A COMPARATIVE STUDY OF TWO PHASE EQUILIBRIA MODELING TOOLS:
MORB EQUILIBRIUM STATES AT VARIABLE PRESSURE AND H₂O CONCENTRATIONS

David Hernández-Uribe¹*, Frank J. Spera², Wendy A. Bohrson³, Jussi S. Heinonen⁴
¹Department of Earth and Environmental Sciences, University of Michigan, MI, USA
²Department of Earth Science and Earth Research Institute, University of California, Santa Barbara, CA, USA
³Department of Geology and Geological Engineering, Colorado School of Mines, CO, USA
⁴Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland

*corresponding author: dav.hernandez.uribe@gmail.com

ABSTRACT

Phase equilibria modeling is a powerful petrological tool to address both forward and inverse geological problems over a broad range of crustal and upper mantle conditions of pressure (P), temperature (T), composition (X) and redox ($fO₂$). The development of thermodynamic databases, relatively realistic activity–composition (a–X) relations for solids, melts and fluids, pressure-volume-temperature (PVT) equations of state (EOS), and efficient numerical algorithms
represent an inflection point in our ability to understand the nexus between tectonics and
petrogenesis. While developed—and typically applied in isolation—by either metamorphic or
igneous petrologists, some of the published thermodynamic models have overlapping P–T–X
calibration ranges, which enables comparisons of model outcomes for similar conditions within
the range of applicability. In this paper, we systematically compare the results of two such
models that are routinely used for calculating phase equilibria in melt-bearing systems: rhyolite-
MELTS (Ghiorso et al., 2012; Ghiorso and Gualda, 2015) and the metabasite set of Green et al.
(2016) using the thermodynamic database ds62 (Holland and Powell, 2011) (hereafter denoted as
“HPx-mb16”). We selected a N-MORB composition and modeled closed system equilibrium
phase relations as a function of temperature at 0.25 GPa and 1 GPa for N-MORB with 0.5 wt%
and 4 wt% H_2O. Our results show that phase relations exhibit some key differences that, in some
instances, impact geological inferences. For example, clinopyroxene and plagioclase stabilities
are expanded to higher temperatures in HPx-mb16 compared to predictions from rhyolite-
MELTS. Orthopyroxene and olivine are stable in greater proportions and at wider temperature
ranges in rhyolite-MELTS compared to HPx-mb16. Importantly, HPx-mb16 predicts amphibole
in all runs presented here, whereas amphibole is only predicted at high-P–high-H_2O (1 GPa and
4 wt% H_2O) in rhyolite-MELTS, and in lesser amounts. Garnet stability is systematically
expanded at higher temperatures and the proportion is greater in rhyolite-MELTS. In addition to
phase assemblage differences, phase compositions may differ. For example, plagioclase anorthite
content is systematically higher in HPx-mb16 (for the same set of conditions) whereas garnet
$Mg#$ is higher in rhyolite-MELTS. Calculated amphibole compositions are substantially different
between the two models as well. Liquid compositions also show important differences. High-T
liquids are generally similar in SiO$_2$ contents but diverge at lower temperatures; in these cases,
HPx-mb16 liquids are SiO$_2$-depleted compared to those produced by rhyolite-MELTS. Liquids are also systematically and substantially more mafic in HPx-mb16, and alumina and the alkali concentrations are relatively different and show different trends as a function of temperature at constant pressure. Overall, liquid compositions show the greatest differences near the solidus. Differences in modal abundances of phases and liquid compositions influence liquid trace-element signatures, and these differences can affect geological interpretations. Finally, a comparison between melting experiments of basaltic bulk composition and both thermodynamic models shows that rhyolite-MELTS better reproduces the higher temperature experiments, whereas HPx-mb16 better reproduces the lower temperature experiments. We discuss these and other similarities and differences in order to highlight the strengths and limitations of each model, and to recognize that modeling results have important implications for interpretations of geologic processes. We recognize that our results are informed by a small subset of calculations over a limited range of conditions—our results encourage further comparisons over a wider range of conditions and compositions.

Key words: phase equilibria modeling, computational petrology, rhyolite-MELTS, Theriak-Domino, thermodynamics

INTRODUCTION

The use of thermodynamics to comprehensively model multiphase and multicomponent igneous and metamorphic systems is one of the most important developments in the Earth Sciences of the past several decades (Ghiorso and Sack, 1995; Powell et al., 1998). Phase equilibria modeling can predict equilibrium phase relationships over a wide range of pressure and temperature conditions (P–T) for a
variety of bulk compositions at various redox conditions (Powell et al., 1998, 2005; Powell and Holland, 2008; Gaulda et al., 2012). While there are inherent limitations associated with the use of any phase equilibrium model—including the neglect of reaction kinetics, solid and liquid state diffusion, spatial P–T gradients, and uncertainties associated with thermodynamic properties of relevant substances—their utility to reproduce first-order observations of key Earth processes is evident (see, e.g., seminal work of Bowen, 1928, 1945; Thompson, 1967; Carmichael et al., 1974). Successes include phase equilibria modeling that has described magmatic systems and metamorphism in a host of environments including volcanic arcs, subduction zones, orogenic terranes, and large igneous provinces (e.g. Kerrick and Connolly, 2001; White and Powell, 2002; Johnson et al., 2008; Fowler and Spera, 2010; Bohrson et al., 2014; Yakymchuck and Brown, 2014; García-Arias and Stevens, 2017; Palin et al., 2017; Hernández-Uribe and Palin, 2019; Heinonen et al., 2019; among many others).

Crystallization and partial melting are crucial for understanding heat advection and matter exchange between the mantle and the crust as the formation, extraction, ascent and crystallization of magma is a primary mechanism that leads to differentiation on Earth and other planetary bodies (England and Thompson, 1986; Brown, 2007). Accurate phase equilibria predictions (of liquid-bearing systems) are thus key components of the earth scientist’s toolbox to understand crucial geological processes. Multiphase and multicomponent thermodynamic modeling of partially or totally molten systems has been possible since the 1980’s and the pioneering efforts have been greatly extended and improved over the past thirty years (Berman, 1988; Essene, 1989; Holland and Powell, 1998, 2011; Ghiorso and Sack, 1995; Ghiorso, 2004). Standard state thermodynamic data, volatile species pressure-volume-temperature (PVT) data, and activity–composition (a–X) relations for crystalline and liquid solutions (collectively referred hereafter as “the thermodynamic model”) commonly used in igneous petrology include those in the MELTS package (rhyolite-MELTS, pMELTS, and pHMELTS...
The thermodynamic model commonly used in metamorphic petrology is mostly based on the work of Powell and Holland (1988) and Holland and Powell (1998, 2011), although there are other examples (cf., Lanari and Duesterhoeft, 2018). For metamorphic systems, modeling of granitic liquid compositions is possible with the White et al. (2014) silicate liquid a–X relations based on previous liquid relations (Holland and Powell, 1998, 2001; White et al., 2001, 2007), whereas basaltic melting can be modeled with the a–X relations of Jennings and Holland (2015) and Green et al. (2016). Updated a–X relations that allow modeling of melt-bearing equilibria in ultramafic-to-felsic metamorphic systems were recently published by Holland et al. (2018) and Tomlinson and Holland (2021). We emphasize that although different thermodynamic models are preferred by igneous and metamorphic petrologists, the models have overlapping calibration ranges and are used for exactly the same purpose—modeling phase equilibria and compositions in liquid-bearing silicate systems. At equilibrium closed-system conditions, partial melting of a metabasic lithology and crystallization of a basaltic liquid exhibit identical phase relations at a given P–T state point.

Despite the common use of phase equilibria modeling in petrology, to the best of our knowledge, there have not been systematic studies to examine differences among thermodynamic models where calibrations overlap. While the study of Jennings and Holland (2015) and Holland et al. (2018) do compare their a–X relations to results from pMELTS, the focus of those papers was not a systematic comparison of the predicted equilibria. Existing comparative studies in metamorphic petrology explore the differences of the various Holland and Powell thermodynamic databases (e.g. Korhonen et al., 2014; Guevara and Caddick, 2016; Pan et al., 2020; Starr et al., 2020), and compare model predictions with experiments and natural samples (e.g. White et al., 2011; Forshaw et al., 2019; Santos et al., 2019; García-Arias, 2020;
Bartoli and Carvalho, 2021; Gervais and Trapy, 2021). The MELTS package collection has also been compared to results of other thermobarometric methods on natural samples (e.g., Pamukcu et al., 2015), experimental studies not included in the model calibrations (e.g., Hirschmann et al., 1998; Neave et al., 2019; Pichavant et al., 2019), and between different MELTS calibrations (e.g., Balta and McSween, 2013).

In this study, we take a combined approach. We systematically compare phase equilibria calculated with rhyolite-MELTS (Ghiorso et al., 2012; Ghiorso and Gualda, 2015) and the “metabasite set” of Green et al. (2016) (“HPx-mb16”, calculated using Theriak-Domino; de Capitani and Brown, 1987; de Capitani and Petrakakis, 2010) for the equilibrium states of a mid-ocean ridge basalt (MORB) at different P–T conditions and different initial H2O contents from near-liquidus to solidus temperatures along the fayalite–magnetite–quartz (FMQ) oxygen buffer. These two thermodynamic approaches (i.e., rhyolite MELTS and HPx-mb16) are the most commonly used by igneous and metamorphic petrologists, respectively, to describe liquid-bearing mafic systems. We also evaluate how closely the calculated MORB phase equilibria between rhyolite-MELTS and HPx-mb16 compare with independent relevant experiments (i.e., not used in the calibration). We discuss the implications of our results within the framework of trace-element modeling and examine the geologic implications of the differences in model outcomes. By comparing the effects of pressure and H2O concentration on the phase equilibria during equilibrium melting and crystallization of a MORB using two extant thermodynamic models, we provide our perspective on model uncertainty associated with the choice of modeling. The critical insight of our work is to recognize the strengths of the thermodynamic models, to highlight similarities and differences in order to illustrate how the choice of thermodynamic models can lead to different geologic interpretations.
Phase equilibria modeling relies on standard state thermodynamic data, EOS’s and $\alpha – X$ relations for solid and liquid solutions. A thermodynamic database includes standard state properties for all phases, the form and numerical values defining PVT, and isobaric heat capacity expressions for all phases (Berman, 1988; Essene, 1989; Holland and Powell, 1998, 2011; Ghiorso and Sack, 1995; Ghiorso, 2004). These parameters are obtained from experimental, calorimetric and other studies (e.g., spectroscopy), and some are statistically treated to obtain the best-fit value for a desired parameter from multiple experiments (e.g., least-squares regressions used by Holland and Powell databases). In order to be “internally consistent”, all thermodynamic parameters must be compatible with thermodynamic definitions and identities, adhere to a set of reference values, consider simultaneously all the experimental data, and reproduce primary data within their uncertainties (Lanari and Duesterhoeft, 2018, and references therein). The rhyolite-MELTS thermodynamic database is based on Berman (1988) with modifications (see Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998; Gualda et al., 2012; Ghiorso and Gualda, 2015 for details).

