 2019). In addition, fast Fourier transform (FFT) analyses of HRTEM images show a crystallographic orientation relationship between host hibonite and spinel inclusion, such that \([100]_{\text{hibonite}}/\langle[011]_{\text{spinel}} \) and \((001)_{\text{hibonite}}/\langle(111)_{\text{spinel}} \) (Figs. 4b-d). Similar relationships were observed from spinel-rich CAIs from carbonaceous chondrites (Han et al. 2015, 2017; Needham et al. 2017; Han et al. 2019).

Comparison with synthetic hibonite

The experimental charges all show a typical texture of a layer of hibonite laths with their c axis oriented perpendicular to the layer. The hibonite laths from the five run products display a range of planar defect densities and correlated compositional variations. In experiments (1) and
Mg-Ti-free and Ti-bearing hibonite grains are free of defects. In contrast, experiments (2-3) both produced Mg-bearing hibonite grains that commonly contain a high, but similar density of defects normal to the c axis (Figs. 5a-b). In experiment (4), some Ti-Mg-bearing hibonite grains contain a low density of defects (Fig. 5c), similar to the defect density observed from hibonite crystals in the CAI LK44. The critical observation from our TEM EDX analyses of hibonite from the three experiments (2-4) is that the defects, which appear as the vertical dark band in the BF STEM image, are clearly linked to higher MgO contents, but are not correlated with TiO$_2$ contents (Fig. 6). We propose that the MgO enrichments along planar defects in Mg-bearing hibonite stabilized the formation of Mg-enriched, non-stoichiometric hibonite, resulting in complex, disordered intergrowths within stoichiometric hibonite. From our limited experiments, we observed no correlation between the defect formation and density with the presence of minor TiO$_2$ contents in Mg-Ti-bearing hibonite. These results suggest no effects of Ti on the formation of planar defects and correlated non-stoichiometry in hibonite.

Spinel stabilized by the addition of MgO in experiments (2-4) also shows notable textural and compositional variations. Two compositionally distinct spinel occurrences are observed in experiment (2), including: (1) lath-shaped, Al-rich spinel containing 2.14-2.20 Al cations per 4 oxygen anions, intergrown with hibonite, and (2) euhedral, stoichiometric MgAl$_2$O$_4$ spinel crystals in grossite and in a layer of krotite + quenched glass (Fig. 2a). The Al-rich spinel laths are crystallographically oriented to intergrown hibonite with (001)$_{\text{hibonite}}$/(111)$_{\text{spinel}}$, a similar relationship observed from the spinel inclusion in hibonite from the CAI LK44 (Fig. 4). In contrast, in experiments (3-4), only euhedral, stoichiometric MgAl$_2$O$_4$ spinel crystals occur as inclusions in grossite and in krotite + quenched glass layer (Figs. 2b-c). The observed significant Al$_2$O$_3$ excess in spinel intergrown with hibonite is due to the saturation of a melt with respect to
corundum (Beckett and Stolper 1994; Simon et al. 1994), consistent with a thermodynamic mixing model that predicts up to ~30 mol% of the $\text{Al}_{8/3}\text{O}_{4}$ component in spinel at ~1750 K (Navrotsky et al. 1986; Sack 2014). However, the disappearance of Al-rich spinel laths intergrown with hibonite in experiments (3-4) indicates that Al-rich spinel formed metastably owing to very high-temperature, short-lived heating followed by rapid cooling.

