Oxygen-fugacity evolution of magmatic Ni-Cu sulfide deposits in East Kunlun: insights from Cr-spinel composition

Lihui Jia a *, Yi Chen a,b *, Bin Su a, Qian Mao a, Di Zhang a

a State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
b University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author: Lihui Jia, Yi Chen
E-mail: jialihui@mail.iggcas.ac.cn, chenyi@mail.iggcas.ac.cn

Abstract

In this study, we use Cr-spinel as an efficient indicator to evaluate the oxygen fugacity evolution of the Xiarihamu Ni-Cu deposit and the Shitoukengde non-mineralized intrusion. Oxygen fugacity is calculated using olivine-spinel oxybarometer, with spinel Fe$^{3+}/\Sigma$Fe ratios determined by a secondary standard calibration method using electron microprobe. Cr-spinel Fe$^{3+}/\Sigma$Fe ratios of the Xiarihamu Ni-Cu deposit vary from 0.32±0.09 to 0.12±0.01, corresponding to magma f_O_2 values ranging from ΔQFM+2.2±1.0 to ΔQFM-0.6±0.2. By contrast, those of the Shitoukengde mafic-ultramafic intrusion increase from 0.07±0.02 to 0.23±0.04, corresponding to magma f_O_2 varying from ΔQFM-1.3±0.3 to ΔQFM+1.0±0.5. A positive correlation between f_O_2 and Cr-spinel Fe$^{3+}/\Sigma$Fe ratios suggests that the Cr-spinel Fe$^{3+}/\Sigma$Fe ratios can be used as an indicator for magma f_O_2. The high f_O_2
(QFM+2.2) of the harzburgite in the Xiarihamu Ni-Cu deposit suggests that the most primitive magma was characterized by relatively oxidized conditions, and then became reduced during magmatic evolution, causing S saturation and sulfide segregation to form the Xiarihamu Ni-Cu deposit. The evolution trend of the magma f_{O_2} can be reasonably explained by metasomatism in mantle source by subduction-related fluid and addition of external reduced sulfur from country gneisses (1.08–1.14 wt.% S) during crustal processes. Conversely, the primitive magma of the Shitoukengde intrusion was reduced and gradually became oxidized (from QFM-1.3 to QFM+1.0) during crystallization. Fractional crystallization of large amounts of Cr-spinel can reasonably explain the increasing magma f_{O_2} during magmatic evolution, which would hamper sulfide precipitation in the Shitoukengde intrusion.

We propose that the temporal evolution of oxygen fugacity of the mantle-derived magma can be used as one of the indicators for evaluating metallogenic potential of Ni-Cu sulfide deposits, and reduction processes from mantle source to shallow crust play an important role in the genesis of magmatic Ni-Cu sulfide deposits.

Keywords: Oxygen fugacity; Cr-spinel; Ultramafic rocks; Ni-Cu sulfide deposit; East Kunlun

1 Introduction

Sulfur (S), occurring as either sulfide (S^{2-}), sulfate (S^{6+}) in silicate melts, or sulfite (S^{4+}) in volcanic gases, is a complex but key element in magmatic systems (e.g.,
Carroll and Rutherford, 1988; Symonds et al., 1994; Jugo et al., 2010). The behavior of chalcophile and siderophile elements (e.g., Ni, Cu, Au, Pt, and Pd) in magma is dictated by S as sulfide, and sulfide saturation exerts a primary control on the genesis of metalliferous deposits, especially for Ni-Cu-platinum group element (PGE) deposits (Imai, et al., 1993; Sillitoe, 1997; Clemente et al., 2004; Mungall et al., 2005; Li and Ripley, 2009; Taranovic et al., 2016). Jugo (2009) declared that sulfur speciation is strongly controlled by the oxidation state of magma, often expressed in terms of oxygen fugacity (f_{O_2}). Transition from sulfide to sulfate in silicate melts occurs over a narrow f_{O_2} interval, and sulfide and sulfate in magma correspond to low (\leqQFM) and high oxygen fugacity (>QFM+2) conditions, respectively, where QFM is the quartz-fayalite-magnetite buffer (e.g., Carroll and Rutherford, 1987; Mavrogenes and O'Neill, 1999; Matjuschkin et al., 2016; Jugo, 2009; Sun, 2020). The sulfur solubility under the latter condition is an order of magnitude higher than that under the former one (Jugo, 2009; Jugo et al., 2010). Therefore, sulfur saturation leading to sulfide segregation is more likely to occur in reduced magma than in oxidized magma (Liu et al., 2007; Jugo, 2009; Naldrett, 2011; Brenan and Caciagli, 2000; Tomkins et al., 2012). However, several Ni-Cu deposits appear to have formed in a relatively oxidized environment (>QFM), such as the Heishan and Mirabela deposits (Xie et al., 2014; Barnes et al., 2013). In addition, from partial melting in the mantle to emplacement in the shallow crust, the redox state of the parental magma would have undergone significant changes. In this regard, the f_{O_2} at a certain stage of magmatic evolution cannot be used as an index of Ni-Cu mineralization (Mungall et al., 2006;
Thakurta et al., 2008; Tomkins et al., 2012). Therefore, identifying the temporal changes in magma fO_2 is crucial for understanding the Ni-Cu mineralization mechanism.

Spinel often crystallizes throughout magmatic evolution and is relatively refractory and resistant to alteration compared to other minerals (e.g., olivine and pyroxene) (Barnes and Roeder 2001; Kamenetsky et al. 2001). Spinel oxybarometry, based on phase equilibrium between olivine, orthopyroxene, and spinel, provides one window into the oxygen fugacity of upper mantle and related mantle-derived magma (Bryndzia and Wood, 1990; Ballhaus et al., 1991). Obtaining accurate spinel Fe$^{3+}/$ΣFe ratios is especially important as minor changes in the activity of magnetite in spinel can have large effects on calculating fO_2 using spinel oxybarometry (e.g., Bryndzia and Wood, 1990; Birner et al., 2016). Since the development of Mössbauer spectroscopy to estimate the Fe$^{3+}$ proportion in silicate melts (e.g., Mysen et al., 1985; Wood and Virgo, 1989; Canil and O’Neill, 1996; Dyar et al., 2006; McCammon et al., 2009; Gaborieau et al., 2020), several studies have utilized calibration of secondary standard samples to identify different Fe species using electron microprobe (Höfer et al., 2000; Enders et al., 2000). Therefore, spinel oxybarometry can be used to systematically monitor the fO_2 variation in different magmatic stages of Ni-Cu sulfide deposits.

The Xiarihamu deposit, the first Ni-Cu deposit discovered in East Kunlun, is the second-largest Ni deposit in China and contains ~157 million metric tons (Mt) of sulfide ore (Li et al., 2015; Feng et al., 2016; Liu et al., 2018). Previous zircon U–Pb...
studies yielded weighted-mean $^{206}\text{Pb}/^{238}\text{U}$ ages of 424 to 408 Ma (Supplemental Table S1, Jiang et al., 2015; Li et al., 2015; Peng et al., 2016; Song et al., 2016).

Approximately 200 km east to the Xiarihamu area, the Shitoukengde mafic-ultramafic intrusion (426–420 Ma, Li et al., 2018; Zhang et al., 2018; Jia et al., 2021) was emplaced contemporaneously in a similar extensional setting (Wang et al., 2014; Jia et al., 2021), but no economic ore bodies have been found. The similar spatial and tectonic association between the Xiarihamu Ni-Cu deposit and the Shitoukengde intrusion provides an ideal opportunity to study the relationship between magma f_O_2 evolution and Ni-Cu mineralization in orogens.