The thermodynamic data used in HPx-mb16 utilizes version 6.2 of Holland and Powell (2011). Some important differences between these thermodynamic data include—but are not limited to—how the equations of state of the solid phases are calculated (i.e. using the Tait equation of state in Holland and Powell (2011) vs. the EOS modified from Berman (1988) in the MELTS package) and the isobaric 1-bar heat capacity dependance on temperature (i.e., the Robie et al. (1978) equation in Holland and Powell (2011) vs. the high-T form used in the Berman and Brown (1985) equation for the MELTS package). Furthermore, the PVT properties of fluid utilized in the MELTS package are calculated using the model of Ghiorso and Gualda (2015),
whereas in Holland and Powell (2011) the equation of state of Pitzer and Sterner (1995) is used.

For a comprehensive review of all the parameters used in these two thermodynamic models, the reader is referred to the original references.

In addition to standard state thermodynamic properties for pure phases, one must also treat the non-ideal properties of crystalline, liquid and gaseous solutions. The excess Gibbs energies of multicomponent solutions are handled using \(a-X \) relations that relate Gibbs excess energies as a function of pressure, temperature, and solution composition to activity coefficients. The solid solution models describe the thermodynamics of mixing between end-members of the multicomponent solution and reflect the elemental substitutions that take place in crystalline solids including ordering and exsolution. The \(a-X \) relations for solid-solution phases commonly contain end-member proportions, crystallographic site fractions, mixing parameters (also known as the Margules parameter), ideal parameters, and thermodynamic adjustments (Lanari and Duesterhoeft, 2018, and references therein). Mixing relationships can be ideal, symmetrical, or asymmetrical, depending on the behavior of the Margules parameter pair. The excess Gibbs energy is normally a function of temperature and pressure. We discuss the \(a-X \) relations (and the elements considered) that were used in this work in the next section and other details are given in the Supplementary Table S1.

One approach to calculate phase equilibria is by solving simultaneous non-linear equations to build up an array of points and lines that make up the phase diagram by using Schreinemakers’ analysis (e.g., THERMOCALC; Powell et al., 1998), whereas another approach is Gibbs free energy minimization to determine the most stable phase assemblage at specific state points. This second approach is used in the MELTS package (Ghiorso and Sack, 1995; Asimow
and Ghiorso, 1998; Gualda et al., 2012; Ghiorso and Gualda, 2015) and in Theriak-Domino and
Perple_X (Connolly, 2005; de Capitani and Petrakakis, 2010).

PETROLOGICAL MODELING

Modeling setups
Phase equilibria calculations for this study were performed using rhyolite-MELTS and Theriak-
Domino in the Na$_2$O–CaO–K$_2$O–FeO–MgO–Al$_2$O$_3$–SiO$_2$–H$_2$O–TiO$_2$–O$_2$ (NCKFMASHTO)
system. This system was chosen because the HPx-mb16 model was calibrated in this 10-
component system (Green et al., 2016), which is also appropriate for rhyolite-MELTS.

For the rhyolite-MELTS runs, we used the internally consistent thermodynamic database
of Berman (1988) with some modifications (Gualda et al., 2012; Ghiorso and Gualda, 2015) and
the a–X relations for solid-solution phases included in the rhyolite-MELTS calibration
(Supplementary Table S1), i.e., silicate liquid (Ghiorso and Sack, 1995); pyroxene (Sack and
Ghiorso, 1994); orthopyroxene, biotite, olivine (Sack and Ghiorso, 1989); amphibole (Ghiorso et
al., 1995); garnet (Berman, 1990; Berman and Koziol, 1991); feldspar (Elkins and Grove, 1990);
spinel (Sack and Ghiorso 1991a, b); and rhombohedral oxide (Ghiorso, 1990; Ghiorso and Sack,
1991; Ghiorso and Evans, 2008). Note that, despite its name, rhyolite-MELTS is meant for
modeling mafic systems and the prefix “rhyolite” only refers to the latest calibration that is more
suitable also for felsic systems than the preceding MELTS versions (Gualda et al., 2012;

For the Theriak-Domino runs, we utilized the Theriak-Domino version from D. K.
Tinkham (https://dtinkham.net/peq.html), the internally consistent thermodynamic database ds62
(Holland and Powell, 2011), and the “metabasite set” of a–X relations for solution phases
(Supplementary Table S1) from Green et al. (2016); these include: liquid, augite and
clinoamphibole (Green et al., 2016); garnet, biotite, chloritoid, muscovite–paragonite, and
chlorite (White et al., 2014); epidote (Holland and Powell, 2011); plagioclase (Holland and
Powell, 2003); magnetite–spinel (White et al., 2002); and ilmenite–hematite (White et al., 2000).
Pure phases include albite, quartz, rutile, and titanite.

In all comparative calculations in this study, we computed equilibrium state points only;
fractionation was not used except as a preliminary step in rhyolite-MELTS to determine the
appropriate version of rhyolite-MELTS. Hence our calculations apply equally to equilibrium
crystallization and equilibrium partial melting as these processes are thermodynamically
identical.

The wide P–T–X ranges of the modeling software enable near-infinite possibilities for
model comparison. Here, we focus on a detailed comparison of one of the most widely used
average compositions in petrological modeling, that of the mean N-MORB from Gale et al.
(2013) (Table 1). Modeling intermediate and/or felsic systems is outside of the scope of this
study. To explore the effects of H$_2$O in our calculation, we utilized two initial H$_2$O-contents: 0.5
wt% and 4 wt% to account for relatively dry and wet conditions. The oxygen chemical potential
was controlled by imposing the FMQ buffer in all calculations.

Calculations were carried out at 0.25 GPa and 1 GPa, which approximate upper and
lower crustal conditions, and were calculated isobarically over the temperature interval between
600 °C to the liquidus temperature (calculated by rhyolite-MELTS) in discrete steps. In rhyolite-
MELTS, the FMQ buffer is not maintained below the solidus, and thus, results below such
conditions are not discussed in this study.
Comparison methodology

We performed a comparison using four sets of conditions. These include: (1) a low-P–low-H$_2$O run (i.e., at 0.25 GPa and 0.5 wt% H$_2$O), (2) a low-P–high-H$_2$O run (i.e., at 0.25 GPa and 4 wt% H$_2$O), (3) a high-P–low-H$_2$O run (i.e., at 1 GPa and 0.5 wt% H$_2$O), and (4) a high-P–low-H$_2$O run (i.e., at 1 GPa and 4 wt% H$_2$O). All calculations were carried out at discrete temperatures spanning the solidus to liquidus (or near-liquidus) temperatures along the selected pressures. As noted earlier, the equilibrium (closed system) states computed apply to both crystallization and melting, because at equilibrium, the liquid–solid–fluid relationships are the same for closed-system melting or crystallization. Thus, we emphasize that although the calculations (and Figs. 1, 2, and 4–7) proceed up temperature from near-solidus toward near-liquidus (i.e., equilibrium partial melting), the calculations are equally applicable to down-temperature equilibrium crystallization since there is no fractionation of solids from liquid.

Because there are several versions of rhyolite-MELTS, we followed the decision tree on the rhyolite-MELTS website (http://melts.ofm-research.org/LIQUIDS-decision-tree.html) in order to choose the appropriate version for each calculation. All the rhyolite-MELTS runs were calculated with the version v1.2.0 with the exception of the low-P–high-H$_2$O run (i.e. at 0.25 GPa and 4 wt% H$_2$O), where v1.1.0 was used.

Phase modal proportions are shown using mode boxes, which include the calculated normalized mass proportions (wt%) of all predicted phases at each calculated state point (Figs. 1 and 2; mineral proportions in vol% are also shown in Supplementary Figures S1–S2). When more than one phase of the same solid solution were stable at a single state point (e.g., two clinopyroxenes predicted by rhyolite-MELTS), the phase masses were combined for simplicity.

Calculated modal proportions are given in Table 2 every 100 °C from 900 (or 800 °C) to 1100
°C. The detailed description of the calculated phase equilibria evolution for the four scenarios is given in Appendix 1.

Liquid compositions are reported from the liquidus (calculated with rhyolite-MELTS) or near liquidus (HPx-mb16) to the solidus (Figs. 3–7). Given that the rhyolite-MELTS liquid a–X model, in contrast to the Green et al. (2016) liquid a–X model, considers both FeO and Fe₂O₃, the Fe content of the calculated compositions was recalculated to FeO⁣ allowing for direct comparison. Liquid compositions are given in Tables S2 and S3 every 100 °C from 900 (or 800 °C) to 1100 °C. Compositions are reported in the table only when liquid is stable in both rhyolite-MELTS and HPx-mb16 models at the same P–T conditions. The full liquid compositional evolution is described in Appendix 1.

In addition to providing a first-order comparison of the phase relations and liquid compositions, we also compare compositions of clinopyroxene, feldspar, orthopyroxene, amphibole and garnet, which are the most abundant minerals. A detailed description of the phase compositions at each state point can be found in the Appendix 1 and in Supplementary Figures S3–S6. Only the most significant mineral-compositional differences and characteristics are presented and discussed in the sections below.