Crystal structure and chemistry of hibonite

A crystal structure model of hibonite with an ideal formula $\text{CaAl}_{12}\text{O}_{19}$ refined by recent single-crystal X-ray diffraction studies (Hofmeister et al. 2004; Nagashima et al. 2010; Giannini et al. 2014) was used to interpret the crystal structure and chemistry of hibonite in the CAI LK44 as observed by TEM. Hibonite has a hexagonal structure (space group P6$_3$/mmc), in which Ca^{2+} ions occur in 12-fold coordination and Al^{3+} ions are distributed over five interstitial sites, including three octahedral M1, M4, and M5, one tetragonal M3, and one trigonal bipyramidal M2 sites. A chemical formula of hibonite is summarized as $[12]^{\text{Ca}^6}\text{M}_1^{[5]}\text{M}_2^{[4]}\text{M}_3^{[6]}\text{M}_4^{[6]}\text{M}_5\text{O}_{19}$, where coordination numbers are given as bracketed superscripts and the multiplicity of the sites is subscripted. Hibonite from carbonaceous chondrites is compositionally complex and contains significant concentrations of other elements, commonly Si^{4+}, $\text{Ti}^{3+,4+}$, Fe^{2+}, and Mg^{2+} (Brearley and Jones 1998), all substituting for Al^{3+} on the five M1 to M5 sites (Doyle et al. 2014).

The basic structure of hibonite consists of two different building blocks, labeled “S” and “R”, respectively, which alternate normal to the c axis (Schmid and De Jonghe 1983; Nagashima et al. 2010). The S block has the ideal composition of $(\text{Al}_6\text{O}_8)^{2+}$ representing a spinel or γ-alumina structure composed of two cubic close-packed oxygen layers with two octahedral M1
and M5 and one tetragonal M3 sites. The R block with a composition of \((\text{CaAl}_6\text{O}_{11})^2\) represents an intermediate mirror plane composed of three hexagonal close-packed oxygen layers comprising Ca with one trigonal bipyramidal M2 and one octahedral M4 sites. A unit cell of hibonite is characterized by a stacking sequence of \(\text{RSR}^*\text{S}^*\) parallel to the (001) plane, where \(\text{R}^*\) and \(\text{S}^*\) are structurally same as \(\text{R}\) and \(\text{S}\) but rotated by 180° with respect to \(\text{R}\) and \(\text{S}\) around the \(c\) axis. This neutral RS subunit is therefore the primitive repeating unit of hibonite structure with a total composition of \(\text{CaAl}_{12}\text{O}_{19}\), corresponding to the (002) lattice fringe spacing of 1.1 nm normal to the \(c\) axis observed in HRTEM images. Schmid and De Jonghe (1983) observed different spacings of the (001) and (002) reflections in HRTEM images of synthetic hibonite, which were interpreted as syntactic intergrowths by altering the stacking sequence of \(\text{R}\) and \(\text{S}\) blocks in the hibonite structure, similar to that observed in manetoplumbite-related structures (e.g., Hirotsu and Sato 1978; Göbbels et al. 1995; Iyi et al. 1995).

