Niobium speciation in minerals revealed by $L_{2,3}$-edges XANES spectroscopy (Revision 4)

Authors: Quentin Bollaert1, Mathieu Chassé1, Hebatalla Elnaggar1,2, Amélie Juhin1, Alexandra Courtin3, Laurence Galoisy1, Cécile Quantin3, Marius Retegan4, Delphine Vantelon5, Georges Calas1

Affiliations:

1 Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France.

2 Debye Institute For Nanomaterials Science, Princetonneplein 13584 CC Utrecht, The Netherlands.

3 Université Paris Saclay, CNRS, UMR8148 GEOPS, 91405 Orsay Cedex.

4 European Synchrotron Radiation Facility, 71, Avenue des Martyrs, 38000, Grenoble, France.

The systematic mineralogy of niobium (Nb) is complex with more than one hundred species dominated by multicomponent oxides of similar chemistry. The determination of Nb speciation in solids (i.e. the distribution between the phases present and the crystal-chemical environment of Nb) is thus a challenge in geological contexts. Here, we present the first Nb L\textsubscript{2,3}-edges X-ray absorption near-edge structure (XANES) measurements on a variety of Nb minerals and synthetic oxides with geological relevance. The interpretation of Nb L\textsubscript{2,3}-edges XANES spectra in the light of crystal-field theory shows the sensitivity of spectra to local site symmetry and electronic environment around Nb atoms. Crystal-field multiplet simulations give estimates of the 10D\textsubscript{q} crystal-field parameter values for Nb5+, which range from 2.8 to 3.9 eV depending on Nb coordination and Nb–O distances. Rather than a 10D\textsubscript{q} vs. R−5 relationship (where R represents the average Nb–O bond distance) expected in a point-charge model, we find a R−3 dependence with the crystal-field splitting for reference materials with octahedrally-coordinated Nb. Complementary ligand-field multiplet simulations provide evidence of charge transfer between Nb and O. The contribution of the ionic and covalent characters to the Nb–O bonds is equivalent, unlike more ionic 3d metal–O bonds. This systematic characterization of the L\textsubscript{2,3}-edges XANES spectral properties of Nb provides information on the mechanisms by which Nb5+ substitutes for Fe3+, Ti4+ or Ce4+ in oxides common in geological contexts. Whereas the substitution of Nb5+ for Ce4+ does not modify the local structure of the cation site in cerianite, the substitution of Nb5+ for Ti4+ in rutile and anatase results in an increase of the cation-ligand distance and a decrease in the symmetry of the cation site. Conversely, the substitution of Nb5+ for Fe3+ in hematite and goethite results in a smaller cation site distortion. Our study demonstrates the usefulness of L\textsubscript{2,3}-edges XANES spectroscopy to determine Nb speciation in minerals in order to understand the processes of enrichment of this critical metal.

Keywords: Niobium, XANES, multiplet, 10D\textsubscript{q}, local structure, speciation
Niobium (Nb) is a quintessential critical element (European Commission 2020) used to manufacture superalloys, superconducting magnets and catalysts (Schulz et al. 2017). Niobium-based materials are also valued for the implementation of low-carbon technologies thanks to the unusual properties that arise from defects in their crystal structure (Ismael 2020, Ma et al. 2020). An increasing range of applications is expected to drive the future demand for Nb. This economic importance is exacerbated by the scarcity of Nb deposits. The incorporation of Nb into most common rock-forming minerals is limited by its low concentration on Earth (ca. 12 ppm in the upper continental crust; Rudnick and Gao 2003) and its geochemical properties. Only Nb$^{5+}$ occurs under oxygen fugacities relevant to lithospheric and surficial environments (Cartier et al. 2015), with the electronic configuration [Kr] 4d^0. This high valence and small ionic radius (0.64 Å in octahedral coordination; Shannon 1976) makes Nb a high-field-strength elements (HFSE) along with Zr, Sn, Hf, Ta, Pb, Th and U.

Niobium concentrates in silicic melts during partial melting and fractional crystallization until the precipitation of Nb minerals of the pyrochlore and columbite supergroups, which are among the last phases to form in most crystallization sequences (Linnen and Cuney 2005). When such rocks are exposed to weathering, the resistance of primary Nb minerals to alteration limits Nb leaching, making it one of the most immobile elements (Hill et al. 2000). Thus, it is used as a reference element for mass-balance calculations during weathering processes (Kurtz et al. 2000) or in environmental studies (Nabi et al. 2021). The formation of the largest Nb deposits is a consequence of this geochemical behavior, which leads to a significant residual enrichment during lateritic weathering of primary deposits, typically by an order of magnitude relative to the parent rock (Mitchell 2015).

Unambiguous identification of Nb minerals is needed to understand geological and geochemical processes concentrating Nb such as magmatic differentiation (Walter et al. 2018; Lee et al. 2006), metasomatic events (Wu et al. 2021) and supergene weathering (Lottermoser and...
England 1988; Wall et al. 1996). However, the similar crystal chemistry and the frequent
metamictization of Nb minerals make the analysis of Nb speciation using X-ray diffraction analyses
challenging. The most abundant phases are multicomponent oxides with the general formulas
AB₂O₆ (columbite-group minerals: e.g. columbite, euxenite, aeschynite) and A₂ₓB₂O₇ (pyrochlore-
group minerals: pyrochlore, betafite, samarskite). The eight-fold coordinated A-site, a square
antiprism, can be occupied by rare-earth elements (REE), Ca, U, Th, Fe, while the octahedral B-site
can be occupied by Ti, Nb, Ta and W and forms double chains in a zigzag pattern by sharing at least
two edges with neighboring octahedra (Ewing 1975). Due to strong interionic repulsion, most NbO₆
octahedra are distorted (Kunz and Brown 1995). Metamictization is common due to the presence of
radioactive elements (Zietlow et al. 2017). This process leads to the formation of local structures
made of corner-sharing octahedra at the expense of the edge-sharing linkages observed in
crystalline oxides (Ewing 1975).