Models caveats

Both of the thermodynamic models used here (i.e., rhyolite-MELTS and HPx-b16) have significant caveats, limitations, and uncertainties, mainly related to the thermodynamic data and the a–X models. A detailed discussion is beyond the scope of this paper; the reader is referred to the original works and developers’ websites to find important information related to the models (rhyolite-MELTS, http://melts.ofm-research.org; HPx-mb16, https://hpxeosandthermocalc.org).
Below, we only outline the calibration ranges where the thermodynamic models should yield reliable results and some important caveats pertinent to our comparison work.

Rhyolite-MELTS is recommended for modeling relatively dry mafic and hydrous silicic systems at < 2 GPa. Phase equilibria calculations via rhyolite-MELTS are not recommended at conditions close to the solidus (and subsolidus) and/or for intermediate and calc-alkaline systems with modally significant amphibole, muscovite, and biotite (http://melts.ofm-research.org; Gualda et al., 2012). Rhyolite-MELTS calculations are further recommended for volcanic systems where the melt fraction is > 50 wt% (Gualda et al., 2012).

Calculations with the HPx-mb16 model are recommended for modeling partial melting of hydrous metabasites at < 1.3 GPa. Reliable phase equilibria can be calculated at subsolidus and suprasolidus conditions up to ~1050 °C (Green et al., 2016; Palin et al., 2016); yet, modeling phase equilibria near- or at the liquidus is not recommended as the liquid $a-X$ model accounts for neither Fe$_2$O$_3$ and TiO$_2$.

MODEL COMPARISON

Differences in the calculated phase proportions

Overall, rhyolite-MELTS calculates more liquid at higher temperatures (closer to the liquidus) but less liquid at lower temperatures (closer to the solidus) compared to HPx-mb16 (Figs. 1 and 2). For example, in the low-P–low-H$_2$O run at 1100 °C, rhyolite-MELTS predicts ~33 wt% liquid, whereas HPx-mb16 predicts ~50 wt% liquid (~36 vol% and ~53 vol%, respectively; Figs. 1a and c; Fig. S1a and c; Table 2). The position of the solidi vary depending on pressure between the two models as well. In the low-P runs, the solidus is located at higher temperature (e.g., ~850 °C vs ~730 °C in the high-H$_2$O run; Figs. 1b and d) whereas in the high-P run, it is located at
lower temperature (e.g., ~760 °C vs ~890 °C in the low-H$_2$O run; Figs. 2a and c) in rhyolite-MELTS compared to HPx-mb16. In all the calculations, a higher H$_2$O content decreases the solidus temperature (Figs. 1 and 2).

Clinopyroxene and plagioclase stabilities are expanded to higher temperatures in HPx-mb16 regardless of the conditions (Figs. 1 and 2). At temperatures closer to the solidus, rhyolite-MELTS predicts higher amounts of these phases, and the specific temperatures where rhyolite-MELTS predicts more of these phases depend on the specific run (Figs. 1 and 2; Table 2). For example, in the low-P–high-H$_2$O run at 900 °C, rhyolite-MELTS predicts ~32 wt% of clinopyroxene and ~27 wt% of plagioclase (~24 vol% and ~26 vol%, respectively), whereas HPx-mb16 predicts ~21 wt% clinopyroxene and ~22 wt% plagioclase (~16 vol% and ~21 vol%, respectively) (Figs. 1b and d; Fig. S1b and d; Table 2). Plagioclase proportion is systematically higher in rhyolite-MELTS at any given temperature in the low-P runs. For example, at 830 °C in the low-P–high-H$_2$O run, rhyolite-MELTS calculates ~46 wt% of plagioclase whereas HPx-mb16 predicts ~25 wt% (~43 vol% and ~25 vol%, respectively; Figs. 1b and d; Fig. S1b and d).

By contrast, in the high-P runs, plagioclase systematics are different; in the low-H$_2$O run rhyolite-MELTS calculates less amount of plagioclase compared to HPx-mb16, whereas in high-H$_2$O run, only HPx-mb16 predicts plagioclase (Fig. 2; Table 2).

Orthopyroxene and olivine proportions are systematically higher in the rhyolite-MELTS low-P runs compared to HPx-mb16 low-P runs (Fig. 1); olivine stability is typically expanded to higher temperatures in rhyolite-MELTS compared to HPx-mb16. In the low-P–low-H$_2$O run, olivine is not stable in rhyolite-MELTS but predicted in a small temperature window in the HPx-mb16 calculation (Fig. 1). By contrast, in the high-P runs, orthopyroxene and olivine are not stable except orthopyroxene only in the low-H$_2$O HPx-mb16 run.
A crucial systematic difference at all P–T–H_2O conditions is the stability of amphibole. HPx-mb16 predicts amphibole in all runs; the amount of amphibole increases with increasing pressure and H_2O (Figs. 1c, 1d, 2c, and 2d; Table 2). By contrast, in the rhyolite-MELTS calculations, amphibole is only predicted in the high-P–high-H_2O run (Fig. 2b). The amount of amphibole, and its temperature-interval of stability, are not comparable with HPx-mb16 (Figs. 2b–d). For example, in the high-P–high-H_2O run at 700 °C, rhyolite-MELTS predicts ~2 wt% of amphibole compared to ~63 wt% in HPx-mb16 (~1 vol% and ~57 vol%, respectively; Figs. 2b and d; Fig. S2b and d). At 600 °C in the same run, the modal difference remains considerable: rhyolite-MELTS predicts ~22 wt% of amphibole whereas in HPx-mb16 modal amphibole is ~66 wt% (~20 vol% and ~61 vol%, respectively; Figs. 2b and d; Fig. S2b and d).

Garnet is only stable in the high-P runs in both models. Its stability is systematically expanded to higher temperature and the proportion is greater in rhyolite-MELTS compare to HPx-mb16 (Fig. 2). For instance, in the high-P–low-H_2O run at 800 °C, rhyolite-MELTS predicts ~32 wt% of garnet whereas HPx-mb16 predicts ~15 wt% (~27 vol% and ~12 vol%, respectively; Figs. 2a and c; Fig. S2a and c; Table 2). Unexpectedly, higher H_2O increases the proportion of garnet in rhyolite-MELTS (Figs. 2a and b). On the other hand, follows the opposite trend relative to H_2O (Figs. 2c and d), i.e., a higher H_2O inhibits garnet stabilization.

Other minor phases such as quartz and Fe-Ti oxides also show differences between the models (Figs. 1 and 2). Quartz is predicted at relatively similar temperatures (± 50 °C) but is systematically higher in proportion in rhyolite-MELTS in the low-H_2O runs but lower in the high-H_2O runs (Figs. 1 and 2). By contrast, proportions of Fe-Ti oxides are relatively similar (± 2 wt%), although the predicted phase is always different in the low-P runs: rhyolite-MELTS.
predicts a spinel group phase (ulvospinel–magnetite) whereas HPx-mb16 predicts rutile that is replaced by ilmenite at lower temperature (Figs. 1 and 2).

The models predict H\textsubscript{2}O-saturation conditions at different P–T conditions (Figs. 1 and 2). In the low-P–low-H\textsubscript{2}O run, H\textsubscript{2}O-saturated conditions are only attained in rhyolite-MELTS (Fig. 1a). By contrast, in the low-P–high-H\textsubscript{2}O run, all calculations reach H\textsubscript{2}O-saturated conditions, although H\textsubscript{2}O as a phase occurs at higher temperatures and in lower proportion in HPx-mb16 (Figs. 1b and d). In the small temperature interval where H\textsubscript{2}O is in excess in HPx-mb16 but not in rhyolite-MELTS (i.e., ~1100–1000 °C; Figs. 1b and d), the liquid proportion is higher in rhyolite-MELTS (Figs. 1b and d). In the high-P runs, H\textsubscript{2}O-saturated conditions are only reached in the high-H\textsubscript{2}O run in both models (Figs. 2b and d). Similar to the low-P runs, H\textsubscript{2}O occurs at slightly higher temperatures in HPx-mb16 runs (Figs. 2b and d).

In all our calculations, there are four phases that are only stable in either rhyolite-MELTS or in HPx-mb16. These are analcime (only predicted by rhyolite-MELTS) and epidote, titanite, and rutile (only predicted by HPx-mb16). (Figs. 1 and 2).

Differences in the calculated phase compositions

Liquid compositions. The calculated silicate liquids follow relatively similar compositional trends as a function of temperature (Fig. 3); changes in liquid composition are controlled by the crystallization or consumption of phases which, as noted above, differ between models. Generally, high-T liquid compositions are relatively similar in SiO\textsubscript{2} but for most calculations, diverge at lower temperatures. In the low-P–low-H\textsubscript{2}O run, where the SiO\textsubscript{2} is enriched in HPx-mb16 at high temperatures compared to the liquid predicted by rhyolite-MELTS (Fig. 4a). At lower temperatures in the low-H\textsubscript{2}O runs, HPx-mb16 liquid compositions are SiO\textsubscript{2}-
depleted compared to rhyolite-MELTS (up to ~5 wt%; Figs. 4a and 6a); by contrast, in the high-
H₂O runs, the HPx-mb16 liquid compositions are SiO₂-enriched compared to rhyolite-MELTS
(up to ~16 wt%; Figs. 5a and 7a). The liquid SiO₂ contents in the low-P–high-H₂O runs in
rhyolite-MELTS and HPx-mb16 are almost identical (Fig. 5a)

Calculated liquids are systematically—and substantially—more mafic in the HPx-mb16
than in rhyolite-MELTS (up to ~18 wt% higher in the high-P–low-H₂O run at 1080°C; Fig. 6c).
Liquid FeO¹ + MgO in HPx-mb16 shows a distinct enrichment at high temperatures that is not
observed in rhyolite-MELTS (Figs. 4c, 5c, 6c, and 7c). These changes are less significant as the
H₂O content increases at the same pressure (Figs. 4c and 5c); the high-P–high-H₂O run show the
least difference in liquid FeO¹ + MgO (Fig. 7c).