In this study, we present mineralogy, petrology, and f_O_2 calculations of the Xiarihamu Ni-Cu deposit and the Shitoukengde intrusion in the East Kunlun orogenic belt. Olivine-spinel pairs in different magmatic stages were chosen to estimate the magma f_O_2, track the changes in oxygen fugacity during magmatic evolution, and reveal its influence on the metallogenic mechanism of the Ni-Cu sulfide deposit. Our results contribute to further understanding the mechanism of Ni-Cu mineralization, and provide a new window into the study of the magmatic sulfide deposits in orogenic belts.

2 Geological background

2.1 East Kunlun orogenic belt

The E–W trending Kunlun orogenic belt extends >2000 km from central China to eastern Pakistan, and is located in the northeastern part of the Qinghai-Tibet Plateau (Fig. 1a). It is subdivided into the East Kunlun orogenic belt and West Kunlun...
orogenic belt by the NE–SW trending Altyn Tagh fault (Jiang et al., 1992). The East Kunlun orogenic belt is separated from the Qinling orogenic belt by the Wenquan fault. The Qaidam block and Songpan-Ganzi terrane are located to the north and south, respectively (Jiang et al., 1992; Xu et al., 2007; Fig. 1b). The E-W-trending faults divide the East Kunlun orogenic belt into North Kunlun Terrane, South Kunlun Terrane, and Central East Kunlun fault zone.

The Xiarihamu magmatic Ni-Cu sulfide deposit is located in the Central East Kunlun fault zone (Fig. 1c), which is characterized by widespread Proterozoic metamorphic basement, comprising the Mesoproterozoic Jinshuikou Group, and a number of Paleozoic to Mesozoic granite plutons. The Jinshuikou Group is dominated by granitic gneiss, schist and marble, and is intruded by Neoproterozoic granites (Chen et al., 2006a; Lu et al., 2006; Meng et al., 2013a). The Proterozoic basement is overlain by Ordovician amphibolite- to granulite-facies metamorphic rocks (Wang et al., 2004; Chen et al., 2006b, 2007; Zhang et al., 2003; Li et al., 2006; Lu et al., 2009).

The Ordovician strata are unconformably overlain by terrestrial volcanics of the Early Devonian Maoniushan Formation, which is overlain by Carboniferous and Permian sedimentary and volcanic strata (Lu et al., 2009). Voluminous Paleozoic granitoids were emplaced into Proterozoic metamorphic rocks in the Central East Kunlun fault zone during Silurian to Early Devonian (Mo et al., 2007; Xu et al., 2007; Cui et al., 2011; Liu et al., 2012; Song et al., 2016).

Early Paleozoic ophiolites are exposed along the Central East Kunlun zone with ages of 518–420 Ma, implying the existence of a paleo-ocean (Fig. 1b; Yang et al.,
Previous studies suggested that the tectonic transition from oceanic subduction to continent–continent collision occurred at 438 Ma (Liu et al., 2012, 2013a; Zhang et al., 2018) and the Wenquan eclogites (~428 Ma) were formed by this collisional event (Meng et al., 2013b). After 428 Ma, extensive Silurian basalts (428–419 Ma, Zhu et al., 2006) and Early Devonian-Middle Devonian mafic dikes (412–383 Ma, Sun et al., 2004; Zhang et al., 2013; Xiong et al., 2014; Yang et al., 2014) formed in the East Kunlun area, representing post-collisional products (Liu et al., 2013b; Peng et al., 2016; Song et al., 2016; Zhang et al., 2018).

2.2 Xiarihamu Ni-Cu sulfide ore deposit

The Xiarihamu deposit contains four mafic-ultramafic intrusions, including Xiarihamu I, II, III, and IV. The magmatic sulfide ore body is hosted within the Xiarihamu I intrusion, and the metallogenic potential of the other three intrusions remains under investigation (Peng et al., 2016; Li et al., 2015; Song et al., 2016; Liu et al., 2018). All these intrusions were emplaced into the Jinshuikou Group, which mainly consists of Neoproterozoic granitic gneiss and schist, yielding zircon U-Pb ages of 924 to 915 Ma (Wang, 2014; Wang et al., 2016).

The Xiarihamu I intrusion, composed of gabbroic and ultramafic rocks, is irregularly shaped, with a length of ~1400 m, a width of ~900 m, and a depth of 300 to 600 m (Fig. 2a). The western part of the intrusion is not exposed, and the southern part is covered with Quaternary clastic sediments. Observations of both surface outcrops and drill cores have confirmed no chilled margins between the gabbroic and
ultramafic portions. The orebodies are mainly found in harzburgite and olivine orthopyroxenite. Weak sulfide mineralization occurs in lherzolite and websterite. For the websterite, Li et al. (2015) and Song et al. (2016) obtained ages of 411.6 ± 2.4 Ma and 406.1 ± 2.7 Ma, respectively.

The other three small mafic-ultramafic intrusions, with lengths less than 1,000 m and widths of 80 to 500 m, are located to the south of the Xiarihamu I intrusion. All of them are E-W trending and have rock assemblages similar to those of the Xiarihamu I intrusion, consisting mainly of pyroxenite with very weak sulfide mineralization. Zircon U-Pb dating indicated that the Xiarihamu II intrusion formed at 424 ± 1 Ma (Peng et al., 2016).

2.3 Shitoukengde mafic-ultramafic intrusion

The Shitoukengde I and II mafic-ultramafic intrusions are oval shaped at approximately 2.5×1.2 km² and 1.2×1.0 km² in size, respectively (Fig. 2b). These intrusions are emplaced into the Jinshuikou Group, which consists of the Neoproterozoic granitic gneiss and schist. This study focuses on the number I mafic-ultramafic intrusion, mainly consisting of the ultramafic portion and mafic portion. From field geological observations, the ultramafic rocks are irregularly distributed as autoliths in the gabbroic rocks, suggesting that they formed earlier than the gabbroic rocks. Jia et al. (2021) obtained zircon U-Pb ages of 420.6 ± 2.2 Ma for the gabbronorite and 420.4 ± 5.9 Ma for the olivine websterite, almost coeval with the Xiarihamu Ni–Cu sulfide deposit.
3 Petrology

3.1 Xiarihamu Ni-Cu deposit

The Xiarihamu intrusion is mainly composed of harzburgite, lherzolite, olivine orthopyroxenite, websterite, and mafic rocks, predominantly norites (Figs. 3a-g). Observations from outcrops and boreholes suggest that the mafic portion is in sharp contact with the ultramafic portion, and the cumulate peridotites were emplaced within the orthopyroxenite with sharp contacts (Song et al., 2020; Chen et al., 2021).

The harzburgite typically contains subhedral to euhedral olivine (40–50 vol.%), orthopyroxene (35–40 vol.%), clinopyroxene (<5 vol.%), with minor Cr-spinel and amphibole. Cr-spinel occurs in the matrix or as fine-grained inclusions in orthopyroxene and olivine. No crosscutting relationships exist between the harzburgite and lherzolite, and they have similar petrographic features, except that the latter contains more clinopyroxene and less orthopyroxene than the former. The harzburgite grades into olivine orthopyroxenite, with the orthopyroxene increasing to more than 60 vol.%. The orthopyroxenite is composed of 60–80 vol.% cumulus euhedral orthopyroxene, 5–10 vol.% olivine, <10 vol.% clinopyroxene, and plagioclase, with minor amphibole and Cr-spinel (Fig. 3e). Orthopyroxene occurs as granular and poikilitic crystals, or as large oikocrysts enclosing fine-grained olivine.