Our atomic resolution HAADF images reveal variations in (00\(l\)) fringe spacings along \(c^*\) in hibonite crystals from the CAI \(\text{LK}44\) (Figs. 7-8). The \(d\)-spacings of the (002) fringes in the HAADF images were measured between successive brightest fringes arising from Ca atoms. In HIB-1 and HIB-2, isolated 1.6 nm layers are common and randomly distributed within the normal 1.1 nm layers of stoichiometric hibonite (Figs. 7a-c). We also observed a single layer of 2.5 nm spacing in HIB-2 (Figs. 7c-d). In HIB-3, an Al-rich spinel inclusion is decorated by a single 1.6 nm layer along its top (Fig. 8a), as well as stepwise 2.0 nm layers extended from its bottom end (Figs. 8b-d), which may have grown along the \(c\) axis screw dislocation in hibonite. Collectively, single 1.6 nm layers mixed in various proportions inside the regular hibonite structure of 1.1 nm (002) spacing are the most common, but less-common wider layers of 2.0 nm and 2.5 nm (002) spacings also occur as noted above. These layers and the Al-rich spinel
The observed spacing variations in hibonite crystals from the CAI \textit{LK44} are interpreted directly as different stacking ratios of two basic R and S blocks, without changing the basic structural characteristics of these blocks. That is, as shown by Schmid and De Jonghe (1983), such variations are explained as unit cell scale syntactic intergrowths in terms of the structural block concept and are distinguished from common stacking faults that involve shear. We used the Crystal MarkerTM software and the structure determination from Nagashima et al. (2010) to project the crystal structure in terms of the arrangement of R and S blocks on our HADDF images (Fig. 9). As discussed above, prominent lattice fringes of 1.1 nm represent a perfectly ordered, stoichiometric hibonite crystal consisting of a coherent growth of repeating RS units. The common 1.6 nm wide (002) layers are composed of a stacking sequence of a RSS unit that accommodates six, instead of four, oxygen planes (Fig. 9a). These defect layers contain twice as many octahedral M1 and tetragonal M3 sites and 50\% more octahedral M5 sites, compared to stoichiometric hibonite, and have an idealized stoichiometry of \begin{equation} [12^{\text{Ca}}[6^{\text{M1}}][5^{\text{M2}}][4^{\text{M3}}][6^{\text{M4}}][6^{\text{M5}}][9^{\text{O}}]_{28} \end{equation} with a total composition of \textit{CaAl}_{18}O_{28}. The 2.0 nm and 2.5 nm wide (002) layers both lack bright fringes of Ca, but contain distinct lamellae composed of 0.46 nm (002) spacing corresponding to the (111) spacing of a cubic spinel or \textit{γ}-alumina structure (Figs. 8d, 9b). We conclude that the 2.0 nm and 2.5 nm layers are stacked in a sequence of RSSS and RSSSSS, respectively, which represent metastable spinel lamellae that are epitaxially intergrown with stoichiometric hibonite on the unit cell scale. Collectively, the observed wider spacings in hibonite are due to its distinct structural ability to accommodate coherent (001) intergrowths of additional S blocks into the RS sequence of stoichiometric hibonite. The inferred systematic structural variation in hibonite is evidence for non-stoichiometry, and our atomic
resolution X-ray mapping shows a prominent Mg increase, but Ca and Ti deficiencies in the 1.6 nm and 2.5 nm layers (Fig. 10), due to the preferred site occupancy of Mg on tetragonal M3 sites in S blocks (Nagashima et al. 2010; Doyle et al. 2014; Giannini et al. 2014; this study). Interestingly, we did not observe any layers with a sequence of RRS or isolated R blocks, suggesting that S blocks are necessary for the stability of hibonite structure containing intergrowth phases (Schmid and De Jonghe 1983; Göbbels et al. 1995; Iyi et al. 1995).

Our atomic resolution HAADF imaging results can also be interpreted within the framework of polysomatic series (Thompson 1978; Veblen 1991), since hibonite has a layered structure consisting of alternating R and S blocks parallel to the (001) plane (Hofmeister et al. 2004; Nagashima et al. 2010). In this view, hibonite is a polysomatic mineral that can contain different stacking ratios of two structurally and chemically distinct R and S modules, leading to variations in structures and stoichiometries. The observed layers of 1.6 nm, 2.0 nm, and 2.5 nm spacings in hibonite having 1.1 nm (002) spacing (Figs. 7-8) are thus regarded as a polysomatic series of intergrowth structures, in which the number of S modules stacked with one R module is systemically varied up to four (Fig. 9), with increased Mg concentrations (Fig. 10).

Ti and Mg substitution in hibonite

Atomic resolution HAADF imaging and corresponding atomic-scale X-ray mapping of hibonite from the CAI LK44 provide direct information about the spatial distribution of atoms in the hibonite structure. As seen in Figure 10, Ti is concentrated along the same plane as the Ca atoms, suggesting its most probable distribution in trigonal bipyramidal M2 and octahedral M4 sites. Mg is concentrated between the Ca atom planes, suggesting its most stable occupancy on tetragonal M3 sites. Importantly, Mg concentrations are significantly increased in a layer of 1.6
nm (002) spacing, where double tetragonal M3 sites and 50% more octahedral M5 sites are required, compared to those in stoichiometric hibonite, as discussed above. Mg is also concentrated in a wider layer of 2.5 nm (002) spacing, where extra Al-rich spinel occurs epitaxially intergrown with stoichiometric hibonite. Interpretation of the Ti and Mg site distributions from the atomic resolution X-ray mapping is broadly consistent with the site occupancies of Ti and Mg determined from single crystal X-ray diffraction data (Bermane et al. 1996; Nagashima et al. 2010; Giannini et al. 2014; Berry et al. 2017) and neutron powder diffraction data combined with density functional theory modeling (Doyle et al. 2014).