The liquid CaO and H₂O contents have similar compositional trends in both models, and
tend to be higher in rhyolite-MELTS. The relative difference in the CaO and H₂O contents is
greater in the low-P runs (up to 5 wt% in CaO and ~4 wt% in H₂O Figs. 4f and 5f); by contrast,
in the high-P runs, the difference in the liquid CaO and H₂O content is smaller (Figs. 6f and 7f).
In all the runs, the H₂O liquid content tend to diverge the most at lower temperatures (Figs. 4f,
5f, 6f, and 7f).

Liquid Al₂O₃ and alkali contents are relatively different between the models throughout.
The liquid Al₂O₃ content follow different trends in all the runs (Figs. 4b, 5b, 6b, and 7b); the
alkali content are relatively similar in all the low-P runs (Figs. 4d and 5d). In the high-P runs,
within 1200–900 °C (in the low-H₂O content run) and 1100–750 °C (in the high-H₂O content
run), rhyolite-MELTS calculated liquid composition is greater in the alkali contents compared to
the HPx-mb16 liquid composition (up to 2–3 wt%; Figs. 6d and 7d).
Overall, liquid compositions show the greatest difference at lower temperatures, closer to the solidus: the low-\(P \) runs are the most similar (especially CaO and alkalis; Figs. 4 and 5), whereas in the high-\(P \) runs, compositional differences are more distinct (especially in the case of SiO\(_2\), Al\(_2\)O\(_3\), and H\(_2\)O; Figs. 6 and 7).

Mineral compositions. Details of the mineral chemical evolution and the results derived from both models can be found in Appendix 1 and in the Supplementary Figures S2–S5. Among the most important differences is that the clinopyroxene shows similar Mg\# \([\text{Mg}\# = \text{Mg}/(\text{Fe}\text{2+} + \text{Mg})]\) at temperatures near the liquidus, but with decreasing temperature, rhyolite-MELTS predicts higher clinopyroxene Mg\# values compared to HPx-mb16 in all runs. Plagioclase anorthite content is systematically higher in HPx-mb16 at any temperature compared to rhyolite-MELTS in all the runs. In the high-\(P \) runs, garnet Mg\# values are systematically higher in rhyolite-MELTS compared to HPx-mb16 at any given temperature; almandine and grossular contents are systematically higher and pyrope contents lower in HPx-mb16. Calculated amphibole compositions are substantially different between rhyolite-MELTS and HPx-mb16, reflecting the complexity and difficulty modeling \(a-X \) relations in multisite-multicomponent amphibole phases using available experimental data (Supplementary Table S4). The Si, Mg\# and Ca contents are systematically higher in rhyolite-MELTS than in HPx-mb16 at any given temperature in the high-\(P \)–high-H\(_2\)O run.

TRACE-ELEMENT SIGNATURES OF MODEL LIQUIDS

Here, we explore the effect of calculated phase relations on the trace-element signatures of the liquids. We used calculated liquid and solid fractions (Supplementary Table S5) along with
liquid–mineral partition coefficients to model the liquid trace-element signatures at (1) 900 °C in
the low-P–low-H₂O run, (2) 1000 °C in the high-P–low-H₂O run, and (3) 850 °C in the high-P–
high-H₂O run. These three scenarios were selected because of the markedly different predicted
equilibria between the models. Trace-element modeling was performed at the given state point
using mass balance equations found elsewhere (e.g., Shaw, 2006; Spera et al., 2007). A wide
selection of variably incompatible trace elements was chosen, and partition coefficients were
from Bédard (2006) (Supplementary Table S6). To highlight the similarities and differences in
trace element signatures resulting solely from phase assemblage differences, constant liquid–
mineral partition coefficients (for each mineral) were used. The starting bulk trace-element
composition was that of mean N-MORB from Gale et al. (2013). The results are given in Table 3
and illustrated in normalized incompatible trace-element diagrams and REE diagrams in Figure
8.

In the low-P–low-H₂O run at 900 °C, the stable phase assemblage predicted by rhyolite-
MELTS is liquid–plagioclase–orthopyroxene–clinopyroxene–magnetite (Fig. 1c). The calculated
liquid trace-element pattern (Figures 8a and b) is relatively enriched in Ta and Zr, and depleted
in Ba, Pb, Sr, Eu, and Ti. The liquid composition is further characterized by a low Sr/Y ratio
(Sr/Y = 0.44; Table 3), and is not strongly fractionated in REE (La/Yb = 1.86; Table 3). The
chondrite-normalized REE pattern shows a strong negative Eu anomaly (Eu/Eu* = [Eu/(Sm x
Nd)]⁰.⁵ = 0.07; Table 3), and is characterized by a flat heavy-REE (HREE) slope (Yb/Gd = 0.62;
Table 6). The calculated paragenesis using HPx-mb16 is liquid–plagioclase–amphibole–
orthopyroxene–clinopyroxene–ilmenite (Fig. 1c). While the HPx-mb16 liquid compositions
show relatively lower concentrations of all the considered trace elements, most of trace elements
are similar to those calculated with rhyolite-MELTS. Exceptions are Ta, Gd and Tb which are
much lower in concentration in HPx-mb16. The liquid composition is characterized by low Sr/Y
(Sr/Y = 0.76) and La/Yb (La/Yb = 2.26) ratios (Table 3), a strong Eu negative anomaly (Eu/Eu*
= 0.12; Table 3), and a flat HREE slope (Yb/Gd = 0.78; Table 3).

In the high-\(P\)–low-H\(_2\)O run, the stable phase assemblage at 1000°C for the rhyolite-
MELTS run is liquid–plagioclase–clinopyroxene–garnet (Fig. 2c). The calculated trace-element
compositions are shown in Figures 8c and d. The liquid incompatible trace-element pattern is
slightly enriched in Ta and Ti but depleted in Ba and Sr, and further characterized by a moderate
Sr/Y ratio (Sr/Y = 10.93; Table 3). It is also strongly fractionated in light to heavy REE (La/Yb =
35.24; Table 3) because garnet is a stable phase. The REE pattern does not show a negative Eu
anomaly (Eu/Eu* = 0.30; Table 3), and is characterized by a steep HREE slope (Yb/Gd = 0.18;
Table 3). The paragenesis in HPx-mb16 is liquid–plagioclase–amphibole–orthopyroxene–
clinopyroxene–ilmenite (Fig. 2c). The incompatible trace-element pattern of HPx-mb16 is
similar to that of rhyolite-MELTS for highly incompatible elements, but there are significant
differences in terms of Eu, Gd, Ta, and HREE; the liquid composition is also characterized by a
low Sr/Y ratio (Sr/Y = 0.80; Table 3). The REE pattern is not fractionated (La/Yb = 2.12; Table
6), shows a strong negative Eu anomaly (Eu/Eu* = 0.12; Table 3), and is enriched in HREE
(Yb/Gd = 0.72; Table 3).

In the high-\(P\)–high-H\(_2\)O run at 850 °C, the paragenesis predicted by MELTS is liquid–
clinopyroxene–garnet (Fig. 2d). The calculated trace-element compositions are shown in Figures
8e and f. The calculated incompatible trace-element pattern is slightly enriched in Pb, Sr, and Ti
and slightly depleted in Th. The liquid composition has a high Sr/Y ratio (Sr/Y = 142.48; Table
3) and is strongly fractionated in LREE/HREE (La/Yb = 74.96; Table 3) due to residual garnet.
The REE pattern further shows a small positive Eu anomaly (Eu/Eu* = 0.48; Table 3), and is
characterized by a steep HREE slope ($Yb/Gd = 0.17$; Table 3). The calculated paragenesis in HPx-mb16 is liquid–amphibole–orthopyroxene–clinopyroxene–garnet–titanite (Fig. 2d). The incompatible trace-element pattern is depleted in highly incompatible elements but enriched in more compatible elements relative to that of the rhyolite-MELTS liquid. The pattern is further characterized by a slight enrichment in Pb, Sr, and Zr and depletion in Ti; the liquid composition has a moderate Sr/Y ratio ($Sr/Y = 12.07$; Table 3). The REE pattern is not fractionated ($La/Yb = 3.54$; Table 3), does not show an Eu negative anomaly ($Eu/Eu^* = 0.37$; Table 3), and is enriched in HREE ($Yb/Gd = 0.81$; Table 3).

Contrasting liquid trace-element signatures: the effect of contrasting mineral assemblages

As discussed in the previous sections, both models yield significant differences in calculated phases and their relative abundances. Unsurprisingly, this directly affects the trace-element signatures of the liquids. For example, partitioning of Ba, Sr, and Eu into plagioclase (Gromet and Silver, 1983), means that the increase of plagioclase stability at higher temperatures in HPx-mb16 relative to rhyolite-MELTS and the differences in plagioclase proportion will lead to differences in the concentrations of the Ba, Sr, and Eu in liquids in equilibrium with their associated crystals at each state point (Fig. 8; Table 3). The considerable effect of the discordant phase equilibria on the trace-element budget is also well illustrated by the contrasting garnet stabilities in the different models. Garnet is more stable in all rhyolite-MELTS calculations, and since it is an important HREE repository (e.g., Bea et al., 1994), its fractionation causes notable HREE depletions in the corresponding rhyolite-MELTS liquid compositions (Fig. 8; Table 3).

The HPx-mb16 trace-element patterns always show negative Ti anomalies, whereas trace-element patterns of rhyolite-MELTS calculations only show negative Ti anomalies in the
high-\(P\)--low-H\(_2\)O case (Fig. 8; Table 3). The negative Ti anomalies in HPx-mb16 trace-element patterns are controlled by partitioning of Ti into titanite, ilmenite, and amphibole (where present), whereas such phases are never stable in rhyolite-MELTS calculations. In the only example where there is a negative Ti anomaly (Fig. 8; Table 3) in rhyolite-MELTS, the main Ti repository is magnetite.