The websterite also shows cumulate texture and contains 50–70 vol.% orthopyroxene, 20–30 vol.% clinopyroxene, and <10 vol.% olivine, Cr-spinel, plagioclase, amphibole, and phlogopite (Fig. 3f). Clinopyroxene occurs as oikocrysts containing olivine or as granular crystals, whereas plagioclase, amphibole, and phlogopite are interstitial...
phases. Sulfides occur locally as fine-grained, anhedral, interstitial phase (Figs. 3a-d). Nickel minerals are mainly pentlandite, while copper minerals consist dominantly of chalcopyrite, and iron minerals are mainly pyrrhotite.

The mafic portion is dominated by medium-grained norite with limited lithological changes. The norite contains mm-sized euhedral plagioclase (~35 vol.%), orthopyroxene (30–40 vol.%), and clinopyroxene (10–15 vol.%) (Fig. 3g), with less than 5 vol.% olivine, Cr-spinel, amphibole, and phlogopite.

3.2 Shitoukengde mafic-ultramafic rocks

The lithologies in the Shitoukengde intrusion are harzburgite, lherzolite, wehlrite, olivine websterite, clinopyroxenite, and gabbroic rocks (gabbro and gabbronorite). The ultramafic rocks are distributed in the gabbroic rocks. The boundary between the peridotites and pyroxenites is not obvious, indicating that these units formed during the same stage of magmatic evolution.

The harzburgite contains 50–55 vol.% olivine, 40–50 vol.% orthopyroxene, 3–5 vol.% clinopyroxene, and 1–2 vol.% Cr-spinel (Fig. 3h). The lherzolite is composed of 45–60 vol.% olivine, 15–20 vol.% orthopyroxene, 10–15 vol.% clinopyroxene, 5–10 vol.% plagioclase and minor amounts of Cr-spinel and phlogopite (Fig. 3i). The olivine grains are commonly enclosed in poikilitic orthopyroxene, and clinopyroxene, plagioclase, and amphibole are interstitial between olivine and orthopyroxene. The olivine websterite contains 15–20 vol.% olivine, 25–35 vol.% clinopyroxene, and 15–30 vol.% orthopyroxene, with minor (<5 vol.%) plagioclase, Cr-spinel, and phlogopite (Fig. 3k). Clinopyroxenite contains ~90 vol.% clinopyroxene, 5 vol.%
olivine, < 5 vol.% orthopyroxene, and plagioclase (Fig. 3l). Notably, the Shitoukengde ultramafic rocks have higher Cr-spinel proportions (~2.32 vol.%) than that of the Xiarihamu Ni–Cu deposit (~0.05 vol%, Supplemental Fig. S1). Sulfides occur as fine-grained inclusions in olivine and orthopyroxene (Figs. 3h-k).

3.3 Country gneisses

The Xiarihamu Ni–Cu deposit is surrounded by amphibole plagiogneiss, which is composed of plagioclase (35–45 vol.%), quartz (20–25 vol.%), amphibole (10–15 vol.%), and minor biotite (Supplemental Fig. S2). Fine-grained (10–30 μm) pyrite is commonly observed in the country gneiss. The country gneisses of the Shitoukengde intrusion include amphibole gneiss and biotite plagiogneiss in the Baishahe Formation of the Jinshuikou Group. The amphibole gneiss displays a gneissic structure and mainly consists of plagioclase, quartz, amphibole, and biotite. The biotite plagiogneiss consists of quartz (35–40 vol.%), plagioclase (25–30 vol.%), biotite (10–15 vol.%), and amphibole (<10 vol.%). No sulfide crystals were found in either type of the country gneisses.
3.4 Cr-spinel characteristics

Cr-spinel crystals are widely developed as accessory minerals in the Xiarihamu and Shitoukengde mafic-ultramafic rocks, and their main characteristics are as follows: 1) the proportion of Cr-spinel in the Shitoukengde intrusion is much higher than that in the Xiarihamu ore-bearing mafic-ultramafic rocks (~2.32 vol.% and ~0.05 vol.%, respectively, Supplemental Fig. S1); 2) Cr-spinel appears in the peridotites, pyroxenites, and gabbroic rocks, suggesting that Cr-spinel crystallized at different stages during magma evolution (Fig. 3); 3) Cr-spinel crystals commonly occur in the matrix or as fine-grained inclusions in olivine, pyroxenes and plagioclase. A small amount of Cr-spinel occurs as a cumulus phase; 4) although the olivine hosting Cr-spinel inclusions has been variably serpentinized along fractures, most Cr-spinel crystals are likely to be chemically homogeneous (Fig. 3f); and 5) some Cr-spinel grains enclosed in tschermakite and serpentine have clear compositional zoning (Figs. 3n-o), showing Mg-Al-rich core and Cr-Fe$^{2+}$-rich rim.

4 Methods

We analyzed the major elemental compositions of olivine and Cr-spinel at the Institute of Geology and Geophysics, Chinese Academy of Sciences using a JEOL JXA8100 electron microprobe. SiO$_2$, TiO$_2$, Al$_2$O$_3$, Cr$_2$O$_3$, V$_2$O$_3$, FeO, MnO, CaO, MgO, NiO, Na$_2$O, and K$_2$O were analyzed using a voltage of 15 kV, a beam current of 20 nA, a spot size of 1 μm and a 10–30 s peak counting time. The detection limits were 182 ppm for Na, 168 ppm for Si, 209 ppm for Cr, 132 ppm for K, 144 ppm for Mg, 215 ppm for Mn, 173 ppm for Ca, 152 ppm for Al, 204 ppm for Fe, 240 ppm for...
Ti, and 257 ppm for Ni, respectively. The natural minerals and synthetic oxides used for calibration are as follows: diopside (Ca, Si, and Mg), albite (Na and Al), rutile (Ti), bustamite (Mn), K-feldspar (K), NiO (Ni), Fe$_2$O$_3$ (Fe), Cr$_2$O$_3$ (Cr), and V$_2$O$_5$ (V). A program based on the ZAF procedure was used for data correction (CITIZAF, Armstrong, 1995). The estimated precisions for major elements and trace elements are ±2% and ±10%, respectively.

Spinel Fe$^{3+}$/ΣFe ratios are commonly determined by the charge imbalance method with electron probe microanalysis (EPMA) data, which would lead to large uncertainties in the Fe$^{3+}$/ΣFe ratios. Wood and Virgo (1989) presented a correction procedure for increasing the accuracy of EPMA measurements involving the analysis of a spinel standard set previously characterized for Fe$^{3+}$/ΣFe ratios by Mössbauer spectroscopy. They reported a linear correlation between the difference in the Fe$^{3+}$/ΣFe ratio measured by Mössbauer and that calculated by EPMA analysis. Davis et al. (2017) systematically assessed this correction method, and suggested that it can improve the precision of the spinel Fe$^{3+}$/ΣFe ratios determined by EPMA. While creating the secondary standard calibration method, we tested the reproducibility of this method (Supplemental Table S2 and Fig. S3). A total of 8 Cr-spinel standard samples from a wide range of geographic and tectonic environments (MBR8307, HR04-08, SC1-27, BAR8601-9, MHP79-4, IM8703, VI314-58, and MO4500-24) with known Fe$^{3+}$/ΣFe ratios were tested (Wood and Virgo, 1989), and each sample was tested at 10 points by EPMA (Supplemental Table S3). Meanwhile, the spinel Fe$^{3+}$/ΣFe ratios were calculated based on the perfect stoichiometry. The average ratios
of spinel standard samples were compared with those obtained by Mössbauer spectrometry, and a linear correction relationship was established. After correction, the spinel Fe$^{3+}/\Sigma$Fe ratios by EPMA were nearly identical to those by Mössbauer spectroscopy (Fig. 4). The precision of the Fe$^{3+}/\Sigma$Fe ratios averages within 0.04 (2σ). Then, this equation was used to accurately correct the Fe$^{3+}/\Sigma$Fe of the unknown Cr-spinel samples.