An important question pertains to the Ti and Mg substitution mechanism(s) in hibonite. Figure 11 summarizes the chemical compositions of hibonite grains from the CAI LK44. Hibonite grains exhibit a range of ~2-8 wt% TiO$_2$ and ~1-5 wt% MgO, with ~1-3 wt% SiO$_2$, ≤1 wt% V$_2$O$_3$, and ≤0.6 wt% FeO. These TiO$_2$ and MgO ranges correspond to almost the entire range previously reported from hibonite in carbonaceous chondrites (Brearley and Jones 1998). With total Ti calculated as Ti$^{4+}$, there is a good correlation between (Mg + Fe + Ti + Si) vs. (Al + V) cations (Fig. 11a), consistent with the substitutional relationships between cations in hibonite. Many analyses fall close to a 1:1 correlation line on a plot of (Mg + Fe) vs. (Ti + Si) cations (Fig. 11b), suggesting that Mg$^{2+}$ is charge balanced with Ti$^{4+}$ and Si$^{4+}$. Variable amounts of Si, Ti, and Mg are therefore incorporated into hibonite by the coupled substitutions 2Al$^{3+}$ ↔ Ti$^{4+}$ + Mg$^{2+}$ and 2Al$^{3+}$ ↔ Si$^{4+}$ + Mg$^{2+}$, with the first being the major mechanism for Ti and Mg incorporations into hibonite. Minor Fe$^{2+}$ present in hibonite is interpreted as secondary substitution for Mg$^{2+}$ in the parent body setting (Simon et al. 2001, 2006). However, some fraction of the analyses plots off the 1:1 line to the Ti-Si-rich side, suggesting the presence of Ti$^{3+}$ that can substitute directly with Al$^{3+}$ and therefore is not coupled with Mg$^{2+}$. These compositional trends are consistent with
a general characteristic revealed by electron microprobe analyses of hibonite from carbonaceous chondrites (Brearley and Jones 1998).

We used EELS to evaluate the Ti oxidation states in hibonite and perovskite in FIB-A from the CAI LK44. The Ti L_3 edge in oxides and silicates consists of two distinct peaks that arise from well-known crystal-field effects and whose positions are sensitive to oxidation states, with Ti$^{3+}$ peaks occurring at energies ~1 eV below corresponding peaks for Ti$^{4+}$ (e.g., Christoffersen et al. 1996; Stoyanov et al. 2007). The EELS data for the Ti $L_{2,3}$ edge in hibonite from the CAI LK44 show distinct low energy shoulders on the L_3 doublet, which are contributed by Ti$^{3+}$, whereas perovskite adjacent to hibonite shows only the presence of Ti$^{4+}$ (Fig. 12a). We deconvolved the EELS spectra from the L_3 edge by fitting the peaks with Gaussian profile models and determining the peak area ratios (Fig. 12b). The peak area ratios suggest that ~15-20% of Ti is present as Ti$^{3+}$ in the hibonite, which is within the Ti$^{3+}$/ΣTi range (~5-35%) reported for hibonite from carbonaceous chondrites (Beckett et al. 1988; Simon et al. 1997; Giannini et al. 2011; Zega et al. 2012; Doyle et al. 2016).