Niobium is also found as a minor or trace element in oxide minerals. Hydrothermal events can
produce amorphous Fe oxides containing low amounts of Nb (Wu et al. 2021). In metasomatized
mantle peridotites, rutile may host more than 95% of the Nb budget (Kalfoun et al. 2002). Niobium
can also be enriched in Fe- and Ti oxides that occur as veinlets or weathering products in laterites
(Lottermoser and England 1988; Giovannini et al. 2017). These oxides highlight the capacity of
Nb⁵⁺ to substitute for cations such as Ti⁴⁺, Sn⁴⁺, W⁶⁺, Ce⁴⁺ and Fe³⁺ in various minerals (Černý and
Ercit 1989; Giovannini et al. 2017), which further complicates the determination of Nb speciation in
such geological contexts.

Here, we report the first systematic analysis of Nb L₂,₃-edges XANES spectra using a selected
set of Nb minerals (fluorcalciopyrochlore, hydropyrochlore, niocalite, Nb perovskite, columbite)
and synthetic oxides (Nb₂O₅, lueshite and Nb-substituted hematite, goethite, rutile, anatase and
cerianite). So far, only a few L₂,₃-edges XANES spectroscopic studies have been published on
The objectives of this work are thus twofold:
To relate spectral properties to the local electronic structure of Nb in crystalline materials by means of crystal-field and ligand-field multiplet (CFM and LFM) calculations. Such an approach has proven to be useful to model the bioavailability and mobility of Fe in terrestrial and subsurface environments (Bhattacharyya et al. 2019) and V speciation in fresnoite (Höche et al. 2013).

To investigate the processes by which Nb substitutes for Fe, Ti and Ce in oxides, which can serve as models for the major Nb-bearing oxides found in geological contexts and used in industry.

Overall, the present study on Nb speciation in geological contexts demonstrates how the sensitivity of Nb $L_{2,3}$-edges XANES spectroscopy can be used to better characterize and understand Nb mineralogy. In primary and lateritic deposits, deciphering Nb speciation will improve our understanding of Nb enrichment and may help to diversify the range of primary sources and to upgrade the efficiency of ore processing (Černý and Ercit 1989).

MATERIALS AND METHODS

Mineral synthesis procedures

Niobium-substituted Fe oxides (1 wt% Nb). The synthesis of Nb-bearing goethite (α-FeOOH) has been adapted from the hydrothermal synthesis of Sc-bearing Fe oxides at 70 °C (Chassé et al. 2017). Nb-bearing goethite was converted into Nb-bearing hematite (α-Fe$_2$O$_3$) by dehydroxylation at 300 °C for 2 h. The solid was washed using H$_2$SO$_4$ in order to remove potential adsorbed Nb species and poorly-crystallized material.

Niobium-substituted Ti oxides (5 wt% Nb). The synthesis of Nb-bearing anatase (TiO$_2$) has been carried out using a sol-gel method at moderate temperature (Dufour et al. 2012). Niobium-bearing rutile (5 wt%) was obtained by heating Nb-bearing anatase (5 wt%) at 700 °C for 3 hours. Niobium-bearing anatase samples with 1 and 10 wt% Nb were also synthesized following this procedure.
Niobium-substituted cerianite (1 wt% Nb). Niobium-bearing cerianite was synthesized using a high temperature solid-state reaction at 1,300 °C by homogenizing CeO$_2$, Nb$_2$O$_5$ and Nd$_2$O$_3$ powders (Olegário et al. 2013).

Lueshite. This reference material was obtained by following a hydrothermal synthesis procedure at 200 °C over 24 h based on the experimental procedure of Gouget et al. (2019).

Analytical methods

Powder X-ray diffraction (XRD) analyses. The successful completion of the syntheses was verified by X-ray diffraction analysis. X-ray diffraction was performed using a PANALYTICAL X’pert Pro MPD diffractometer. Measurements were carried out in Bragg-Brentano geometry using a Co Kα anode in order to minimize the X-ray absorption of Fe in hematite and goethite. Data were recorded with an X’Celerator detector between 3 °2θ and 90 °2θ with 0.017 ° steps. The incident beam mask was fixed at 20 mm and the Soller slits at 0.04 rad. Total counting time of measurement was 3 hours per sample. The crystal structure of synthetic compounds was checked using the International Centre for Diffraction Data (ICDD) references (PDF-2 database). No secondary niobian phase was detected on the XRD patterns of Nb-bearing Fe, Ti and Ce oxides confirming that the Nb ions were incorporated into the crystal lattice and substituted for Fe, Ce and Ti (Supplemental Figs. S1 and S2).

Single-crystal XRD. Single-crystal X-ray diffraction data were acquired on natural Nb reference materials using an Agilent Diffraction Xcalibur-S diffractometer equipped with a Sapphire CCD-detector with Mo Kα1 radiation (λ = 0.71073 Å, graphite monochromator) at 293 K. Data reduction, cell refinement and space group determination were performed using the CrysAlisPro software.

Electron microprobe (EMP) analyses. Electron microprobe (EMP) analyses were used to determine the crystal chemistry of the Nb reference materials sourced from mineralogical collections. Analyses were conducted on a CAMECA SX Five electron probe at the CAMPARIS facility (Sorbonne Université, Paris). After checking the homogeneity of the samples, two to seven
spots were probed on each sample at 15 kV and 40 nA for the major elements and at 15 kV and 299 nA for minor and trace elements. Wavelength-dispersive spectroscopy analyses were performed using the following standards: albite for Na, diopside for Mg, Si and Ca, orthoclase for Al and K, MnTiO$_3$ for Mn and Ti, hematite for Fe, BaSO$_4$ for Ba, topaz for F, LiNbO$_3$ for Nb, metallic Ta for Ta, SrSi for Sr, zircon for Zr, galena for Pb, monazite for Th, uraninite for U and allanite-(Y) for Y, La, Ce, Nd.

Acquisition of X-ray absorption spectra. Niobium L_3-edge (2360–2390 eV) and L_2-edge (2455–2485 eV) XANES spectra were recorded on LUCIA beamline at SOLEIL synchrotron radiation facility (Gif-sur-Yvette, France) operating with a storage ring current of 450 mA and energy of 2.75 GeV (Vantelon et al. 2016). A Si(111) double-crystal monochromator was used with an energy resolution of 0.25 eV at 2400 eV (Schaefers et al. 2007). The monochromator was calibrated at the energy of the Nb L_3-edge using Nb$_2$O$_5$. Due to the high Nb content of Nb minerals, spectra were recorded on cellulose-diluted pellets before being mounted on a holder. Pure pellets were used for synthetic Nb-substituted samples. Data were collected between 2300 and 2550 eV at room temperature, under vacuum, in fluorescence mode. Energy steps were (2, 0.2, 1, 0.2, 1) eV for energy ranges of (2300–2350), (2350–2400), (2400–2455), (2455–2490) and (2490–2550) eV, respectively, with a 1 s integration time. Two measurements per sample were sufficient to obtain a good signal-to-noise ratio and check the reproducibility of the edge features.