Whole-rock S concentrations were determined by high frequency combustion-infrared absorption using an HIR-944B carbon-sulfur analyzer at the National Research Center of Geoanalysis in Beijing, China. The analytical uncertainty was within ±10% of the accepted values, based on the results from the national standard (GBW07306) analyzed together with our samples. The detection range varies from 0.0013 to 2.0 wt.%.

5 Results

Olivine from different rock units in the Xiarihamu deposit forms a fractional crystallization trend, showing that forsterite (Fo) values decrease from 89.8±0.4–86.6±0.0 in harzburgite to 87.6±0.3–87.2±0.1 in olivine orthopyroxenite, 87.4±0.5–86.7±0.1 in lherzolite, 85.2±0.5–83.6±0.1 in websterite and 83.9±0.1–83.3±0.0 in norite, respectively (Supplemental Table S4). Olivine contains 43.5–48.8 wt.% MgO, 9.72–15.9 wt.% FeO, 0.13–0.36 wt.% NiO, and 0.13–0.22 wt.% MnO. The average olivine Fo values of the Shitoukengde intrusion decrease systematically from 88.9±0.1 in harzburgite to 85.2±0.3 in lherzolite, 84.5±0.4 in olivine websterite, 81.8±0.3 in clinopyroxenite and 77.6±0.3 in gabbronorite. The olivines have MgO
contents of 38.9±0.5 to 48.5±0.4 wt.%, FeO contents of 10.5±0.0 to 22.0±4.3 wt.%, NiO contents of 0.14±0.03 to 0.27±0.04 wt.%, and MnO contents of 0.15±0.00 to 0.30±0.07 wt.

Cr-spinel grains are rare in the Xiarihamu mafic-ultramafic rocks. The Cr-spinels from both the harzburgite and olivine orthopyroxenite have similar Cr# [molar, 100×Cr/(Cr+Al)] (42.8±1.5–52.5±5.4 and 41.3±3.1–45.6±5.6, respectively), which are higher than those in the lherzolite (38.5±2.3–39.6±12.5), websterite (11.1±0.6–30.7±7.4) and norite (17.5±0.1–22.1±10.2), decreasing with the decrease of Fo value in coexisting olivine. The decrease of spinel Cr# values in these rocks is coupled with decreasing FeO (16.6–33.3 wt.%), Cr$_2$O$_3$ (7.18–42.2 wt.%), and increasing Al$_2$O$_3$ (22.1–57.1 wt.%) and MgO (7.53–16.0 wt.%). The Fe$^{3+}$/ΣFe ratios in Cr-spinel vary from 0.12±0.01 to 0.32±0.09, showing a positive correlation with spinel Cr#. The studied Cr-spinel grains appear homogenous under backscattered electron images, but the cores exhibit overall higher Fe$^{3+}$/ΣFe ratios than those of rims in some Cr-spinel grains (Figs. 5a-b). In addition, the Fe$^{3+}$/ΣFe ratios also decrease from the core to rim in the individual Cr-spinel grains (Figs. 5c-d).

Cr-spinel grains are common in the Shitoukengde intrusion and contain 34.1±0.4–42.0±5.2 wt.% Al$_2$O$_3$, 17.5±0.6–33.4±12.2 wt.% Cr$_2$O$_3$, and 8.13±0.32–14.9±3.6 wt.% MgO, with Cr# varying between 22.7±1.2 and 39.6±15.2 (Supplemental Table S5). The FeO concentrations vary between 16.2±0.5 wt.% and 30.4±1.9 wt.%, and display a negative correlation with the coexisting olivine Fo value, which is different from the positive correction between Cr-spinel FeO and olivine Fo in the Xiarihamu intrusion.
The Fe$^{3+}$/ΣFe ratios in Cr-spinel vary from 0.07±0.02 to 0.23±0.04, increasing as the olivine Fo values decrease. No systematic variation is observed with Fe$^{3+}$/ΣFe ratios of core-to-rim in the individual Cr-spinel grain.

The country rocks of the Xiarihamu Ni-Cu deposit are Neoproterozoic granitic gneisses and have high whole-rock S contents (1.08–1.14 wt.%). In contrast, the whole-rock S contents of the country rocks of the Shitoukengde intrusion are relatively low, varying from 0.005 to 0.018 wt.% (Supplemental Table S6).

6 Discussion

6.1 Calculation of the oxygen fugacity

Before using olivine-spinel oxybarometry to calculate the magma f_{O_2}, it is necessary to estimate the temperature and pressure of the corresponding magma. We calculated the temperature for each sample using the olivine-spinel thermometer of Li et al. (1995). The calculated temperatures of the Xiarihamu and Shitoukengde mafic-ultramafic intrusions vary from 1016 to 869°C and 1038 to 702°C, respectively, which represent the equilibrium temperatures between olivine and Cr-spinel. A positive correlation is observed between the calculated temperatures and olivine Fo values (Supplemental Fig. S4). As mafic-ultramafic cumulate rocks lack a good barometer, we assumed a pressure of 100 MPa for all calculations following previous estimates for the Xiarihamu and Shitoukengde mafic-ultramafic intrusions (Li et al., 2015; Liu et al., 2018). The pressure effects on the calculated temperature and oxygen fugacity are approximately 2°C and 0.03 log units per 100MPa, respectively.

A difficulty sometimes encountered when calculating f_{O_2} is lacking an
appropriate phase assemblage required for oxybarometry. Critically, Ballhaus et al. (1991) simplified the equation used to calculate f_{O_2} by assuming that the effect of ferrosilite activity in orthopyroxene was canceled by the effect of fayalite activity in olivine for samples with high Mg#. In this case, the oxybarometer can give reasonable results for orthopyroxene-undersaturated ultramafic rocks because the corrections rarely exceed a shift in f_{O_2} of -0.2 log units (Bucholz and Kelemen, 2019). Except for gabbro, all the studied samples contain olivine, orthopyroxene, and Cr-spinel, and thus are suitable for the olivine-spinel oxybarometer (Ballbaus et al., 1991; Davis et al., 2017). For gabbroic rocks, we ignore the effect of ferrosilite activity in orthopyroxene. In order to verify the accuracy of Ballhaus’ equation, the f_{O_2} values of sulfide-mineralized ultramafic rocks from Xiarihamu Ni-Cu deposit calculated by the other Ol-Opx-Spl oxybarometer from Wood (1990) are consistent with our results, as shown in Fig. 6a and Supplemental Table S7.