A key difference in the mineral assemblage predicted by rhyolite-MELTS and HPx-mb16 models is the presence of amphibole. This mineral has relatively high partition coefficients for MREE and HREE (Table S6; Bédard, 2006) likely accounting for the depletition in MREE and HREE contents in amphibole-rich HPx-mb16 calculations compared to those of rhyolite-MELTS, as well as to HPx-mb16 calculations with less amphibole (Fig. 8; Table 3).

Other trace elements (e.g., Cs, Rb, Th, U, and light-REE) are mainly incompatible to the solid phases present in the calculations, thus the concentrations in the melt are only slightly affected by the choice of the thermodynamic model (Fig. 8; Table 3). Rather subtle relative differences in their concentrations can be observed in the high-\(P\)--high-H\(_2\)O run (Fig. 8; Table 3). Highly incompatible elements may thus generally represent better proxies to model crystallization or anatectic processes with both rhyolite-MELTS and HPx-mb16, since they are less prone to differ significantly with model choice.

COMPARING MODELS TO PETROLOGICAL EXPERIMENTS

To further assess the robustness of the phase equilibria models, we compared model predictions with results from low- and high-\(P\) petrological experiments. We selected the experimental studies of Berndt et al. (2005) and Sen and Dunn (1994) as benchmarks for the comparison. We used the synthetic MORB B1 composition from Berndt et al. (2005) and compared the phase
We calculated phase equilibria at 0.2 GPa and 950 °C and 1000 °C. These conditions correspond to their runs 148 and 153 (their Table 3c). The data in Berndt et al. (2005) were not used in either rhyolite-MELTS or HPx-mb16 calibrations. In addition, we utilized the natural basaltic amphibolite from the Sen and Dunn (1994) experiment and compared the phase equilibria at 1.5 GPa and 975 °C and 1025 °C. These conditions correspond to their runs B17 and M2 (their Table 2). Although data from Sen and Dunn (1994) were not used to calibrate HPx-mb16, Sen and Dunn data did form a very small part of the data used to calibrate rhyolite-MELTS (Ghiorso et al., 2002). The Berndt et al. (2005) experiments considered oxygen fugacities corresponding to the FMQ buffer whereas the Sen and Dunn (1994) oxygen fugacity corresponds to FMQ = + 0.5. Here, for simplicity, calculations with both rhyolite-MELTS and HPx-mb16 where run along the FMQ buffer. Phase proportions from the Berndt et al. (2005) and Sen and Dunn (1994) experiments as well as phase equilibria calculations with rhyolite-MELTS (v1.2.0) and HPx-mb16 are shown in Figure 9 and given in Table 4; experimental and calculated liquid compositions are given in Table 5.

MORB B1 of Berndt et al. (2005)

Phase equilibria at 950 °C slightly differs between the models and experiment 153 (Fig. 9a; Table 4). Liquid–olivine–clinopyroxene–plagioclase–amphibole–H$_2$O is the observed paragenesis in the experiment. Rhyolite-MELTS differs from the experiment in that it stabilizes orthopyroxene and a small amount of magnetite but not amphibole. HPx-mb16 stabilizes amphibole, clinopyroxene, and plagioclase as in the experiment but with additional orthopyroxene and a small amount of ilmenite and no olivine. The liquid proportion in the experiment is similar to that predicted in HPx-mb16 but significantly lower in rhyolite-MELTS. Clinopyroxene and plagioclase proportions are relatively similar in HPx-mb16 compared to the
experiment; rhyolite-MELTS predicts higher proportions of these phases than both HPx-mb16 and the experiment. The olivine proportion is higher in the rhyolite-MELTS model compared to the experiment. On the other hand, the proportion of amphibole observed in the experiment is similar to that predicted by HPx-mb16. In general, HPx-mb16 is able to better reproduce the phase relations from the experiment. The rhyolite-MELTS liquid composition is relatively similar to that of the experiment in terms of MgO and CaO contents whereas the HPx-mb16 liquid composition is in relative agreement with regards to all the other major oxides (Table 5). Significant differences include the MgO and K$_2$O contents; for instance, the liquid’s MgO content in rhyolite-MELTS is within ~5% of the experiment whereas the K$_2$O content is within ~382% of the experiment. By contrast, the the HPx-mb16 calculated MgO content is within ~115% of the experiment whereas the K$_2$O content is within ~74% of the experiment. Note that the large relative difference in the K$_2$O content is exacerbated by low K$_2$O contents.

At 1000 °C, the rhyolite-MELTS and HPx-mb16 models, and the experiment of Berndt et al. (2005) show the same phase assemblage, melt–olivine–clinopyroxene–plagioclase–H$_2$O, with the exception of a very small amount of ilmenite that is predicted in HPx-mb16. However, the phase proportions are somewhat different (Fig. 9b; Table 4); both rhyolite-MELTS and HPx-mb16 predict considerably less liquid than observed in the experiment, and both models predict more plagioclase. Rhyolite-MELTS predicts slightly more olivine than measured in the experiment whereas the HPx-mb16 predicts slightly less olivine than in the experiment. Modeled and experimental clinopyroxene proportions are similar. Overall, rhyolite-MELTS is able to better reproduce the phase equilibria from experiment 148. The HPx-mb16 calculated liquid composition is relatively similar to that of the experiment in terms of SiO$_2$, Al$_2$O$_3$, and H$_2$O contents, whereas the rhyolite-MELTS liquid composition is in reasonable agreement with the
experiment for all the other major oxides (Table 5). Important differences in the compositions include the MgO and K$_2$O contents; for example, the MgO liquid content in rhyolite-MELTS is within ~3% of the experiment whereas the liquid’s K$_2$O content is within ~38% of the experiment. On the other hand, the HPx-mb16 calculated liquid MgO content is within ~74% of the experiment and the K$_2$O content within ~51% of the experiment.

Natural basaltic amphibolite of Sen and Dunn (1994)

The stable phase assemblage in the 975 °C experiment M2 is liquid–clinopyroxene–plagioclase–amphibole–garnet–rutile. Rhyolite-MELTS model does not stabilize plagioclase, amphibole, or rutile, whereas HPx-mb16 stabilizes the same experimental phase assemblage with the exception of plagioclase (Fig. 9c; Table 4). Phase proportions are relatively different between both models and the experiment; the calculated liquid fractions are considerably higher than in the experiment. The calculated clinopyroxene proportion in HPx-mb16 is similar to that in the experiment but considerably higher in rhyolite-MELTS. Similarly, the garnet proportions predicted by both models are significantly higher than in the experiment. The calculated amphibole proportion in HPx-mb16 is relatively less than in the experiment. Rutile occurs as minor phase in both HPx-mb16 and the experiment. In general, HPx-mb16 better reproduces the phase relations at 975 °C. The rhyolite-MELTS liquid composition is relatively similar to that of the experiment in terms of FeOt and MgO liquid contents whereas the HPx-mb16 liquid composition is in relative agreement with the experiment for all the other major oxides (Table 5). Significant differences include the FeOt and K$_2$O contents; for instance, the FeOt liquid content in rhyolite-MELTS is within ~29% of the experiment whereas the liquid K$_2$O content is within...
~86% of the experiment. On the other hand, the HPx-mb16 calculated FeOt liquid content is within ~73% of the experiment and the K$_2$O content is within ~32% of the experiment.

The observed paragenesis at 1025 °C in the Sen and Dunn (1994) experiment B17 is liquid–clinopyroxene–amphibole–garnet–rutile. HPx-mb16 predicts the same phases, whereas rhyolite-MELTS differs from the experiment in that it stabilizes neither amphibole nor rutile.

Proportions of most other phases are fairly similar between the computed models and the experiment, although HPx-mb16 predicts relatively more liquid and less clinopyroxene (Fig. 9d; Table 4). The proportion of garnet calculated with rhyolite-MELTS is considerably higher than in the experiment, whereas HPx-mb16 predicts a relatively higher amount of garnet. The amphibole proportion observed in the experiment is similar to that predicted by HPx-mb16.

Rutile occurs as a minor phase in both HPx-mb16 and the experiment. In general, HPx-mb16 better reproduces the phase relations of the experiment M2. The rhyolite-MELTS liquid composition is relatively similar to that of the experiment in terms of SiO$_2$, FeOt, and MgO contents, whereas the HPx-mb16 liquid composition is in relative agreement with all other major element oxides (Table 5). Important differences include the FeOt and Na$_2$O contents; for example, the FeOt liquid content in rhyolite-MELTS is within ~32% of the experiment whereas the liquid Na$_2$O content is within ~79% of the experiment. By contrast, the HPx-mb16 calculated FeOt is within ~78% of the experiment and the liquid’s Na$_2$O content within ~1% of the experiment.

DISCUSSION

Although a minor oxide and therefore not as important as many of the major element oxides, the lack of the TiO$_2$ component in the Green et al. (2016) liquid $a–X$ relations precludes accurately
modeling phase equilibria at or near liquidus conditions using HPx-mb16 in the NCKFMASHTO
system. As TiO$_2$ cannot be incorporated into the liquid, there is always a Ti-bearing stable phase
at high-T; this, in turn, affects the overall phase equilibria including the liquid compositions. For
instance, rhyolite-MELTS predicts the liquidus at \sim1340–1100 °C, whereas in the HPx-mb16
model is unable to model these conditions; clinopyroxene and/or plagioclase, and a Ti-bearing
phase are already present at the liquidus conditions predicted by rhyolite-MELTS (Figs. 1 and 2).
Recently, Holland et al. (2018) and Tomlinson and Holland (2021) published a–X relations for
relevant crystalline solutions enabling modeling of peridotitic to granitic liquids. This set of a–X
relations includes more complex liquid and clinopyroxene a–X relations (including TiO$_2$ and
Fe$_2$O$_3$ in the liquid, and TiO$_2$ and K$_2$O in the clinopyroxene) than in the a–X relations from HPx-
mb16. In the first instance, this set of a–X relations might represent a better approach to
modeling suprasolidus processes than HPx-mb16; yet, a recent study indicates that phase
equililibria calculated with the Holland et al. (2018) relations are not significantly different from
calculations performed with HPx-mb16; moreover, HPx-mb16 produces similar compositions
and better reproduces the FeO$^+$ and MgO liquid contents from experiments than the Holland et al.