Data processing and simulations

Processing of X-ray absorption data. Data were processed using the Larch software (Newville 2013). The MBACK normalization algorithm was applied to prevent distortion in the XANES data and preserve the branching ratio (Weng et al. 2005). This method applies a single smooth background function over the entire $L_{2,3}$-edges data range rather than normalizing each edge independently. The normalization function is a first order Legendre polynomial (Supplemental Fig. S3) and the edge energy chosen as the input parameter of the MBACK function implemented in Larch is 2371 eV. The spectra of Nb-substituted hematite, Nb-substituted goethite, lueshite and
niocalite were trimmed beyond 2475 eV because the S K-edge hides the high-energy features of the Nb L₂-edge.

Niobium L₂,3-edges XANES features were fitted using three pseudo-Voigt functions in order to quantitatively compare and retrieve differences in the three features between the spectra. The continuum background was removed using an error function with fixed inflection points (2373.0 and 2467.0 eV) and large width (ca. 8 eV) to reproduce the slow onset of the electronic continuum (Brotton et al. 2007). No agreement or convention exists regarding the parameters of the background functions (Henderson et al. 2014) but similar procedures have been applied to Fe L₂,3-edges (Bourdelle et al. 2013) and Zr L₂,3-edges (Jollivet et al. 2013). An error function was preferred over the commonly-used arctangent because its width is related to the instrumental resolution rather than to the lifetime of the excited state, which is not known a priori. Because the best mathematical fits were obtained for a relative weight of Lorentzian to Gaussian components between 0.8 and 1.0 depending on the spectra, this parameter was fixed to 0.9 in all fits for comparative purposes.

Calculations of crystal-field and ligand-field multiplets. Simulations of the Nb L₂,3-edges spectra were performed using the Crispy software as implemented in the Quanty library (Haverkort 2016; Retegan 2019). Two approaches were tested to reproduce the spectral features. The first is a CFM calculation which takes into account the crystal-field effects acting on Nb. Ligand-field multiplet calculations offer a more comprehensive model by including ligand-to-metal charge transfer, i.e. by mixing in the ground state the 4d⁰, 4d¹L¹, 4d²L², 4d³L³ configurations through a hybridization Hamiltonian (more details on this notation are provided in Supplemental Material).

Crystal- and ligand-field multiplet calculations both require specific input parameters. To account for the lifetime broadening, Lorentzian functions with a full width at half-maximum of 1.66 eV and 1.87 eV for the L₃ and L₂-edges were used to simulate the features (Krause and Oliver 1979). The experimental Gaussian broadening was set to ca. 1.5 eV to best reproduce the experimental spectra. The simulations of the experimental spectra were carried out by finding the
best scaling factors for the Slater-Condon integrals that best account for direct and exchange interactions between the 2p–4d orbitals ($P_{pd}^{2} = 2.680$ eV, $G_{pd}^{1} = 1.627$ eV and $G_{pd}^{2} = 0.946$ eV for the free ion). The reduction of these values modifies the relative intensity of the features. The values of the 4d and 2p spin-orbit coupling parameters were kept close to the atomic values of 0.124 eV and 63.97 eV. The crystal-field splitting parameter ($10Dq$) was chosen to best reproduce the energy difference between the two features, which corresponds to the splitting of the final state of the d orbitals. The extra parameters required for LFM calculations are the hybridization strength V_{mix} (V_{t2g}, V_{eg}), the configuration-averaged energies of the charge transfer configuration ($E(4dL^{1})$–$E(4d^0)$), the core-hole potential U_{dc} and the average Coulomb interaction energies of a corresponding electron pair U_{dd}. Detailed explanations of these parameters and their influence on the spectral shapes are given in Supplemental Material (Supplemental Fig. S7).

RESULTS

Characteristics of niobium $L_{2,3}$-edges XANES spectra

The Nb $L_{2,3}$-edges XANES spectra (Fig. 1) are characterized by a split edge feature with two peaks (A and B features) followed by a peak of lower intensity, ca. 10 eV after the edge (C feature), as reported for other Nb-bearing materials (Sugiura et al. 1988; Wang et al. 2018). The energy of the L_{3}-edge features (A_{3}, B_{3}, C_{3}) varies around ca. 2372, 2376 and 2387 eV, respectively (Fig. 1a). The energy of the L_{2}-edge features (A_{2}, B_{2}, C_{2}) varies around ca. 2466, 2470 and 2481 eV, respectively (Fig. 1b). At the L_{3}-edge, the energy position and width of the A_{3} feature are stable. For the B_{3} features, these characteristics are prone to variations depending on the reference materials. The spectra of niocalite, Nb-substituted hematite and Nb-substituted goethite show narrower B_{3} features than the other reference materials. In contrast, the wide B_{3} feature of Nb perovskite spectra shows a shoulder at high energy ($B’_{3}$ at 2379–2380 eV, Fig 2h). In all compounds, C_{3} is of lower intensity than A_{3} and B_{3} with limited variation in position and width. Similar trends are observed at the L_{2}-edge.
Analysis of the niobium L$_{2,3}$-edges XANES spectra

Variation of the edge splitting. The ΔE parameter, corresponding to the energy splitting between the A and B features, ranges from ca. 2.6 to 4.0 eV at the L$_3$-edge and from ca. 2.3 to 4.0 eV at the L$_2$-edge (Table 2). Lueshite, Nb perovskite, fluorcalcio.pyrochlore and hydropyrochlore spectra have the largest ΔE values (ranging from ca. 3.6 to 4.0 eV). Most spectra have ΔE values between ca. 3.1 and 3.5 eV except for Nb-substituted cerianite spectra (ca. 2.6 and 2.3 eV at the L$_3$- and L$_2$-edges, respectively). Overall, the energy splitting at the L$_3$-edge follows the same trend ($R^2 = 0.94$) as the energy splitting at the L$_2$-edge (Supplemental Fig. S6a).