Of particular concern for this study is the potential that subsolidus cooling may drive a change in f_{O_2} and variations in mineral chemistry in magmatic rocks (Roeder and Campbell, 1985; Lindsley and Frost, 1992; Birner et al., 2018; Hou et al., 2021). Subsolidus equilibration between olivine and spinel was first considered by Irvine (1965), who described Mg$^{2+}$ diffusion from spinel to olivine and Fe$^{2+}$ diffusion from olivine to spinel. Bucholz and Kelemen (2019) found that subsolidus exchange reactions increased calculated f_{O_2} by 0.3–0.35 log units over 300°C of cooling. However, assuming constant modal percentages of minerals, subsolidus cooling would decrease the Fe$^{2+}$ content of olivine and increase Fe$^{2+}$ content of spinel, which
is not observed in the Shitoukengde and Xiarihamu ultramafic intrusions (Supplemental Figs. S5a-b). In addition, the compositional profiles from core to rim of the Cr-spinel grains in the Xiarihamu intrusion reveal decrease in FeO (Supplemental Figs. S5c-d). These lines of evidence argue against the trend of the Mg-Fe exchange between olivine and spinel. Furthermore, almost 80% EPMA analysis spots of the spinel and olivine grains were analyzed in the cores, which represent the most primitive compositional information. Therefore, we believe that subsolidus exchange of Fe-Mg between olivine-spinel pairs has negligible influence on the calculated f_O^2 of the Shitoukengde mafic-ultramafic intrusion and Xiarihamu Ni-Cu deposit.

Several Cr-spinel grains with clear chemical zoning (Figs. 3n-o) were not used for calculations, as they might be modified by late-stage interstitial melts (e.g., Henderson and Wood, 1981; Candia and Gaspar, 1997; Ahmed et al. 2008; Mukherjee et al., 2010). Cr-spinel grains showing no visible zoning under BSE imaging were chosen to calculate the magma f_O^2 (Figs. 3a-j). The Cr-spinel Fe$^{3+}/\Sigma$Fe ratios of the Xiarihamu Ni-Cu deposit vary from 0.32±0.09 to 0.12±0.01, corresponding to magma f_O^2 values from ΔQFM+2.2±1.0 to ΔQFM-0.6±0.2. By contrast, those of the Shitoukengde mafic-ultramafic intrusion increase from 0.07±0.02 to 0.23±0.04, corresponding to magma f_O^2 varying from ΔQFM-1.3±0.3 to ΔQFM+1.0±0.5. Notably, the calculated magma f_O^2 and Cr-spinel Fe$^{3+}/\Sigma$Fe ratios show a positive correlation (Supplemental Fig. S6). Therefore, we suggest that the Cr-spinel Fe$^{3+}/\Sigma$Fe ratios can be used as an indicator for magma f_O^2. The large
variations in f_{O_2} values enable us to evaluate the redox changes during magmatic fractionation and related sulfide mineralization.

6.2 Temporal evolution of the magma f_{O_2}

When sulfur is saturated in mafic magma, immiscible droplets of sulfide melt exsolve, and the chalcophile elements partition from the silicate melt into the sulfide liquid (Goldschmidt, 1937; Naldrett, 2004; Tomkins et al., 2012; Kiseeva et al., 2017). Oxygen fugacity controls sulfur speciation and hence sulfur concentrations during both partial melting in the mantle source and sulfide segregation in the shallow crust (Jugo, 2009; Mungall et al., 2006; Thakurta et al., 2008; Tomkins et al., 2012). This variable has received little attention and may be crucial for understanding the Ni-Cu mineralization mechanism.

From the harzburgite, olivine orthopyroxenite, lherzolite, websterite to norite in the Xiarihamu Ni-Cu deposit, olivine-spinel pairs were selected to calculate the f_{O_2} in different magmatic stages. The oxygen fugacity characteristics are summarized as follows: 1) the relatively high f_{O_2} ($\Delta Q_{FM}>+1.00$) recorded in the harzburgites, containing the most primitive olivines (Fo>88), suggests that the primitive magma of the Xiarihamu deposit was characterized by an oxidized environment. The f_{O_2} decreased with lowering olivine Fo values and shifted to a reduced environment (Fig. 6). 2) The Cr-spinel cores have slightly higher $Fe^{3+}/\Sigma Fe$ ratios and f_{O_2} than the rims (Figs. 5a-b). In addition, the $Fe^{3+}/\Sigma Fe$ ratios become lower from core to rim in the individual Cr-spinel grain (Figs. 5c-d). These phenomena suggest that the Ni-Cu bearing magma became reduced during crystallization. Compared to that of the Xiarihamu Ni-Cu
The calculated results show that the initial crystallization products formed in a reduced environment (Fo=88.9±0.1, ΔQFM=-0.9±0.5), with \(fO_2 \) gradually increasing during crystallization (Fig. 6).

In summary, the primitive magma of the Xiarihamu Ni-Cu deposit progressively changed from an oxidized to a reduced state, with \(fO_2 \) varying from ΔQFM+2.2±1.00 to ΔQFM-0.6±0.2, being reduced into the sulfide stability field, which would have caused sulfide segregation and ultimately ore deposit formation. Comparably, several typical Ni-Cu deposits in Central Asian Orogenic Belt also show a positive relation between magma \(fO_2 \) calculated by different oxybarometers and olivine Fo values (Fig. 6a, Xie et al., 2014; Li et al., 2015; Xue et al., 2016, 2021; Mao et al., 2017). The temporal evolution of magma \(fO_2 \) is consistent with the previous study of Tomkins et al. (2012), proposing that reduction-induced sulfide saturation can drive the formation of magmatic sulfide deposits. In contrast, the primitive magma \(fO_2 \) of the Shitoukengde intrusion was reduced and then became oxidized (from ΔQFM-1.3±0.3 to ΔQFM+1.0±0.5, Fig. 6b), which inhibited S saturation and sulfide segregation. This may be one of the most compelling reasons for the weak Ni-Cu mineralization of the Shitoukengde mafic-ultramafic intrusion.

6.3 Response of magma \(fO_2 \) to the Ni-Cu mineralization

The redox state of mantle-derived magma may be inherited from the nature of the mantle source. For instance, island arc magma always has higher magma \(fO_2 \) (ΔQFM+1–ΔFMQ+3) than mid-ocean ridge basalt (MORB, ΔQFM-2–ΔFMQ), which
is generally interpreted as the mantle source of arc magma having been
metasomatized by an oxidizing subduction-zone fluid (Brandon and Draper, 1996;
Cottrell and Kelley, 2011; Berry et al., 2018; Evans and Tomkins, 2011; Evans, 2012;
Brounce et al., 2014; Zhang et al., 2006). In addition, magma \(f_{O_2} \) can also be affected
by later shallow processes such as crystallization differentiation (Lee et al., 2005;
Jenner et al., 2010), crustal contamination (e.g., Deng et al., 2017; Tao et al., 2008;
Mao et al., 2018; Zhang et al., 2009a, 2009b), and degassing (Kelley and Cottrell,
2012; Moussallam et al., 2016). Therefore, the primitive magma could have
undergone a series of changes in oxygen fugacity from the mantle source to intrusion
in the crust. How the evolution of magmatic oxygen fugacity controls Ni-Cu
mineralization processes is poorly understood and worthy of thorough exploration.
We therefore hypothesize that if the oxidized primitive magma, with high
concentrations of dissolved sulfur as sulfate, could be reduced into the sulfide stability
field, it would cause sulfide saturation, would lead to ore deposition.