When comparing our model predictions to experiments, rhyolite-MELTS and HPx-mb16
better reproduce phase equilibria within the P–T conditions in which they were calibrated to be
used. The phase equilibria predicted by rhyolite-MELTS are broadly similar to the high-T
experiments compared to those predicted by HPx-mb16 (Fig. 9; Tables 4 and 5); by contrast, at
temperatures less than \sim1000 °C, HPx-mb16 provides more robust liquid-present phase
equilibria (Fig. 9; Tables 4 and 5) as it better reproduces the considered experiments compared to
rhyolite-MELTS. Importantly, as shown in some works (e.g. White et al., 2007; Green et al., 2016), HPx-mb16 is able to accurately capture subsolidus equilibria.

One of the key differences between the rhyolite-MELTS and HPx-mb16 models is how H$_2$O is partitioned in the liquid and hydroxyl (OH$^-$) in the crystalline phases. Amphibole is predicted in HPx-mb16 calculations whereas amphibole stability and modal abundance are quite limited in rhyolite-MELTS (Figs. 1 and 2; Table 2). In the calculations presented here, rhyolite-MELTS partitions H$_2$O into liquid and/or analcime and/or a coexisting fluid phase (Figs. 1 and 2; Table 2). These results illustrate the acknowledged limitation of rhyolite-MELTS in modeling amphibole (and biotite)-bearing phase equilibria (http://melts.ofm-research.org/; Ghiorso and Gualda, 2015). The HPx-mb16 model may therefore be the best choice to model equilibrium melting and crystallization in scenarios where significant amounts of modal amphibole are observed or predicted.

While not considered in our present study, the use of the HPx-mb16 model to study fractional crystallization or any other open-system process would be relatively laborious for this task with the current software available (i.e., Theriak-Domino, Perple_X, and THERMOCALC), although several works using these software have successfully modeled open-system processes (e.g., Yakymchuk and Brown, 2014; Kendrick and Yakymchuk, 2020; Stuck and Diener, 2020; Johnson et al., 2021; Hernández-Montenegro et al., 2021).

Furthermore, it is important to note that recent comparative study assessing the robustness of the Green et al. (2016) clinopyroxene and amphibole a--X relations shows discrepancies between the phase equilibria calculations and natural rocks in the proportions and compositions (Forshaw et al., 2019; Santos et al., 2019); yet, our comparisons with the experiments show that the difference in proportions are not as significant as suggested in those
studies. We argue that these different outcomes may be related to different bulk-rock compositions used in the comparisons.

IMPLICATIONS

From the examples presented here, the lesson is clear: the modeling tool choice, and an understanding of model constraints, uncertainties, and the similarities (and differences) among models are critical to accurately convey the geological implications of a computational result. Below, we highlight selected examples of how model choice can influence geologic interpretations. The examples cited below are illustrative since we only present a small subset of possible compositions and conditions, and yet, the underlying principal conclusion likely remains relevant to all model-based studies of the magmatic evolution of the crust and upper mantle.

HPx-mb16 and rhyolite-MELTS yield distinctly different minerals assemblages for some of the runs. For example, at 850 °C in the low-\(P\)–high-\(H_2O\) run, the crystalline phases in equilibrium with liquid predicted by rhyolite-MELTS correspond to a granulitic assemblage whereas in HPx-mb16, an amphibolite-like assemblage is predicted (Figs. 1b and d). Similarly, at 800 °C in the high-\(P\)–low-\(H_2O\) run, rhyolite-MELTS predicts a plagioclase-bearing garnet pyroxenite crystalline assemblage whereas HPx-mb16 predicts a garnet amphibolite crystalline assemblage (Figs. 2a and c; Table 2). As a consequence of the difference in amphibole stability, the distribution of \(H_2O\) content among solid phases is different depending on the modeling tool. This has important implications for modeling crustal anatexis and growth processes. For example, the fertility (i.e., the potential to melt) of these solid assemblages will differ significantly; amphibole dehydration melting of the amphibolitic cumulate would promote
greater liquid fractions (for the same pressure and temperature conditions) compared to the dry granulitic and/or pyroxenite cumulate; different modeling approaches will lead to different volumes of liquid, and thus in different crustal growth rates. The differences of the calculated phases can also affect petrophysical properties such as density, seismic velocities, and thermal conductivity (e.g., Carlson and Miller, 2004; Whittington et al, 2009). For example, at 900 °C in the high-\(P\)–high-\(H_2O\) run (Figs. 2a and c; Table 2), the dry crystalline assemblage predicted by rhyolite-MELTS (i.e., the garnet pyroxenite) has a significantly higher density (\(\rho = 3.59\) g/cm\(^3\)) than the hydrated mineral assemblage predicted by the HPx-mb16 model (\(\rho = 2.82\) g/cm\(^3\)); such differences may influence interpretations invoking crustal foundering via gravitational instabilities which in turn may drastically affect the compositional stratification of the crust. Differences in thermal diffusivity would also be expected between the hydrous and anhydrous mineral assemblages, which would affect heat flow and the associated local geotherms. Thus, the choice of modeling approach may yield different interpretations for the development of chemical stratification of continental crust, the potential for crustal delamination, and the thermal and rheological crustal structure.

Observed differences between the calculated liquid compositions may have important implications for forward modeling of igneous processes. For instance, different calculated melt compositions may lead to distinct liquid lines of descent representing different magma series (Fig. 3; e.g., Carmichael et al, 1974). In the low-\(P\)–high-\(H_2O\) run, the HPx-mb16 liquid composition produced by equilibrium crystallization follows a subalkaline tholeiitic trend whereas the liquid calculated with rhyolite-MELTS evolves first along a subalkaline trend but then follows an alkaline series trend when equilibrium crystallization is greater than 50% complete (Fig. 3b). These model differences could lead to differences in, for example,
hypotheses about tectonic setting. Furthermore, our results show that calculated liquid compositions diverge more at near-solidus temperatures, the difference being greater in the high-P calculations (Fig. 3). These differences have implications for modeling processes such as crustal assimilation because the composition of small degree (near solidus) anatectic melts can have profound impact on the major and trace element, isotopic, and phase equilibria signatures of crustally contaminated magmas (e.g., Bohrson et al., 2014). Our results therefore concur with the recognized limitation of thermodynamic modeling at “lower” temperatures, particularly using rhyolite-MELTS (http://melts.ofm-research.org/) (e.g., rhyolite-MELTS is suggested to perform best when a silicate liquid is present in the phase assemblage, as illustrated in the comparison with the experiments (Fig. 9; Tables 4 and 5).

The difference in the calculated liquid compositions coupled with the calculated solid fractions may significantly impact interpretation of tonalite-trondhjemite-granodiorite (TTGs) and adakite petrogenesis. The major elements commonly used to identify and classify TTGs and adakites (e.g., high Mg$\#$ and low K$_2$O/Na$_2$O) are some of the elements that vary the most between the models. (Figs. 4–7), complicating their use in documenting the petrogenesis of such rocks (e.g. Moyen, 2011; Palin et al., 2016; Hernández-Uribe et al., 2020). The solid assemblage controls the trace-element liquid signature, which has been considered diagnostic of the source depth and composition of the liquid (Moyen and Martin, 2012). TTGs are subdivided into high-, medium-, and low-pressure groups based on the Sr/Y and La/Yb ratios, which are controlled by garnet, plagioclase, rutile, and amphibole stabilities (Moyen, 2011; Moyen and Martin, 2012). According to our results, the presence or absence, and abundance of such phases may vary substantially between the two thermodynamic models examined here (Figs. 1 and 2; Table 2). For example, garnet stability is increased in rhyolite-MELTS compared to HPx-mb16, whereas
plagioclase stability is expanded to higher temperatures in HPx-mb16 but generally predicted in lower proportions (Figs. 1 and 2). Such differences could easily lead to contrasting trace-element signatures (Table 3) and thus result in different explanations for tectonic environments of formation for TTGs (e.g., slab melting during subduction vs. melting of a thickened crust; Martin et al., 2014; Palin et al., 2016; Johnson et al., 2017). This emphasizes the need for careful consideration of model limitations and uncertainties.

Statements about model performance are nuanced and must be thoughtfully considered depending on the particular application under study, including the inherent geological uncertainties not associated with the thermodynamic model per se. There may be cases where the geological uncertainties are larger than the model uncertainties or vice versa. A careful parsing of all uncertainties—intermodel, intramodel and geologic—is critical when applying thermodynamic models to Earth systems.

The comparisons presented in this study are illustrative not exhaustive. We performed equilibrium modeling using a single bulk composition (N-MORB) over a modest range of pressures and bulk H\textsubscript{2}O contents. We did not consider fractional or open-system processes, nor other redox conditions; such comparisons are outside of the scope of a single paper. In felsic and/or open systems, which often show considerably higher degrees of geochemical heterogeneity, the differences between the models may be larger, especially when amphibole and sheet silicate crystalline solutions are more abundant. We hope our work spurs additional work including further comparative examination of other thermodynamic conditions (composition, volatiles, redox, pressure, phase assemblages) and models.

From our limited set of comparative calculations, there are three major points. The first is that our results show how the choice of petrological modeling tool can influence conclusions.
about associated geological processes. We have shown that for the same model input (e.g., $P\text{-}T\text{-}H_2O$), model choice may lead to different interpretations of crustal structure, density, and melting systematics. The second point is that different models are better suited to modeling different $P\text{-}T$ ranges, and that studies such as ours are needed to highlight these differences for users more comprehensively. For example, HPx-mb16 is likely better suited for modeling water-rich systems with hydrous mineral phases (e.g., volcanic arc settings) at lower temperatures, whereas rhyolite-MELTS may work better for drier systems at lower pressures and higher temperatures (e.g., MORB and OIB’s). Third, our work illustrates the importance of using multiple petrological indicators to assess the efficacy of one model versus another. Major- and trace-element and isotopic compositions of mineral phases as well as mineral proportions can enhance the choice of a best-fit model compared to using melt compositional data only.