Variation of the intensity ratio. The intensity ratio between the A and B features (I_A/I_B) varies between ca. 0.8 and 2.1. It is higher at the L$_2$-edge (1.43) than at the L$_3$-edge (1.07). In most compounds, it ranges between ca. 1.0‒1.2 and 1.4‒1.6 at the L$_3$- and L$_2$-edges, respectively (Table 2). Intensity ratios of Nb-substituted cerianite and Nb$_2$O$_5$ spectra are below 1 at the L$_3$-edge (Fig. 2g). There is a strong positive correlation of this parameter between the two edges ($R^2 = 0.95$, Supplemental Fig. S6b).

Variation of the bandwidth. The ratio of the full width at half maximum of feature B with respect to feature A (FWHM$_{B/A}$), ranges between ca. 1.0 and 2.2 for both edges. The spectra of Nb-substituted goethite and hematite (Fig. 2c, 2d) have the lowest FWHM$_{B/A}$ values (ca. 1.1 and 1.4 at the L$_3$- and L$_2$-edges, respectively). Most spectra exhibit intermediate FWHM$_{B/A}$ values (ca. 1.4–1.7 and ca. 1.6–1.9 at the L$_3$- and L$_2$-edges, respectively). The spectra of Nb perovskite (Fig. 2h) stands out by its high FWHM$_{B/A}$ value (ca. 2.1 and 2.4 at the L$_3$-and L$_2$-edges, respectively). Niobium-substituted anatase spectra (Fig. 2f) are also characterized by high FWHM$_{B/A}$, especially at the L$_2$-edge (ca. 1.8–1.9 eV). On average, the width ratios at the L$_3$-edge (1.54) are smaller than those at the L$_2$-edge (1.73). The FWHM$_{B/A}$ parameter is correlated between the two edges ($R^2 = 0.93$ when the lueshite spectra are excluded as they deviate from the general trend, Supplemental Fig. S6c).

Multiplet calculations

Crystal-field multiplet calculations. The spectral features of Nb-substituted cerianite and
hematite are well reproduced by considering Nb in a regular polyhedron (O_h) (Figs. 3a and 3b) with crystal field values of 2.8 and 3.7 eV, respectively (Table 3). The spectra of hydropyrochlore and Nb perovskite are best modeled with a $10Dq$ value of 3.9 eV, which reproduces the splitting between the features (Figs. 3c and 3d). Nonetheless, the B’ features of low intensity at 2379–2380 eV are absent. The good reproduction of the intensity ratios of the spectra for Nb-substituted cerianite, hematite and hydropyrochlore results from the reduction of the Slater-Condon integrals to 50 %, an indication that the contribution of the ionic and covalent characters to the Nb–O bonds is equivalent. The high intensity ratios of Nb perovskite spectra (Table 2) are reproduced with Slater-Condon integrals reduced to 35 %.

Ligand-field multiplet calculations. We calibrated our calculations using Nb-substituted hematite spectra, which exhibit the simplest spectral features. Charge-transfer parameters (U_{dc}, U_{dd}, Δ, V_{mix}, Table 4) were chosen according to calculations done on Ti$^{4+}$ (3d^0)-compounds (Okada and Kotani 1993). The intensity of the features of Nb-substituted hematite spectra is improved and the C feature at ca. 2385 eV is reproduced when charge transfers are considered (Fig. 4). We also attempted to reproduce the B’ features in the spectra of hydropyrochlore and Nb perovskite by investigating the influence of the hybridization strength (V_{mix}) on the spectral shapes. Using the same charge-transfer parameters, the LFM calculation fails to explain the coexistence of B’ and C features visible on these spectra (Fig. 5).

DISCUSSION

$L_{2,3}$-edges XANES spectroscopy mirrors the electronic environment of niobium

Spectral energy splitting, interatomic distances and site symmetry. Niobium $L_{2,3}$-edges correspond to transitions to empty 4d states, making them sensitive to crystal-field effects. In the framework of crystal-field theory and given that O$^{2-}$ is the ligand of Nb$^{5+}$ in all of our reference materials, ΔE is correlated with the $10Dq$ crystal-field parameter, and therefore mirrors Nb$^{5+}$ site geometry and ligand distances.

The ΔE values range between 3.3 and 4.0 eV for octahedrally-coordinated Nb$^{5+}$. The ΔE...
variability among reference materials with Nb in octahedral environment is correlated with the average interatomic distances ($R^2 = -0.80$), as expected from the relationship between $10Dq$ and the inverse fifth power of the average interatomic distance (i.e. R^{-5}) (Fig. 6) in a point-charge model (Burns 1993). Nonetheless, the experimental data are best fitted with a function proportional to R^{-3} ($\chi^2 = 0.17$), rather than a function proportional to R^{-5} ($\chi^2 = 0.26$). Other studies indicate similar deviation from the expected theoretical R^{-5} dependence with crystal-field splitting ($R^{-8.3}$ in Lebernegg et al. 2008; R^{-2} in Wang et al. 2018). The energy splitting in the spectra of Nb-substituted Ti oxides deviates from both R^{-3} and R^{-5} models, reflecting the difference between probed Nb–O distances and theoretical Ti–O distances (Fig. 6).

Among reference materials with octahedral Nb, the spectra of Nb$_2$O$_5$ show the lowest ΔE values (3.06 and 3.28 eV at the L_2- and L_3-edges, respectively), slightly higher than previously reported (2.6 and 2.8 eV; Sugiura et al. 1988). Nb$_2$O$_5$ powders may differ from each other in the nature and proportion of the polymorphs they contain (Pilarek et al. 2017). Unfortunately, the material investigated by Sugiura et al. 1988 was not characterized by XRD. Our Nb$_2$O$_5$ reference consists of several polymorphs in equivalent proportions, with two monoclinic structures (ca. 90% of NbO$_6$ octahedra and 10% NbO$_5$ polyhedra; Andersson 1967) and an orthorhombic one (NbO$_7$ and NbO$_7$ polyhedra; Waring et al. 1973) (Supplemental Fig. S2c). The presence of these different structures leads to variations in the local environment of Nb which may explain a lower splitting as compared to the other octahedrally-coordinated Nb reference materials.