The \(f_{O_2} \) values recorded by spinel-olivine pairs in the most primitive ultramafic
rocks from the Shitoukengde intrusion are estimated to be \(\Delta QFM-1.3\pm0.3 \), suggesting
that the primitive magma was likely derived from a reduced mantle source. The
fine-grained sulfide inclusions in olivine and orthopyroxene (Figs. 3h-i) are consistent
with the reduced conditions in the magma during the early stage of crystallization.
However, the \(f_{O_2} \) values of most primitive magma from Xiarihamu Ni-Cu deposit
(\(\Delta QFM+2.2\pm1.0 \)) is much higher than that of the Shitoukengde intrusion (Fig. 6), and
olivine crystals with high Fo values contain no sulfide inclusions, suggesting the
primitive magma was likely derived from an oxidized mantle source. Orthopyroxenes from the Xiarihamu harzburgites have low δ^{26}Mg (–0.49 to –0.34‰, Chen et al., 2021), which is proposed to be genetically related to carbonated mantle source that probably formed by incorporation of recycled carbonates (e.g., Yang et al., 2012; Teng, 2017; Li et al., 2017). The slab-derived fluids would deliver soluble components of subducted carbonates and deliver them into the mantle source, resulting in the light Mg isotopes (Shen et al., 2018; Tian et al., 2018; Chen et al., 2021), as the unmodified mantle has a homogeneous δ^{26}Mg of –0.25±0.04‰ (Teng et al., 2010). Previous studies suggest that the mantle source of the Xiarihamu Ni-Cu deposit experienced metasomatism by subduction-related fluids, as the evidence of high Ba/Th ratios (12.3–453.6) and low (Ta/La)$_N$ ratios (0.06–0.55) (Jiang et al., 2015; Peng et al., 2016; Jia et al., 2021), giving rise to the oxidized primitive magma of the Xiarihamu ultramafic intrusion. The whole-rock $\varepsilon_{Nd}(t)$ values of the Shitoukengde intrusion are higher than those of the Xiarihamu ultramafic rocks (–4.46–2.83 and -7.59–0.74, respectively, Jia et al., 2021; Jiang et al., 2015; Peng et al., 2016), consistent with the mantle source of the former having experienced weaker metasomatism than the latter.

This is also supported by the lower Ba/Th ratios (14.9–219.2) and higher (Ta/La)$_N$ ratios (0.54–2.84) of the Shitoukengde ultramafic rocks (Jia et al., 2021). Therefore, the degree of metasomatism of the mantle source may be the most convincing reason for the different primitive magma fO_2 of two coeval mafic-ultramafic intrusions in East Kunlun. Oxidation of the mantle source by metasomatism converts some sulfide into sulfate, which would increase the solubility of sulfur and chalcophile elements in
the primitive magma (Mungall, 2002; Tomkins et al., 2012), and provide for higher concentrations of ore-forming components in the magmatic precursors to the Xiarihamu Ni-Cu deposit.

The most striking feature between the Xiarihamu and Shitoukengde intrusions is their different evolution trends of oxygen fugacity during magma emplacement at the shallow crustal level (Fig. 6). Crustal sulfur contamination is crucial for most magmatic Ni-Cu ore deposits (e.g., Holwell et al., 2007; Lesher and Barnes, 2008; Keays and Lightfoot, 2010; Fiorentini et al., 2012; Ripley and Li, 2017). The country gneisses of the Xiarihamu ore-bearing bodies contain considerable sulfide (Supplemental Figs. S2a-b), with whole-rock S contents reaching up to 1.14 wt.%.

The in-situ 34S values of the Xiarihamu sulfide ores range from 2.4 to 7.7‰ (Li et al., 2015; Liu et al., 2018) and fall between those of the country gneiss (11.2‰, Liu et al., 2018) and mantle (0±2‰, Chaussidon et al., 1989), permitting the gneisses to have contributed S in the formation of the Xiarihamu sulfide ores. In addition, the 26Mg values of orthopyroxene increased progressively from harzburgites to websterites and gabbrointrorites (-0.49 to -0.21‰, Chen et al., 2021), which was interpreted to be due to variable degrees of crustal contamination (Brewer et al., 2018). Therefore, the oxidized primitive magma of the Xiarihamu deposit gradually became reduced with continuous addition of the external reduced sulfur from the country gneisses during emplacement, which lowered the sulfur solubility of the magma, causing S saturation and precipitation of sulfides to form the Xiarihamu Ni-Cu deposit. Coincidentally, previous studies suggested that the Ni-Cu deposits (e.g., Poyi, Huangshannan) in the
Central Asian Orogenic Belt (Zhang et al., 2009a, 2009b; Mao et al., 2018; Xue et al., 2021) could also be a result from a relatively oxidized mantle source that gradually became more reduced during crustal processes (Fig. 6a). The mineralization process of the Xiarihamu Ni-Cu deposit was also documented by sulfide microtextures. Sulfides commonly occur as interstitial phases in the matrix (Figs. 3a, b, e), suggesting they crystallized after olivine and orthopyroxene. This could be the result of the decreasing f_O^2 which was caused by the input of external sulfur during late magmatic evolution.

Although the country rocks of the Shitoukengde intrusion are also granitic gneisses, no sulfides were observed in thin sections (Supplemental Figs. S2c-d). Their whole-rock S contents (0.005–0.018 wt.%) are significantly lower than those of the Xiarihamu granitic gneisses (1.08–1.14 wt.%). Therefore, crustal sulfur contamination was likely very limited in the Shitoukengde intrusion. In this regard, the observed increase in magma f_O^2, as shown in Fig. 6b, may have instead been driven by fractional crystallization. Previous studies have shown limited increases in Fe$^{3+/\Sigma Fe}$ ratios with the crystallization of olivine and pyroxenes, which cannot significantly change the magma oxygen fugacity (Cottrell and Kelley, 2011; Crabtree and Lange, 2012; Kelley and Cottrell, 2012). However, the FeO contents of Cr-spinel increase with decreasing olivine Fo values, suggesting that the crystallization of Cr-spinel would have depleted the FeO in liquid if the magma was a closed system (Cottrell and Kelley, 2011; Wykes et al., 2015). Our data show that the Fe$^{3+/\Sigma Fe}$ ratio increases with increasing FeO contents in Cr-spinel (Fig. 7), suggesting that the Shitoukengde
magma fO_2 likely increased with the fractional crystallization of large amounts of Cr-spinel. The increase of oxygen fugacity during crystallization, as well as lack of crustal sulfur contamination, probably hampered the formation of sulfide ores in the Shitoushendge intrusion.

6.4 A genetic model for the mafic-ultramafic intrusions and the related Ni-Cu deposits in East Kunlun

Magmatic oxygen fugacity of Ni-Cu sulfide deposits has been studied extensively for decades but remains controversial (Mungall et al., 2006; Thakurta et al., 2008; Tomkins et al., 2012; Jugo, 2009; Brenan and Caciagli, 2000; Ballhaus et al., 1991). For example, the Voisey's Bay Cu-Ni deposit formed in a reduced environment (Brenan and Caciagli, 2000; Tomkins et al., 2012), but the Mirabela deposit formed in a relatively oxidized magma (Barnes et al., 2013). A likely contributor to this controversy is the impact of the different oxybarometers used, which reflect different redox states in the magmatic evolution process. For example, the magma fO_2 of the Huangshandong and Huangshanxi Cu-Ni deposits based on olivine-spinel pairs ($\Delta QFM+1-\Delta QFM+2.6$, Cao et al., 2019) is higher than that calculated by olivine-sulfide pairs ($\Delta QFM-1-\Delta QFM+1$, Mao et al., 2018), which may represent the fO_2 of the magmas before sulfide saturation and concurrent with sulfide saturation, respectively. A genetic model of the second largest Ni-Cu deposit and other comparable intrusions in China is built to reveal the relationship of magma fO_2 and Ni-Cu sulfide deposits.