While the current thermodynamic databases and $a\text{-}X$ relations for solid-solution phases used in the igneous and metamorphic petrology communities provide a framework for forward modeling of important igneous and metamorphic processes, the ultimate goal should be to develop an internally consistent thermodynamic database and $a\text{-}X$ relations applicable to both subsolidus metamorphic processes as well as suprasolidus igneous and metamorphic processes. This methodological development should proceed hand-in-hand with new petrological experiments that fill the current gap in knowledge (especially at high pressure conditions) and with a development of a user-friendly software with the capability to model the range of closed and open-system processes that are relevant to igneous and metamorphic systems (e.g., equilibrium/fractional melting/crystallization and crustal assimilation). In parallel with model development and enhancement, systematic comparative studies—such as the one presented here—are necessary to thoroughly assess and test predictions from different models and to
compare to experimental and natural data. We hope our study provokes others to continue to
explore the strengths and weaknesses of the available multicomponent and multiphase phase
equilibria tools.

ACKNOWLEDGMENTS

D. Hernández-UrIBE thanks M. Konrad-Schmölke and J. D. Hernández-Montenegro for help
with Theriak-Domino calculations. F. J. Spera acknowledges the support of the U.S. National
Science Foundation over the past fifty years. W. A. Bohrson received funding for this project
from the U. S. National Science Foundation and the Colorado School of Mines. The contribution
of J. S. Heinonen was supported by the Academy of Finland Grant 295129. Reviews by J. Brian
Balta and J. Diener greatly improved the manuscript and are gratefully acknowledged. A.
Acosta-Vigil is thanked for editorial handling.

REFERENCES

Asimow, P. D., and Ghiorso, M. S. (1998) Algorithmic modifications extending MELTS to

model for mid-ocean ridge basalts: Application to the Mid-Atlantic Ridge near the Azores.

Geochemistry, Geophysics, Geosystems, 5(1).

compositions and implications for magma crystallization. Journal of Geophysical

FIGURE CAPTIONS

Figure 1. Equilibrium phase assemblages at 0.25 GPa for a N-MORB composition. (a, b) rhyolite-MELTS and (c, d) HPx-mb16. (a, c) Low-H$_2$O (0.5 wt% H$_2$O) calculations. (b, d) High-H$_2$O (4 wt% H$_2$O) calculations. Mineral abbreviations follow Whitney and Evans (2010) with the exception of “L” and “F” which refer to liquid and fluid, respectively.

Figure 2. Equilibrium phase assemblages at 1 GPa for a N-MORB composition. (a, b) rhyolite-MELTS and (c, d) HPx-mb16. (a, c) Low-H$_2$O (0.5 wt% H$_2$O) calculations. (b, d) High-H$_2$O (4 wt% H$_2$O) calculations. Mineral abbreviations follow Whitney and Evans (2010) with the exception of “L” and “F” which refer to liquid and fluid, respectively.

Figure 3. Total alkali-silica (TAS) classification diagram (Le Bas et al., 1986) for the calculated N-MORB liquids (liquid compositions correspond to those presented in Figs. 1 and 2). Liquid compositions are shown every 10 °C from the liquidus to the solidus.
Figure 4. Liquid compositional evolution (wt%) at 0.25 GPa for a low-H$_2$O (0.5 wt H$_2$O) N-MORB composition. (a–f) Calculated liquid compositions as a function of temperature. (g–i) Liquid compositions shown in Harker diagrams. Approximate liquid fractions (wt%) are shown in (a) for comparison between modeling approaches. Mineral abbreviations follow Whitney and Evans (2010) with the exception of “L” and “F” which refer to liquid and fluid, respectively.

Figure 5. Liquid compositional evolution (wt%) at 0.25 GPa for a high-H$_2$O (4 wt H$_2$O) N-MORB composition. (a–f) Modeled liquid compositions as a function of temperature. (g–i) Modeled liquid compositions shown in Harker diagrams. Approximate liquid fractions (wt%) are shown in (a) for comparison between modeling approaches. Mineral abbreviations follow Whitney and Evans (2010) with the exception of “L” and “F” which refer to liquid and fluid, respectively.

Figure 6. Liquid compositional evolution (wt%) at 1 GPa for a low-H$_2$O (0.5 wt H$_2$O) N-MORB composition. (a–f) Modeled liquid compositions as a function of temperature. (g–i) Modeled liquid compositions shown in Harker diagrams. Approximate liquid fractions (wt%) are shown in (a) for comparison between modeling approaches. Mineral abbreviations follow Whitney and Evans (2010) with the exception of “L” and “F” which refer to liquid and fluid, respectively.

Figure 7. Liquid compositional evolution (wt%) at 1 GPa for a high-H$_2$O (4 wt H$_2$O) N-MORB composition. (a–f) Modeled liquid compositions as a function of temperature. (g–i) Modeled liquid compositions shown in Harker diagrams. Approximate liquid fractions (in wt%) are shown in (a) for comparison between modeling approaches. Mineral abbreviations follow Whitney and Evans (2010) with the exception of “L” and “F” which refer to liquid and fluid, respectively.

Figure 8. Liquid incompatible trace-element patterns at (a–b) 900 °C in the low-P–low-H$_2$O run, (c–d) 1000 °C in the high-P–low-H$_2$O run, and (e–f) 850 °C in the high-P–high-H$_2$O run. (a), (c),
and (e) normalized to primitive mantle (Sun and McDonough, 1989) and (b), (d), and (f) normalized to chondrite (McDonough and Sun, 1995). The orange line is mean N-MORB from Gale et al. (2013).

Figure 9. Phase proportion comparison experiments of basaltic compositions and model predictions. (a, b) Comparison with Berndt et al. (2005) experiments (BKH). (c, d) Comparison with Sen and Dunn, 1994 (SD). Phase proportions are shown on an anhydrous basis (recalcualted to 100%). In the SD experiments, rutile is also present as a trace phase. Rhyolite-MELTS models where calculated with rhyolite-MELTS v1.2.0. Mineral abbreviations follow Whitney and Evans (2010) with the exception of “L” and “F” which refer to liquid and fluid, respectively.

TABLE CAPTIONS

Table 1. Bulk-rock compositions used for petrological modeling (normalized wt%).

Table 2. Phase proportions of N-MORB at 0.25 and 1 GPa (wt%).

Table 3. Liquid trace-element compositions (ppm).

Table 4. Comparison of phase proportions between experiments of basaltic compositions and model predictions (wt%).

Table 5. Comparison of liquid compositions between experiments of basaltic compositions and model predictions (wt%).

SUPPLEMENTARY MATERIAL

Appendix 1. The Appendix 1 describes the phase evolution as well as the liquid and mineral composition evolution. The appendix also include the mineral composition comparison between
rhyolite-MELTS and HPx-mb16, Supplementary Tables S1–S4, and Supplementary Figures S1–S6.

Figure S1. Equilibrium phase assemblages at 0.25 GPa for a N-MORB composition in vol%. (a, b) rhyolite-MELTS and (c, d) HPx-mb16. (a, c) Low-H$_2$O (0.5 wt% H$_2$O) calculations. (b, d) High-H$_2$O (4 wt% H$_2$O) calculations. Mineral abbreviations follow Whitney and Evans (2010) with the exception of “L” and “F” which refer to liquid and fluid, respectively.

Figure S2. Equilibrium phase assemblages at 1 GPa for a N-MORB composition in vol%. (a, b) rhyolite-MELTS and (c, d) HPx-mb16. (a, c) Low-H$_2$O (0.5 wt% H$_2$O) calculations. (b, d) High-H$_2$O (4 wt% H$_2$O) calculations. Mineral abbreviations follow Whitney and Evans (2010) with the exception of “L” and “F” which refer to liquid and fluid, respectively.

Figure S3. Calculated clinopyroxene compositions (in atoms per formula unit, a.p.f.u.) at (a–f) 0.25 GPa and (g–l) 1 GPa. (a–c and g–i) Clinopyroxene compositions in a low-H$_2$O (0.5 wt%) MORB composition. (d–f and j–l) Clinopyroxene compositions in a high-H$_2$O (4 wt%) MORB composition. Mineral abbreviations are the same as in Figure 1.

Figure S4. Calculated anorthite content (An) in plagioclase. (a) Plagioclase compositions at 0.25 GPa for a low-H$_2$O (0.5 wt%) MORB composition. (b) Plagioclase compositions at 0.25 GPa for a high-H$_2$O (4 wt%) MORB composition. (c) Plagioclase compositions at 1 GPa for a low-H$_2$O (0.5 wt%) MORB composition. Mineral abbreviations are the same as in Figure 1.

Figure S5. Calculated orthopyroxene compositions (in atoms per formula unit, a.p.f.u.) at 0.25 GPa for a low-H$_2$O (0.5 wt%) MORB composition.

Figure S6. Calculated garnet compositional evolution (in end-member proportions) at 1 GPa for a low-H$_2$O (0.5 wt%) MORB composition.
Table S1. Components considered in the activity–composition relations used in this work (see text for detail).

Table S2. Liquid compositions of N-MORB at 0.25 GPa (wt%).

Table S3. Liquid compositions of N-MORB at 1 GPa (wt%).

Table S4. Amphibole composition comparison at 1 GPa (wt%).

Table S5. Phase proportions used for trace-element modeling (wt%).

Table S6. Partition coefficients from Bedard (2006).
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Figure 8
Figure 9
Table 1. Bulk-rock compositions used for petrological modelling (normalized wt%).

<table>
<thead>
<tr>
<th></th>
<th>N-MORB–0.5</th>
<th>N-MORB–4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>50.69</td>
<td>48.91</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>1.54</td>
<td>1.48</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>15.21</td>
<td>14.68</td>
</tr>
<tr>
<td>FeO$^+$</td>
<td>9.86</td>
<td>9.52</td>
</tr>
<tr>
<td>MgO</td>
<td>7.80</td>
<td>7.53</td>
</tr>
<tr>
<td>CaO</td>
<td>11.41</td>
<td>11.01</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>2.85</td>
<td>2.75</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>0.50</td>
<td>4.00</td>
</tr>
</tbody>
</table>

All compositions correspond to the mean N-MORB from Gale et al. (2013) but with different H$_2$O contents.
Table 2. Phase proportions of N-MORB at 0.25 and 1 GPa (wt%).