The ΔE value of cerianite spectra, in which Nb occupies a cubic site, is $6/9$–$7/9$ times smaller than in reference materials containing octahedral Nb (Table 2). Indeed, crystal-field splitting values are lower than expected in cubic coordination ($10Dq_c$ is $8/9$ of $10Dq_o$). Though not detected by XRD (Supplemental Fig. S2b), the synthesis of Nb-substituted cerianite can also result in the formation of trace amounts of tetrahedrally-coordinated fergusonite-(Ce) ([Ce, REE]NbO$_4$) due to the low solubility of Nb in cerianite (Kolodiazhnyi et al. 2016). The theoretical crystal-field splitting parameter of tetrahedral Nb$^{5+}$ is even lower ($10Dq_t$ is $4/9$ of $10Dq_o$) possibly explaining the
small ΔE value of spectra from cubic Nb-substituted cerianite.

The splitting of the main edge of $4d^0$ elements increases with increasing cation charge. For Zr$^{4+}$, Nb$^{5+}$ and Mo$^{6+}$ coordinated to oxygen ligands in weakly distorted octahedra, it is 3.2 eV (Galoisy et al. 1999), 3.5–3.9 eV (this study) and 4.5 eV (Bare et al. 1993), respectively. This trend highlights the decrease of the ionic radius with increasing cation charge ($[^6]Zr^{4+} = 0.72$ Å, $[^6]Nb^{5+} = 0.64$ Å, $[^6]Mo^{6+} = 0.59$ Å; Shannon 1976) demonstrating the high sensitivity of $L_{2,3}$-edges XANES spectroscopy to the speciation of $4d^0$ elements.

Spectral broadening, charge transfer and site distortion. It is necessary to consider the C features in the fitting procedure in order to avoid an overestimation of the broadening of the B features. Unlike their assignment to $2p \rightarrow 5s$ transitions (Sugiura et al. 1988), our LFM calculations show that this feature results from hybridization between the $4d$ orbitals of Nb$^{5+}$ and the $2p$ orbitals of O$^{2-}$, in agreement with the work of Okada and Kotani (1993) on Ti compounds.

The spectra of Nb minerals have a high-energy shoulder of varying intensity at 2378 eV. The high degree of distortion of NbO$_6$ octahedra in columbite and niocalite (Table 1) is not obvious from the fit of their XANES spectra. However, both compounds have a shoulder (labelled B’) of limited intensity (Fig. 1). Furthermore, spectra of Nb perovskite and pyrochlore display the most intense B’ shoulder yet these reference materials are composed of regular octahedra. The intensity of the shoulder is therefore not directly related to the distortion of the NbO$_6$ octahedra. Spectra of Nb perovskite exhibiting the most intense C feature are also those with the largest B’ shoulder. We therefore ascribe the B’ shoulder to orbital hybridization. The failure of ligand-field multiplet calculations to reproduce both B’ and C features (Fig. 5) may be due to the differences between the Ti$^{4+}$ charge-transfer parameters used here and those of Nb$^{5+}$, which are unknown (Okada and Kotani 1993).

The distortion of the cation site causes a broadening of the XANES features for Ti$^{4+}$ and Zr$^{4+}$ (De Groot et al. 1992; Ikeno et al. 2013; Jollivet et al. 2013). In contrast, the broadening of the Nb $L_{2,3}$-XANES features, probed by the FWHM$_{B/A}$ parameter, is determined by charge-transfer effects.
and does not correlate with the degree of distortion of the NbO$_6$ octahedra. We conclude that the significant contribution of charge-transfer effects to Nb $L_{2,3}$-XANES spectra is related to the covalent character of the Nb–O bonds (Ikeno et al. 2011).

The spectra of Nb-substituted anatase and rutile display the poorest fit quality ($\chi^2 = 0.2$–0.5) due to poor fitting of the wide B features characterized by slightly convex downward slopes. These compounds have a weak shoulder at 2378 eV, suggesting the limited effect of charge transfer on the spectra. In addition, another type of broadening is observed at the B feature (2376–2377 eV) which could reflect the distortion of the Nb sites (Fig. 2f). In contrast, only the spectra of Nb-substituted hematite and goethite exhibit A and B features of similar widths, suggesting a symmetrical Nb site rather than the low symmetry of Fe$^{3+}$ expected in the highly distorted FeO$_6$ octahedra. This hypothesis is supported by the good reproduction of the spectra of Nb-substituted hematite in O_h symmetry using LFM calculations. Despite the different Fe environments and crystal structures of hematite and goethite, their spectral similarities indicate that the effect of distinct ligands (OH$^-$ vs O$^{2-}$) or changes in the octahedra arrangements (face-, edge- or corner-sharing) are negligible compared to those of the site symmetry and average Nb–O distances.

Spectral intensity variations and bond covalence. The intensity ratios (I_A/I_B) exhibit low standard deviations in our dataset ($\sigma = 0.13$ and 0.20 at the L_3- and L_2-edges, respectively). The low intensity ratio of the L_3-edge spectrum of Nb-substituted cerianite (0.75) stands out from the other reference materials (1.10 on average for references with octahedrally-coordinated Nb). This can be explained by approximating the intensity ratio to the number of unoccupied states, i.e., 2/3 or 3/2 in regular cubic and octahedral coordination, respectively (Ogasawara et al. 2001). The intensity ratios retrieved from the fitting procedure are not equal to the statistical values because of ligand-field multiplet effects (Ogasawara et al. 2001). However, the intensity ratio at the L_2-edge of the reference materials with octahedrally-coordinated Nb is close to the statistical value of 3/2 (1.46 on average) because this edge is less affected by multiplet effects (De Groot, 1994).

The significance of multiplet effects can be estimated from our simulations through the
reduction factor of the Slater-Condon integrals. The range of values of the reduction factor (0.35–0.54) indicates a major contribution from the covalent nature of the Nb–O bonds. These values are remarkably low compared to those around 0.7–0.8 observed in most oxides of 3d elements (De Groot 2005). The modeling of other Nb compounds, such as CsNbF₆, requires similar reduction of these parameters down to 40% (De Groot et al. 1994). Therefore, the reduction of the Slater-Condon parameters mirrors the covalent nature of the bonds formed by 4d elements relative to 3d elements (Singh et al. 2017).