The ophiolite fragments (e.g., Heishan and Qingshuiquan) in East Kunlun
preserve a record of Proto-Tethys Ocean formed in the Early Paleozoic (Jiang et al., 1992; Yang et al., 1996; Cui et al., 2011; Meng et al., 2015). The Huxiaoqin mafic rocks (438 Ma, Liu et al., 2013a) and Qingshuiquan diabase-dikes (436 Ma, Ren et al., 2009) may represent the latest magmatism related to the Early Paleozoic ocean subduction (Liu et al., 2013b). The Wenquan eclogite with the peak metamorphic age of ~428 Ma in East Kunlun suggests a deep subduction during continent-continent collision (Meng et al., 2013b; Jia et al., 2014). After 428 Ma, extensive Silurian basalts (428–419 Ma, Zhu et al. 2006) and Early Devonian-Middle Devonian mafic dikes (412–383 Ma, Sun et al. 2004; Zhang et al. 2013; Xiong et al., 2014; Yang et al. 2014) in the East Kunlun area intruded, which represent the product of an extensional environment (Liu et al. 2013b; Peng et al. 2016; Song et al. 2016; Zhang et al. 2018). Therefore, the Xiarihamu and Shitoukengde intrusions (420–424 Ma) were emplaced in a post-collisional setting (Jia et al., 2021).

During this period, the cessation of subduction may cause break-off of the dense subducted slab, triggering upwelling of the hot asthenosphere mantle (Peng et al., 2016; Liu et al., 2018; Jia et al., 2021). The subducted slab experienced metamorphic dehydration and partial melting, and produced subduction-related aqueous fluids and hydrous melts (Zhao et al., 2007; Zheng, 2012), which metasomatized the overlying lithospheric and/or depleted asthenosphere mantle (Fig. 8a). Previous studies have suggested that metasomatic enrichment would increase the oxygen fugacity of the mantle wedge (McCammon et al., 2001; Creighton et al., 2008), which produced relatively oxidized primary magma. With the proceeding of emplacement, the magma
became reduced progressively due to contamination of the external reduced crustal sulfur, which directly led to S saturation and sulfide segregation. The sulfide-loaded magmas produced the Xiarihamu deposit, with gradually decreasing magma fO_2 (Fig. 8b, $\Delta QFM+2.2\pm1.0$ to $\Delta QFM-0.6\pm0.2$).

The Shitoukengde intrusion in East Kunlun probably belongs to a different system comparing to the Xiarihamu Ni-Cu deposit. Without metasomatism of the subduction-related fluids, a relatively low-fO_2 primitive magma was generated in a mantle source with a limited capacity to dissolve sulfur. Fractional crystallization of a large amount of Cr-spinel elevated the magma fO_2, while there was no supplement of external reduced materials. The insufficient contents of sulfur in the primitive magma, coupled with increasing sulfur solubility of the magma caused by elevated fO_2 during crystallization, hampered sulfide precipitation in the Shitoukengde mafic-ultramafic intrusion.

7 Implications

Our study presents the first comparison of the magma fO_2 calculated by olivine-spinel oxybarometry for the Xiarihamu Ni-Cu sulfide deposit and Shitoukengde mafic-ultramafic intrusion in East Kunlun, and provides new insights into the relationship between magmatic oxygen fugacity and Ni-Cu mineralization. The second standard calibration method can effectively improve the accuracy of the Cr-spinel $Fe^{3+}/\Sigma Fe$ ratios by EPMA. A strong positive correlation is displayed between the magma fO_2 and Cr-spinel $Fe^{3+}/\Sigma Fe$ ratios, indicating that Cr-spinel $Fe^{3+}/\Sigma Fe$ ratios can be used as an indicator of magma fO_2. The evolution trend of the...
magma fO_2, from $\Delta QFM+2.2\pm1.0$ to $\Delta QFM-0.6\pm0.2$ with decreasing olivine Fo values, can reasonably explain the metallogenesis of the Xiarihamu deposit. Metasomatism happened in the mantle source by subduction-related fluid, generating the oxidized primary magmas, capable to transporting sulfur efficiently. Addition of external reduced sulfur from gneisses country rocks (1.08–1.14 wt.% S) during crustal processes led to deposition of sulfides and formation of the Xiarihamu Ni-Cu deposit.

Conversely, the Cr-spinel $Fe^{3+}/\Sigma Fe$ ratios of the Shitoukengde intrusion increase from 0.07±0.02 to 0.23±0.04, corresponding to fO_2 varying from $\Delta QFM-1.3\pm0.3$ to $\Delta QFM+1.0\pm0.5$. The fractional crystallization of large amounts of Cr-spinel can reasonably explain the increasing magma fO_2 during magmatic evolution, which would hamper sulfide precipitation in the Shitoukengde intrusion.

As a consequence, reduction processes of the oxidized primitive magma from mantle source to shallow crust are crucial for the Ni-Cu sulfide deposits. We propose that monitoring the temporal evolution of the magma fO_2 calculated by olivine-spinel oxybarometry can be a key indicator of metallogenic potential of Ni-Cu sulfide deposits.

Acknowledgments

The authors thank Dongyang Zhang and Baolong Li for the help with field work. We are grateful to Yadong Wu for providing spinel standard samples. We are also grateful to Prof. Paul Tomascak, Pedro Jugo, Christopher Jenkins, and an anonymous reviewer for their constructive suggestions and comments. This study was financially
supported by the National Natural Science Foundation of China (No. 41822202, 42002096) and the Experimental Technology Innovation Fund of the Institute of Geology and Geophysics, Chinese Academy of Sciences (No. 11990860).

References

Li, S.G., Yang, W., Ke, S., Meng, X., Tian, H., Xu, L., He, Y., Huang, J., Wang, X.C., Xia, Q., Sun, W.,
by a large-scale mantle Mg isotope anomaly in eastern China. National Science Review 4, 111–
120.

Devonian intrusive rocks in the east part of Eastern Kunlun Orogen and implication for Early
abstract).

transition from ocean subduction to collisional orogeny in the Eastern Kunlun region: evidence
abstract).

Liu, B., Ma, C.Q., Pan, G., Zhang, J.Y., Xiong, F.H., Jian, H., and Jiang, H.A. (2013b) Discovery of the
Middle Devonian A-type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications.
Earth Sciences (Journal of China University of Geosciences), 38 (5), 947–962 (in Chinese with
English abstract).

Liu, Y., Samaha, N.T., and Baker, D.R. (2007) Sulfur concentration at sulfide saturation (SCSS) in

The dynamic sulfide saturation process and a possible slab break-off model for the giant Xiarihamu

Zhang, Z.C., Mao, J.W., Saunders, A.D., Ai, Y., Li, Y., and Zhao, L. (2009a) Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan large igneous province, SW China,
based on isotopic and bulk chemical constraints. Lithos, 113, 369–392.

Figure captions
Fig. 1 (a) Tectonic sketch map of China; (b) Simplified tectonic units of the East Kunlun Orogenic Belt (modified after Feng et al., 2009 and Meng et al., 2015). (c) Simplified geologic map of the eastern portion of the East Kunlun Orogenic Belt (modified after Zhang et al., 2015). Zircon U-Pb geochronology data are listed in Supplemental Table S1.