The observed variation in Ti$^{3+}$ amount in hibonite was interpreted as a range of oxygen fugacity ($\log f_O^2 \approx -16$ to -5) recorded both in the nebular and parent body settings (Ihinger and Stolper 1986; Beckett et al. 1988; Giannini et al. 2011; Zega et al. 2012). That is, hibonite originally formed in a region of solar nebula under highly reducing conditions (Beckett et al. 1998), as inferred from Ti$^{3+}$/Ti$^{4+}$ ratios in Al-Ti-rich pyroxene in compact Type A and Type B CAIs from Allende (Grossman et al. 2008). Later, it was oxidized in situ during thermal processing on the parent body to varying degrees (Ihinger and Stolper 1986; Simon et al. 1997; Zega et al. 2012). However, the application of hibonite chemistry as an oxygen barometer for the early Solar System processes appears questionable because the amount of Ti$^{3+}$ incorporated into
the hibonite structure has been shown experimentally to be largely independent of oxygen fugacities of a gas in equilibrium with hibonite, and instead is strongly controlled by crystal chemistry, especially Mg availability (Doyle et al. 2014, 2016; Berry et al. 2017). Likewise, some of our electron microprobe and TEM EDX analyses show a good correlation between Ti$^{4+}$ and Mg$^{2+}$ cation numbers in hibonite (Table 1; Fig. 11b), indicating that no or minimal direct substitution Ti$^{3+}$ ↔ Al$^{3+}$ occurred in some hibonite. These observations suggest that Ti$^{3+}$-bearing and Ti$^{3+}$-free hibonites can occur within single CAIs, implying their complex redox history in the nebular and/or asteroidal settings.

IMPLICATIONS AND CONCLUSIONS

Our atomic resolution HAADF imaging and X-ray mapping of hibonite from the Allende CAI LK44 reveal the presence of mixed spacings along the (001) plane and correlated Mg enrichments. This correlation is fully consistent with annealing experiments that showed that the formation of planar defects in hibonite crystals is promoted by the presence of minor Mg. Thus, our TEM analyses of meteoritic and synthetic hibonites clearly demonstrate a strong chemical control on the alteration of stacking sequences of basic S and R blocks in the hibonite structure. The substitution of Mg with Al in tetrahedral M3 sites stabilizes the formation of wider S blocks, hence forming complex, disordered intergrowths of stoichiometric and Mg-enriched, non-stoichiometric hibonites. However, the Ti-Al substitution in trigonal bipyramidal M2 and octahedral M4 sites does not enhance the formation of wider R blocks in hibonite but may require the charge balanced substitution with Mg (Ti$^{4+}$ + Mg$^{2+}$ ↔ 2Al$^{3+}$). The unit cell scale intergrowths of stoichiometric and non-stoichiometric hibonites indicates that structures with different stacking sequences but similar symmetry have similar free energies and hence co-exist.
as kinetically metastable phases on the unit cell scale (Hirotsu and Sato 1978).

The atomic-scale TEM observations of hibonite from the Allende CAI LK44 provide new insights into formation conditions of refractory solids in the early solar nebula. The non-stoichiometric hibonite and Al-rich spinel inclusion observed in this study suggest that these phases formed metastably but were kinetically stable at very high-temperatures. The Al-rich spinel (up to ~50 mol% of the Al$_{8/3}$O$_4$ component) formed contemporaneously with hibonite at temperatures <1800 K (Navrotsky et al. 1986; Sack 2014). However, the occurrence of non-stoichiometric, Al-rich spinel conflicts with equilibrium condensation calculations, where a thermodynamic model for MgAl$_2$O$_4$ - Al$_{8/3}$O$_4$ spinels (Sack 2014) was used, showing essentially no stability field for this phase, predicting instead an assemblage of stoichiometric corundum, grossite, and krotite, even in highly dust-enriched systems (Ebel et al. 2014). Our observations suggest that the metastable assemblage of hibonite and Al-rich spinel formed in place of thermodynamic equilibrium Ca-Al-oxide assemblages. We thus conclude that non-equilibrium crystal growth was strongly controlled by kinetic factors, such as crystal structure and chemistry and cooling rates, during very high-temperature formation of refractory solids in the early solar nebula (Toppani et al. 2006; Han et al. 2015).