Why combine L₂- and L₃-edges XANES spectroscopy? As the spectral features are correlated between the L₂- and L₃-edges (Supplemental Fig. S5), the in-depth analysis of only one edge is sufficient to determine the coordination number of Nb⁵⁺ and characterize the Nb local environment. However, the simulation of XANES spectra using CFM and LFM calculations cannot be carried out on a single edge. The lower sensitivity of the L₂-edge to atomic-multiplets effects involves several pairs of solutions of the 10Dq value and the reduction of Slater integrals that satisfactorily reproduce the L₂-edge spectra. Only the joint modeling of both edges constrains the reduction of the Slater integrals, because of their higher sensitivity to atomic-multiplet effects (De Groot et al. 1994). The choice for the acquisition and analysis of one or combined edges depends on the precision of the crystallographic information one wants to extract from the spectra.

Mechanisms of niobium substitution in oxides

Niobium-substituted Ti oxides. The discrepancy between the average Ti–O distance in the host structure and the observed Nb–O distances points out specific mechanisms of substitution in Nb-substituted TiO₂ oxides (Fig. 6). Estimation of the Nb–O distances in Ti oxides by interpolation of the correlation between ΔE and R⁻⁵ gives values of ca. 2.03 Å for Nb-substituted anatase and ca. 2.01 Å for Nb-substituted rutile. Such an increase of the Nb–O distances is expected from the larger ionic radius of Nb with respect to Ti ([⁶]Nb⁵⁺ = 0.64 Å and [⁶]Ti⁴⁺ = 0.605 Å; Shannon 1976). Moreover, the symmetry of the Nb⁵⁺ site in TiO₂ is reduced as evidenced by the broadening of the B₃ and B₂ features (Fig. 2f and Table 2). Increasing Nb substitution leads to lower ΔE and higher
FWHM B/A (Table 2), indicating an increased distortion of the Nb sites and increased Nb–O distances. Such distortion of Nb sites and an increase in Nb–O distances with increasing amounts of Nb were also evidenced using EXAFS (1.98 Å and 1.99 Å for Ti$_{0.97}$Nb$_{0.03}$O$_2$ and Ti$_{0.92}$Nb$_{0.08}$O$_2$, respectively; Gardecka et al. 2015). The mechanism allowing the incorporation of Nb$^{5+}$ in rutile and anatase is the formation of one Ti$^{4+}$ vacancy for every four Nb$^{5+}$ (Sheppard et al. 2006) following conditions of equilibrium and electroneutrality as illustrated by the Kröger-Vink notation:

$$5[Ti^5_{T_i}] + 2[Nb_2O_5] = 4[Nb^7_{T_i}] + [V''''_{T_i}] + 5[TiO_2] \quad (1)$$

In geological environments, the substitution of Nb$^{5+}$ for Ti$^{4+}$ in Ti oxides is also expected to be accommodated by interstitial Fe$^{3+}$ in oxidized environments following the substitution $2Ti^{4+} = Fe^{3+} + 2Nb^{5+}$ (Ruck et al. 1986) and by Fe$^{2+}$ in reducing environments, according to $3Ti^{4+} = Fe^{2+} + 2Nb^{5+}$ (Giovannini et al. 2020). Recent EXAFS analyses have highlighted the splitting of the first shell into two Nb-O contributions at 1.88 and 2.01 Å in Nb-substituted anatase (Ribeiro et al. 2020). The increase of Nb–O distances up to ca. 2.01 Å in the latter study and this work could reflect the presence of Nb$_2$O$_5$ clusters in Nb-substituted anatase and rutile (Atanacio et al. 2014), as the values of Nb–O distances in Nb$_2$O$_5$ are also 2.01 Å (Table 1). Even if the formation of Nb$_2$O$_5$ clusters cannot be excluded, the differences between the spectra of Nb$_2$O$_5$ and Nb-substituted TiO$_2$ (Table 2) indicate that Nb clustering is not an important process.

Niobium-substituted Fe oxides. Octahedral Fe$^{3+}$ and Nb$^{5+}$ have similar ionic radii, 0.645 Å and 0.64 Å, respectively. The substitution of Nb$^{5+}$ for Fe$^{3+}$ in goethite is isomorphous (Oliveira et al. 2008). Charge balance may be maintained by substituting 5Fe$^{3+}$ for 3Nb$^{5+}$, which induces cation vacancies. Our study shows that Nb-substituted Fe oxides can be reproduced by CFM and LFM calculations in regular O_h site symmetry even though the initial Fe site has a C_3 symmetry (Figs. 3b and 4b). The regularity of the NbO$_6$ octahedra is also supported by the absence of broadening of features B$_3$ and B$_2$ (Fig. 2c). The alignment of their experimental ΔE values on the trend with respect to theoretical Fe–O distances (Fig. 6) indicates that the average Nb–O distances are not...
significantly modified with respect to the average Fe–O distances.

However, EXAFS data on Nb-substituted hematite indicate shorter Nb–O distances (1.87 and 2.05 Å) than the Fe–O distances in hematite (1.92 and 2.11 Å; Silva et al. 2009). The differences between our results and those of Silva et al. (2009) could reflect the high amounts of Nb incorporated in the Fe oxides they synthesized (5 and 10 wt% Nb) or the synthesis protocol. The incorporation of Nb in Fe oxides may result in a symmetrization of the Nb site due to the relaxation of the crystal structure around Nb arising from the induced cation vacancies.

Niobium-substituted cerianite. Charge and size differences (0.97 and 0.64 Å, for Ce⁴⁺ and Nb⁵⁺ respectively; Shannon 1976) limit the substitution of Nb in cerianite. The substitution of Nb⁵⁺ for Ce⁴⁺ was explained by the displacement of Nb⁵⁺ cations from ideal cubic symmetry, leading to oxygen vacancies (Hiley et al. 2018). It has also been suggested that half of the Ce ions become trivalent to account for charge balance (Kolodiazhnyi et al. 2016). The other half of the charge compensation would be accommodated by interstitial oxygens (Kolodiazhnyi et al. 2016, Schaube et al. 2019) according to:

\[[Nb_2O_5] + 2[Ce_Ce^x] = 2[Nb_Ce^x] + [O_i'] + 2[CeO_2] \] (2)

Our simulation of Nb-substituted spectra in \(O_h \) point symmetry (Fig. 3a) indicates that a Nb⁵⁺– Nd³⁺ co-doping eases the charge balance equilibrium \(2[Ce^{4+}] = [Nb^{5+}] + [Nd^{3+}] \) and prevents significant distortion of the Nb site by limiting the formation of interstitial oxygen and vacancies.