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>Opx</th>
<th>Cpx</th>
<th>Gtr</th>
<th>Fsp</th>
<th>Qz</th>
<th>Amp</th>
<th>Anl</th>
<th>Ilm</th>
<th>Mag</th>
<th>Ttn</th>
<th>Rt</th>
<th>F</th>
<th>Total</th>
<th>Solids</th>
<th>Fluid</th>
<th>Melt</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 Gpa</td>
<td></td>
</tr>
<tr>
<td>0.5 wt% H_2O</td>
<td></td>
</tr>
<tr>
<td>900 °C</td>
<td>7</td>
<td>18</td>
<td>31</td>
<td>41</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>93</td>
<td>7</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MELTS</td>
<td>9</td>
<td>13</td>
<td>26</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>HPx-mb16</td>
<td>13</td>
<td>14</td>
<td>31</td>
<td>38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 °C</td>
<td>30</td>
<td>6</td>
<td>28</td>
<td>33</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>MELTS</td>
<td>32</td>
<td>-</td>
<td>39</td>
<td>27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPx-mb16</td>
<td>50</td>
<td>-</td>
<td>25</td>
<td>23</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100 °C</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td><1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>MELTS</td>
<td>19</td>
<td>17</td>
<td>32</td>
<td>27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>HPx-mb16</td>
<td>26</td>
<td>3</td>
<td>21</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>4 wt% H_2O</td>
<td></td>
</tr>
<tr>
<td>900 °C</td>
<td>52</td>
<td>1</td>
<td>25</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>MELTS</td>
<td>88</td>
<td>3</td>
<td>8</td>
<td>-</td>
<td>100</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>HPx-mb16</td>
<td>84</td>
<td>-</td>
<td>13</td>
<td>-</td>
<td>100</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1 Gpa</td>
<td></td>
</tr>
<tr>
<td>0.5 wt% H_2O</td>
<td></td>
</tr>
<tr>
<td>800 °C</td>
<td>5</td>
<td>-</td>
<td>42</td>
<td>32</td>
<td>19</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>95</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>MELTS</td>
<td>0</td>
<td>-</td>
<td>26</td>
<td>15</td>
<td>27</td>
<td>4</td>
<td>27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>HPx-mb16</td>
<td>9</td>
<td>-</td>
<td>42</td>
<td>29</td>
<td>20</td>
<td><1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>91</td>
<td>9</td>
<td>100</td>
</tr>
<tr>
<td>900 °C</td>
<td>3</td>
<td>-</td>
<td>7</td>
<td>28</td>
<td>7</td>
<td>35</td>
<td>1</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>97</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>MELTS</td>
<td>13</td>
<td>-</td>
<td>44</td>
<td>25</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>87</td>
<td>13</td>
<td>100</td>
</tr>
<tr>
<td>HPx-mb16</td>
<td>13</td>
<td>-</td>
<td>11</td>
<td>31</td>
<td>-</td>
<td>36</td>
<td>6</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>87</td>
<td>13</td>
<td>100</td>
</tr>
<tr>
<td>1000 °C</td>
<td>22</td>
<td>-</td>
<td>47</td>
<td>17</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>78</td>
<td>22</td>
<td>100</td>
</tr>
<tr>
<td>MELTS</td>
<td>39</td>
<td>-</td>
<td>2</td>
<td>32</td>
<td>26</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>61</td>
<td>39</td>
<td>100</td>
</tr>
<tr>
<td>HPx-mb16</td>
<td>38</td>
<td>-</td>
<td>14</td>
<td>1</td>
<td><1</td>
<td>56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>77</td>
<td>23</td>
<td>100</td>
</tr>
<tr>
<td>4 wt% H_2O</td>
<td></td>
</tr>
<tr>
<td>800 °C</td>
<td>31</td>
<td>-</td>
<td>32</td>
<td>37</td>
<td>-</td>
<td>100</td>
<td>69</td>
<td>31</td>
<td>100</td>
</tr>
<tr>
<td>MELTS</td>
<td>34</td>
<td>-</td>
<td>21</td>
<td>1</td>
<td>-</td>
<td>43</td>
<td>-</td>
<td><1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>66</td>
<td>34</td>
<td>100</td>
</tr>
<tr>
<td>HPx-mb16</td>
<td>38</td>
<td>-</td>
<td>32</td>
<td>30</td>
<td>-</td>
<td>100</td>
<td>62</td>
<td>38</td>
<td>100</td>
</tr>
<tr>
<td>900 °C</td>
<td>50</td>
<td>-</td>
<td>26</td>
<td>-</td>
<td>23</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>MELTS</td>
<td>59</td>
<td>-</td>
<td>29</td>
<td>12</td>
<td>-</td>
<td>100</td>
<td>41</td>
<td>59</td>
<td>100</td>
</tr>
<tr>
<td>HPx-mb16</td>
<td>73</td>
<td>-</td>
<td>26</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>27</td>
<td>73</td>
<td>100</td>
</tr>
</tbody>
</table>

Mineral abbreviations follow Whitney & Evans (2010) with the exception of "L" and "F" which refer to liquid and fluid, respectively.
| Table 3. Liquid trace-element compositions (ppm) |
Table 4. Comparison of phase proportions between experiments of basaltic compositions and model predictions (wt%).

<table>
<thead>
<tr>
<th></th>
<th>0.2 GPa and 950 °C</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>0.2 GPa and 1000 °C</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>1.5 GPa and 975 °C</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BKH (153)</td>
<td>MELTS</td>
<td>HPx-mb16</td>
<td>% diff.</td>
<td>% diff</td>
<td>BKH (148)</td>
<td>MELTS</td>
<td>HPx-mb16</td>
<td>% diff.</td>
<td>% diff</td>
<td>SD (M2)</td>
<td>MELTS</td>
<td>HPx-mb16</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>L</td>
<td>19</td>
<td>6</td>
<td>18</td>
<td>-70</td>
<td>-3</td>
<td>49</td>
<td>37</td>
<td>33</td>
<td>-25</td>
<td>-31</td>
<td>12</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Ol</td>
<td>5</td>
<td>6</td>
<td>–</td>
<td>29</td>
<td>–</td>
<td>11</td>
<td>14</td>
<td>9</td>
<td>19</td>
<td>-24</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Opx</td>
<td>–</td>
<td>13</td>
<td>9</td>
<td>–</td>
</tr>
<tr>
<td>Cpx</td>
<td>26</td>
<td>31</td>
<td>24</td>
<td>21</td>
<td>-9</td>
<td>24</td>
<td>26</td>
<td>27</td>
<td>8</td>
<td>10</td>
<td>21</td>
<td>40</td>
<td>26</td>
</tr>
<tr>
<td>Pl</td>
<td>29</td>
<td>42</td>
<td>28</td>
<td>47</td>
<td>-1</td>
<td>16</td>
<td>24</td>
<td>30</td>
<td>53</td>
<td>90</td>
<td>9</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Amp</td>
<td>22</td>
<td>–</td>
<td>21</td>
<td>–</td>
<td>-8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>39</td>
<td>–</td>
<td>24</td>
</tr>
<tr>
<td>Ilm</td>
<td>–</td>
<td>–</td>
<td><1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mag</td>
<td>–</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>Grt</td>
<td>–</td>
<td>19</td>
<td>43</td>
<td>30</td>
</tr>
<tr>
<td>Rt</td>
<td>–</td>
<td>tr</td>
<td>–</td>
<td><1</td>
</tr>
</tbody>
</table>

1 Difference between the experiment and MELTS; 2 difference between the experiment and HPx-mb16. tr–trace; BKH–Berndt et al. (2005); SD–Sen & Dunn (1994). Mineral abbreviation of “L” which refers to liquid. Phase proportions are shown in an anhydrous basis (recalculated to 100%).
<table>
<thead>
<tr>
<th></th>
<th>0.2 GPa and 950 °C</th>
<th></th>
<th>0.2 GPa and 1000 °C</th>
<th></th>
<th>1.5 GPa and 925 °C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BKH (153) MELTS</td>
<td>iPx-mb1 % diff.</td>
<td>% diff.</td>
<td>BKH (148) MELTS</td>
<td>iPx-mb1 % diff.</td>
<td>% diff.</td>
</tr>
<tr>
<td>L fraction (wt. %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>55.77</td>
<td>59.67</td>
<td>55.60</td>
<td>7</td>
<td>0</td>
<td>50.83</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.13</td>
<td>0.30</td>
<td>-74</td>
<td>-</td>
<td>-</td>
<td>1.19</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.78</td>
<td>14.10</td>
<td>14.48</td>
<td>-16</td>
<td>-14</td>
<td>18.37</td>
</tr>
<tr>
<td>FeO</td>
<td>8.56</td>
<td>4.89</td>
<td>10.96</td>
<td>-43</td>
<td>28</td>
<td>8.16</td>
</tr>
<tr>
<td>MgO</td>
<td>2.40</td>
<td>2.28</td>
<td>5.16</td>
<td>-5</td>
<td>115</td>
<td>3.61</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.96</td>
<td>6.62</td>
<td>5.80</td>
<td>67</td>
<td>46</td>
<td>3.75</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.22</td>
<td>1.06</td>
<td>0.38</td>
<td>382</td>
<td>74</td>
<td>0.15</td>
</tr>
<tr>
<td>H₂O</td>
<td>4.88</td>
<td>6.36</td>
<td>4.42</td>
<td>30</td>
<td>-10</td>
<td>4.83</td>
</tr>
</tbody>
</table>

diff between the experiment and MELTS; tr–trace; BKH–Berndt et al. (2005); SD–Sen & Dunn (1994); L–liquid.