ACKNOWLEDGEMENTS

This study was supported in part by NASA grant 17-EW17-2-0088 (PI: LPK). Part of this work was presented at the Mineralogical Society of America/Geological Society of America special session honoring Peter R. Buseck upon his receiving the MSA Roebling Medal. We thank JEOL Ltd. Japan for access to the F200 and GrandARM TEMs to perform these measurements. The SEM, FIB, and EMPA analyses, and some of the TEM work were done in...
the Electron Beam Analysis Labs at NASA Johnson Space Center. We thank Emily L. Keller for assistance with the curve fitting and deconvolution of the EELS spectra. We appreciate Dr. Steve Simon and Dr. Chi Ma for their helpful and constructive comments. LPI contribution No. xxxx. LPI is operated by USRA under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration.
REFERENCES CITED

calcium-aluminum-rich inclusion from the Essebi (CM2) chondrite: Evidence for captured spinel-hibonite spherules and for an ultra-refractory rimming sequence.

FIGURE CAPTIONS

Figure 1. SEM images of CAI LK44 from Allende. (a) Combined elemental map in Mg (red), Ca (green), and Al (blue) of the entire view of the CAI from the thin section. The outlined region in (a) is shown in detail in (b, c). (b, c) Enlarged BSE image and corresponding false color elemental X-ray map in Mg (red), Ti (green), and Al (blue) of a hibonite-spinel inclusion in melilite. Perovskite also occurs attached to hibonite. Note the oscillatory Ti and Mg zoning in hibonite grains. In (b), the FIB section locations are indicated by dashed lines. Abbreviations hereafter: hib = hibonite; pv = perovskite; sp = spinel; mel = melilite; WL rim = Wark-Lovering rim.

Figure 2. SEM BSE images of the reaction zones from experiments (2-4) showing a similar mineral sequence from hibonite, grossite, to krotite + quenched melt glass. Elongated spinel, indicated by arrows, occurs intergrown with hibonite only from experiment (2) in (a), whereas euhedral spinel are present in grossite and krotite + glass from all experiments in (b, c). Abbreviations hereafter: cor = corundum; grs = grossite; krt = krotite.

Figure 3. TEM images of two FIB sections from hibonite in the CAI LK44. (a, d) BF STEM images and (b, e) corresponding elemental X-ray maps in Mg (red), Ti (green), and Al (blue) of the entire FIB-A and -B sections. The oscillatory Ti and Mg zoning in hibonite grains is apparent. The outlined area in (a, d) is shown in detail in (c, f). (c, f) Enlarged BF STEM images of hibonite crystals HIB-1 and HIB-2, which contain planar defects normal to the c axis. Inset diffraction patterns are indexed as the [100] zone axis of hibonite.
Figure 4. TEM images of an Al-rich spinel inclusion in hibonite from the CAI LK44. (a) BF STEM image of the spinel inclusion decorated by step-wise defects, indicated by arrows. Inset diffraction patterns are indexed as the [100] zone axis of the host hibonite crystal HIB-3. (b) HRTEM image of the spinel inclusion that is in a crystallographic continuity with the host hibonite HIB-3. (c, d) FFT patterns of the spinel inclusion and the host hibonite HIB-3 obtained from HRTEM images shown in (c). A crystallographic orientation relationship exists between the host hibonite and the spinel inclusion, such that \([100]_{\text{hibonite}}//[011]_{\text{spinel}}\) and \((001)_{\text{hibonite}}//(111)_{\text{spinel}}\).

Figure 5. BF STEM images of synthetic hibonite crystals from experiments (2-4). Mg-bearing hibonite (a, b) contains a higher density of defects than Mg-Ti-bearing hibonite (c), irrespective of the heating duration.

Figure 6. Correlation between defects and chemical compositions of synthetic hibonite. (a) BF STEM image and (b) corresponding Mg X-ray map of defect-bearing area in the Mg-bearing hibonite crystal from experiment (2). The vertical dark bands in (a), indicated by arrows and bracket, represent defects in the hibonite crystal. (c) Profile of Mg concentrations extracted from the spectrum map shown in (b).