IMPLICATIONS

Deciphering the origin of the properties of technological Nb-substituted materials

Some of the synthetic Nb-bearing oxides investigated in this study are meeting technological challenges associated with climate change mitigation or environmental decontamination (e.g., Ismael 2020; Ma et al. 2020). Among other applications, they are used for dye-sensitized solar cells (Lü et al. 2010), Na-ion battery anodes (Usui et al. 2015), direct solar-to-fuel conversion (Fu et al. 2016), and catalysts for the removal of exhaust-gas nitrogen oxide (Lian et al. 2015). These
enhanced physico-chemical properties result from the presence of substituted Nb\(^{5+}\) leading to oxide mobility and transport properties due to charge unbalancing, interstitial oxygen or vacancies. The properties of these Nb materials may be rationalized by knowledge of the mechanisms of Nb insertion, which can be unveiled by Nb \(L_{2,3}\)-edges XANES spectroscopy.

Upgrading ore processing through quantitative Nb XANES spectroscopy

The choice of Nb ore-processing strategies depends on the nature of the Nb minerals, their degree of alteration and their crystal-chemical variability. It is essential to correctly characterize the Nb ores to optimize ore processing (Černý and Ercit 1989). Niobium recovery from pyrochlore ores using amine collectors is used in three processing plants worldwide (Guimarães and Weiss 2001). Nevertheless, this process induces a significant loss of columbite and Nb-rutile between feed and concentrate (Gibson et al. 2015). Moreover, a high concentration of Fe in pyrochlore, which is a typical feature of hydropyrochlore, reduces its floatability and causes Nb loss during ore processing (Chehreh Chelgani et al. 2012). Niobian rutile has also been identified in the world-class Nb deposit of Araxá, but its significance in the overall Nb budget remains elusive (Neumann and Medeiros 2015). Therefore, Nb XANES spectroscopy may be a valuable tool for identifying Nb speciation in ore minerals and optimizing ore-processing strategies.

Unravelling Nb geochemical behavior in natural systems

Recent findings in hydrothermal contexts (Andersson et al. 2018; Dietzel et al. 2019) and near-surface conditions (Wall et al. 1996; Chakrabarty et al. 2013; Giovannini et al. 2017) demonstrate the alteration of Nb minerals and question the presumed immobility of Nb (MacLean and Barrett 1993). The sensitivity of Nb \(L_{2,3}\)-edges XANES spectroscopy opens the possibility to track Nb mineral speciation in weathered Nb-enriched samples. It could also be used to determine the mechanisms of alteration of primary Nb minerals and reveal the mechanisms of Nb incorporation in newly-formed phases. A combination of bulk and micro-XANES analyses could thus be used to enlighten the molecular-scale and geochemical factors that induce contrasted Nb
dynamics in supgene environments as has been done for rare-earth elements (Janots et al. 2015; Chassé et al. 2019; Borst et al. 2020).

ACKNOWLEDGEMENTS

We are grateful to Jean-Claude Boulliard and Éloïse Gaillou for the supply of rare mineral species from the Sorbonne Université and École Nationale Supérieure des Mines de Paris mineralogy (MINES ParisTech) collections. We thank Alain Demourgues and Guillaume Gouget for providing the niobate samples and commenting the manuscript, Sophie Cassaignon and Tsou Hsi Camille Chan Chang for the synthesis of Nb-substituted anatase, and Benoît Baptiste, Ludovic Delbes, Michel Fialin, and Nicolas Rividi for experimental support during XRD and EPMA analyses. We acknowledge SOLEIL for provision of synchrotron radiation facilities and thank the staff of the LUCIA beamline for their help in the measurement of Nb $L_{2,3}$-edges (Proposal No. 20191239).

REFERENCES

Andersson, S. (1967) The crystal structure of N-Nb$_2$O$_5$, prepared in the presence of small amounts of LiF. Zeitschrift für anorganische und allgemeine Chemie, 351, 106–112.

Figure Captions

- Figure 1: (a) Niobium L\textsubscript{3}- and (b) L\textsubscript{2}-edge XANES spectra of the studied Nb minerals. The coordination number of Nb \((\text{[8]}\text{Nb} \text{and } \text{[6]}\text{Nb})\) is specified. Vertical lines centered at 2372, 2376, 2387 eV at the L\textsubscript{3}-edge and at 2466, 2470, 2481 eV at the L\textsubscript{2}-edge evidence the variable position of the B\textsubscript{3} and B\textsubscript{2} features. The spectra of niocalite, lueshite, Nb-substituted hematite and goethite were trimmed beyond 2475 eV due to sulfur impurities resulting in an intense S K-edge feature at 2481 eV.

- Figure 2: Deconvolution of Nb L\textsubscript{3}-XANES spectra of (a) fluorcalciopyrochlore, (b) hydroxyrochlore, (c) Nb-substituted hematite, (d) Nb-substituted goethite, (e) Nb-substituted rutile, (f) Nb-substituted anatase, (g) Nb-substituted cerianite, (h) Nb perovskite with three pseudo-Voigts (PV1, PV2, PV3) and an error function (ERF). The experimental (Exp.) and the fitted data (Fit.) correspond to the black and purple curves. All spectra are satisfactorily fitted using this procedure \((\chi^2 < 0.5)\), but the fits of Nb-substituted anatase and Nb perovskite spectra are of poorer quality \((\chi^2 = 0.41 \text{ and } 0.39, \text{ respectively})\) due to the broadening of B\textsubscript{3} features (Figs. 2f and 2h). The deconvolution of the other XANES spectra is shown in Supplemental Material (Supplemental Figs. S4 and S5).
Figure 3: Comparison of experimental (black dashed lines) and simulated spectra (red lines) obtained by crystal field multiplet (CFM) calculations of (a) Nb-substituted cerianite, (b) Nb-substituted hematite, (c) hydropyrochlore, (d) Nb perovskite. The thin red lines indicate the position and intensity of the electronic transitions when experimental and core-hole lifetime broadenings are absent. The t_{2g} and e_g terms used in the single-particle approach are employed in a matter of clarity but they correspond to the convolution of multi-electronic states.

Figure 4: Comparison of experimental (black dashed lines) and simulated spectra (red lines) obtained by ligand-field multiplet (LFM) calculations of Nb-substituted hematite spectra.