Fig. 2 Geological map of the Xiarihamu I mafic-ultramafic intrusion (a) and cross-section (b) for the Xiarihamu magmatic sulfide deposit (modified after Song et al., 2016). (c) Simplified geological map of the Shitoukengde intrusion (modified after Jia et al., 2021). Zircon U–Pb age data of the Shitoukengde mafic-ultramafic rocks are from Zhou (2016), Li et al. (2018), Zhang et al. (2018).

Fig. 3 Photomicrographs in cross-polarized light and reflected light (b, d, j) and BSE images (h, n, o) of Cr-spinel characteristics from the Xiarihamu Ni-Cu deposit and Shitoukengde intrusion. Xiarihamu: (a-c) harzburgite; (d) lherzolite; (e) olivine orthopyroxenite; (f) websterite; (g) norite; Shitoukengde: (h) harzburgite; (i-j) lherzolite; (k) olivine websterite; (l) clinopyroxenite; (m) gabbro; (n-o) heterogeneous Cr-spinel grains. Mineral abbreviations: Ol olivine, Opx orthopyroxene, Cpx clinopyroxene, Pl plagioclase, Ts tschermakite, Spl Cr-spinel, Ap apatite, Sul sulfide, Po pyrrhotite, Pn pentlandite, Ccp chalcopyrite, Ilm ilmenite.

Fig. 4 Comparison of Fe$^{3+}$/ΣFe ratios measured by Mössbauer spectroscopy and EPMA modified by second standard calibration. The corrected Fe$^{3+}$/ΣFe ratios by EPMA are nearly identical to those by Mössbauer spectroscopy (Wood and Virgo, 1989). See text for details.
Fig. 5 Plots of Fe$^{3+}$/ΣFe ratios and log f_O^2 (ΔQFM) of Cr-spinels from the Xiarihamu Ni-Cu deposit. (a) and (b) show that Fe$^{3+}$/ΣFe ratios and log f_O^2 (ΔQFM) of Cr-spinel cores are slightly higher than those of Cr-spinel rims in different grains, (c) and (d) show that the Fe$^{3+}$/ΣFe ratios become lower from core to rim in individual Cr-spinel grain.

Fig. 6 Plots of oxygen fugacity shown as Fo values in olivine versus log f_O^2 (ΔQFM) for the Xiarihamu Ni-Cu deposit and Shitoukengde intrusion in East Kunlun, and several Ni-Cu deposits in Central Asian Orogenic Belt. (a) The most primitive magma of the Xiarihamu Ni-Cu deposit changed progressively from an oxidized to a reduced state, being reduced into the sulfide stability field, which would have caused sulfide segregation and ultimately ore deposit formation. Several typical Ni-Cu deposits in Central Asian Orogenic Belt also show a positive relation between magma f_O^2 and olivine Fo values. (b) The most primitive magma f_O^2 of the Shitoukengde intrusion was reduced and then became oxidized, which inhibited S saturation and sulfide segregation. Data source of Ol-Opx-Spl-Wood method: Huangshannan (HSN), Poyi (PY), Heishan (HS), and Xiarihamu (XRHM) from Xue et al. (2021); data source of Ol-Sul-Barnes method: HSN from Mao et al. (2017), PY from Xue et al. (2016), HS from Xie et al. (2014), and XRHM from Li et al. (2015).

Fig. 7 Plots of FeO concentration versus Fe$^{3+}$/ΣFe ratio in Cr-spinel for the Shitoukengde mafic-ultramafic intrusion. The trend line shows that the Fe$^{3+}$/ΣFe ratio increases with increasing FeO contents in Cr-spinel, suggesting that the Shitoukengde magma f_O^2 likely increased with the fractional crystallization of large amounts of Cr-spinel.
Fig. 8 A genetic model for the Xiarihamu Ni-Cu deposit and Shitoukengde mafic-ultramafic intrusion in East Kunlun. See text for details.

Supplemental Fig. S1 The BSE images by TIMA of the Shitoukengde and Xiarihamu intrusions, showing the volume content of the Cr-spinel of the Shitoukengde (~2.32 vol.%) is higher than that of the Cr-spinel in the Xiarihamu lherzolite (~0.05 vol.%).

Supplemental Fig. S2 Photomicrographs images of country rocks from the Xiarihamu Ni-Cu deposit and Shitoukengde intrusion. Xiarihamu: a-Amphibole plagiogneiss; b-Amphibole plagiogneiss contains sulfide grain; Shitoukengde: c-Amphibole gneiss; d-Biotite plagiogneiss. Mineral abbreviations: Pl plagioclase, Amp amphibole, Bt biotite, Grt garnet, Qtz quartz, Sul sulfide.

Supplemental Fig. S3 Comparison of Cr-spinel Fe$^{3+}$/ΣFe ratios measured by Mössbauer spectroscopy and EPMA modified by second standard calibration, showing the reproducibility of this method.

Supplemental Fig. S4 Plots of Fo values in olivine versus $T_{\text{Ol-Spl}}$ (°C) for the Xiarihamu Ni-Cu deposit and Shitoukengde intrusion.

Supplemental Fig. S5 Correlation diagrams of (a) FeO in Cr-spinel and FeO in olivine and (b) MgO in Cr-spinel and MgO in olivine for the Shitoukengde intrusion. (c) and (d) show that the FeO contents become lower from core to rim in the individual Cr-spinel grain.
Supplemental Fig. S6 Correlation between log f_{O_2} (ΔQFM) and Cr-spinel Fe$^{3+}$/ΣFe ratio, showing a strong positive correlation between the f_{O_2} and Cr-spinel Fe$^{3+}$/ΣFe ratios from the Xiarihamu Ni-Cu deposit and Shitoukengde mafic-ultramafic intrusion.

Table captions

Supplemental Table S1
Summary of geochronology for the mafic-ultramafic intrusions and eclogites in the East Kunlun Orogenic belt.

Supplemental Table S2
Composition of Cr-spinel standards determined by EPMA, to test the reproducibility of the secondary standard calibration method.

Supplemental Table S3
Electron microprobe results (in wt.%) of the secondary Cr-spinel standard samples.

Supplemental Table S4
Electron microprobe results (in wt.%) of Cr-spinel and olivine from the Xiarihamu deposit.

Supplemental Table S5
Electron microprobe results (in wt.%) of Cr-spinel and olivine from the Shitoukengde mafic-ultramafic rocks.
Supplemental Table S6

Whole-rock S concentrations (in wt.%) of the country rocks of the Xiarihamu Ni-Cu deposit and Shitoukengde mafic–ultramafic intrusion.

Supplemental Table S7

Representive whole-rock trace elements, Sr-Nd isotopes, orthopyroxene Mg isotope, and sulfide S isotope of the Xiarihamu Ni-Cu deposit and Shitoukengde mafic–ultramafic intrusion, and fO₂ values estimated using the Ol-Opx-Spl and Ol-Sul oxybarometers of several magmatic Ni-Cu deposits in China.
Fig. 7

$Y = 0.0087x - 0.0604$

$R^2 = 0.62$

- Harzburgite
- Lherzolite
- Olivine websterite
- Clinopyroxenite
- Gabbronorite

$\text{Fe}^{3+}/\Sigma\text{Fe ratio}$

FeO in spinel

Shitoukengde