Figure 7. HAADF images of hibonite crystals from the CAI LK44. (a, b) A hibonite crystal HIB-1 from FIB-A. Isolated layers of 1.6 nm (002) spacing are randomly intergrown with prominent layers of 1.1 nm (002) spacing. (c, d) A hibonite crystal HIB-2 from FIB-B. A rare layer of 2.5 nm (002) spacing, as well as an isolated layer of 1.6 nm (002) spacing, are observed within...
prominent layers of 1.1 nm (002) spacing. The brightest white and grey spots arise from Ca and Al atoms, respectively, whereas Ti and Mg atoms are not readily visible in these images. All images were taken along the [1\bar{1}0] zone axis of hibonite, as shown in inset FFT patterns in (b).

Figure 8. HAADF images of an Al-rich spinel inclusion in hibonite from the CAI LK44. The spinel inclusion is decorated by a single layer of 1.6 nm (002) spacing along its top (a), as well as stepwise layers of 2.0 nm (002) spacing extended from its bottom end (b-d). The brightest white and grey spots arise from Ca and Al atoms, respectively, whereas Ti and Mg atoms are not readily visible in these images. All images were taken along the [1\bar{1}0] zone axis of hibonite, as shown in inset FFT patterns in (c).

Figure 9. Projected structures of hibonite in terms of structural unit S and R blocks. The CrystalMaker™ software was used to draw the hibonite structure model in the [1\bar{1}0] zone axis, adopted from single-crystal X-ray diffraction data (Nagashima et al. 2010). Bottom insets show the distribution of five Al sites (M1-M5) and preferential Ti and Mg substitution. While Al is distributed over five sites, Mg occupies only M3 sites in S blocks and Ti partitions between M2 and M4 sites in R blocks.

Figure 10. Atomic-scale elemental X-ray maps and profiles of Ca, Al, Mg, and Ti obtained from hibonite crystals from the CAI LK44. The reference HAADF images and corresponding X-ray maps were taken along the [1\bar{1}0] zone axis of hibonite.

Figure 11. Cations per formula unit in hibonite from the CAI LK44. The chemical compositions
of hibonite grains from FIB-B were extracted from spectrum maps shown in Figure 3b, obtained using TEM EDX. All Ti was calculated as Ti$^{4+}$.

Figure 12. (a) EELS data for the Ti $L_{2,3}$ edge in hibonite and perovskite in FIB-A from the CAI LK44. The hibonite spectrum shows well-resolved Ti$^{3+}$ shoulders on the L_3 edge (labeled “A” and “B”) that occur at 458.1 eV and 460.4 eV, respectively. (b) Gaussian peak fits for the Ti$^{3+}$ and Ti$^{4+}$ components in the hibonite Ti L_3 edge. Hibonite contains ~15-20% of Ti as Ti$^{3+}$, in contrast to perovskite containing Ti$^{4+}$ only.
Table 1. Representative electron microprobe data of hibonite and spinel in the Allende CAI LK44.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Analysis #</th>
<th>Hibonite 1</th>
<th>Hibonite 2</th>
<th>Spinel 3</th>
<th>Spinel 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wt%</td>
<td>SD</td>
<td>wt%</td>
<td>SD</td>
<td>wt%</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.16</td>
<td>0.02</td>
<td>0.09</td>
<td>0.02</td>
<td>bd</td>
</tr>
<tr>
<td>TiO₂</td>
<td>7.54</td>
<td>0.14</td>
<td>6.69</td>
<td>0.14</td>
<td>0.12</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>78.80</td>
<td>0.46</td>
<td>79.76</td>
<td>0.47</td>
<td>69.44</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.06</td>
<td>0.04</td>
<td>0.05</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>V₂O₃</td>
<td>0.47</td>
<td>0.09</td>
<td>0.60</td>
<td>0.09</td>
<td>0.84</td>
</tr>
<tr>
<td>FeO</td>
<td>0.12</td>
<td>0.08</td>
<td>bd</td>
<td>-</td>
<td>0.51</td>
</tr>
<tr>
<td>MgO</td>
<td>3.72</td>
<td>0.08</td>
<td>3.38</td>
<td>0.07</td>
<td>27.57</td>
</tr>
<tr>
<td>CaO</td>
<td>8.18</td>
<td>0.17</td>
<td>8.37</td>
<td>0.17</td>
<td>0.12</td>
</tr>
<tr>
<td>Total</td>
<td>99.05</td>
<td>98.94</td>
<td>98.68</td>
<td>98.91</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cation</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>0.018</td>
<td>0.010</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>0.649</td>
<td>0.575</td>
<td>0.002</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>10.632</td>
<td>10.755</td>
<td>1.975</td>
<td>1.972</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.005</td>
<td>0.004</td>
<td>0.001</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>0.043</td>
<td>0.055</td>
<td>0.016</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.012</td>
<td>-</td>
<td>0.010</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0.634</td>
<td>0.576</td>
<td>0.992</td>
<td>0.981</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>1.003</td>
<td>1.026</td>
<td>0.003</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>12.996</td>
<td>13.001</td>
<td>2.999</td>
<td>3.001</td>
<td></td>
</tr>
</tbody>
</table>

Note: Cation formula were calculated based on 19 and 4 oxygen anions for hibonite and spinel, respectively. SD = Standard deviation. bd = below detection.
Table 2. A summary of experimental conditions and products for synthetic hibonite samples.

<table>
<thead>
<tr>
<th>#</th>
<th>Starting melt composition</th>
<th>Heating duration</th>
<th>Phases observed</th>
<th>Planar defects in hibonite</th>
<th>Hibonite composition (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MgO</td>
</tr>
<tr>
<td>1</td>
<td>2CaO-Al₂O₃ eutectic</td>
<td>4 hours</td>
<td>hib, gro, kr+gls</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>+ 5 wt% MgO</td>
<td>4 hours</td>
<td>hib+sp, gro, kr+sp+gls</td>
<td>+++</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>+ 5 wt% MgO</td>
<td>5 days</td>
<td>hib, gro+sp, kr+gls</td>
<td>+++</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>+ 5 wt% MgO + CaTiO₃</td>
<td>5 days</td>
<td>hib, gro+sp, kr+sp+gls</td>
<td>+</td>
<td><1</td>
</tr>
<tr>
<td>5</td>
<td>+ CaTiO₃</td>
<td>5 days</td>
<td>hib, gro, pv+gls</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Note: The chemical compositions were determined by TEM EDX. Abbreviations: hib = hibonite, sp = spinel, gro = grossite, kr = krotite, gls = quenched glass.
Figure 2

(a) Exp 2
(b) Exp 3
(c) Exp 4

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Figure 3

FIB-A

FIB-B

HIB-1

HIB-2

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Figure 5

(a) Exp 2
(b) Exp 3
(c) Exp 4

1 μm
1 μm
1 μm
Figure 7

HIB-1

(a) 5 nm

(b) 2 nm

HIB-2

(c) 5 nm

(d) 2 nm

Al

Ca

1.6 1.6 1.6

1.1 1.1 1.1

2.5 1.1

0.46

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Figure 9

(a) HIB-1

1 nm

(c*)

1.1 1.6

R S R SS R

M4 M3 Ca

M2 M5 M1 M5

(b) HIB-2

1 nm

(c*)

1.1 2.5

R S R SSS SSS R

Ti,Al Mg,Al Ca

Ti,Al Al Al Al
Figure 10

(a) HIB-1

(b) HIB-2

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Figure 11
Figure 12

(a) Intensity (arb. units) vs. Energy Loss (eV) for perovskite and hibonite.

(b) Energy Loss (eV) plot showing residual, fit, raw spectrum, and model contributions for hibonite.