Figure 5: Experimental spectra of Nb perovskite (black spectra) and theoretical spectra depicting the influence of hybridization strength (V_{mix} parameter varying from 0.0 to 5.0 eV with a 0.25 eV step) on the Nb $L_{2,3}$-edges spectral shapes. The arrows mark the low intensity features resulting from charge-transfer effect. Charge-transfer parameters are 3.0, 6.0 and 4.0 eV for U_{dd}, U_{dc} and Δ, respectively.

Figure 6: Dependence between the energy splitting (ΔE parameter) at the L_3-edge and the expected average distance (R) between $^{[6]}\text{Nb–O}$ or between Fe–O, Ti–O, Ce–O in the case of Nb-substituted reference materials. Experimental data are best fitted with a function proportional to R^{-3} ($\chi^2 = 0.17$), rather than a function proportional to R^{-5} ($\chi^2 = 0.26$). Experimental data corresponding to Nb-substituted Ti oxides deviate from both models. The error bars on ΔE correspond to the instrumental resolution of 0.25 eV at the Nb $L_{2,3}$-edges.
Table 1: Structural and chemical information on the selected Nb minerals. (i), (ii) and (iii) correspond to the three groups of Nb minerals described in the main text.

Commercial Nb2O5 was also selected as a reference material. The cation–O distances are Nb–O except for Ti, Fe and Ce oxides which correspond to Ti–O, Fe–O and Ce–O distances. The site symmetry is that of Nb sites in Nb-bearing minerals and of Fe, Ti and Ce in Fe, Ti and Ce oxides, respectively. The distortion index is calculated as defined by Baur (1974). The references giving the structure of each compound can be found in the Supplemental Material.

<table>
<thead>
<tr>
<th>Mineral (groups i,ii,iii)</th>
<th>Ideal formula</th>
<th>Structure</th>
<th>Coordination number</th>
<th>Site symmetry (Nb, Ti, Fe, Ce)</th>
<th>Average cation–O distances (Å)</th>
<th>Distortion index (%)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) Fluorcalcipyrochlore</td>
<td>(Ca,Na)2(Nb,Ti)2O6F</td>
<td>Corner-sharing NbO₆ octahedra sharing edges with A site cation</td>
<td>6</td>
<td>D₃d</td>
<td>1.944</td>
<td>0.0</td>
<td>Tatarka. Russia (SU)</td>
</tr>
<tr>
<td>(i) Hydropyrochlore</td>
<td>(H₂O, □)Nb₂(O₂H)₃(H₂O)</td>
<td>Corner-sharing NbO₆ octahedra sharing edges with A site cation</td>
<td>6</td>
<td>D₃d</td>
<td>1.972</td>
<td>0.0</td>
<td>Lueshe. Congo (SU)</td>
</tr>
<tr>
<td>(i) Columbite-(Mn)</td>
<td>(Mn,Fe)(Nb,Ta)₂O₆</td>
<td>Chains of edge-sharing NbO₆ octahedra</td>
<td>6</td>
<td>C₁</td>
<td>2.017</td>
<td>6.0</td>
<td>Musha. Rwanda (ENSMP)</td>
</tr>
<tr>
<td>(ii) Niobian perovskite</td>
<td>Ca(Ti₁₋₂Fex)₂O₆</td>
<td>Perovskite structure (ABO₃) with interconnected NbO₆ octahedra with interstitial Ca</td>
<td>6</td>
<td>C₁</td>
<td>1.966</td>
<td>0.6</td>
<td>Oka. Canada (ENSMP)</td>
</tr>
<tr>
<td>(ii) Niocalite</td>
<td>Ca₇Nb(Si₄O₁₄)O₃F</td>
<td>Isolated NbO₆ octahedra sharing edges and corners with CaO₆ octahedra</td>
<td>6</td>
<td>C₁</td>
<td>2.049</td>
<td>6.1</td>
<td>Oka. Canada (ENSMP)</td>
</tr>
<tr>
<td>Synthetic samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) Lueshite</td>
<td>NaNbO₃</td>
<td>Perovskite structure (ABO₃) with interconnected NbO₆ octahedra with interstitial Na</td>
<td>6</td>
<td>C₁</td>
<td>1.990</td>
<td>2.8</td>
<td>Oka. Canada (ENSMP)</td>
</tr>
<tr>
<td>(iii) Rutile (5 wt% Nb)</td>
<td>TiO₂</td>
<td>Edge and corner-sharing TiO₆ octahedra (2 edges are shared with each other)</td>
<td>6</td>
<td>D₂h</td>
<td>1.956</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>(iii) Anatase (5 wt% Nb)</td>
<td>TiO₂</td>
<td>Edge-sharing TiO₆ octahedra (4 edges are shared with each other)</td>
<td>6</td>
<td>D₄h</td>
<td>1.949</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>(iii) Hematite (1 wt% Nb)</td>
<td>α-Fe₂O₃</td>
<td>Face and edge-sharing FeO₆ octahedra</td>
<td>6</td>
<td>C₃</td>
<td>2.031</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>(iii) Goethite (1 wt% Nb)</td>
<td>α-FeOOH</td>
<td>Chains of edge-sharing FeO₆ octahedra joined by corner-sharing FeO₆</td>
<td>6</td>
<td>C₁</td>
<td>2.026</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>(iii) Cerianite (1 wt% Nb)</td>
<td>CeO₂</td>
<td>Edge-sharing CeO₆ cubes</td>
<td>8</td>
<td>O₃</td>
<td>2.343</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Nb₂O₅</td>
<td>Nb₂O₅</td>
<td>Edge and corner-sharing NbO₆ octahedra. 1 out of 28 Nb sites is a tetrahedron</td>
<td>6</td>
<td>C₁</td>
<td>2.014</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>
Table 2

Table 2. Summary of the parameters obtained from the fitting procedure including the energy splitting between the features A and B (ΔE), the relative intensity ratios (I_A/I_B) and the ratio of the B feature width with respect to A feature (FWHM$_{B/A}$). The quality of the fit is assessed using the Pearson chi-squared test (χ^2). The amplitude, center, width and intensity of the pseudo-Voigts can be found in Supplemental Table S3.

<table>
<thead>
<tr>
<th>Sample</th>
<th>ΔE (eV)</th>
<th>I_A/I_B</th>
<th>FWHM$_{B/A}$</th>
<th>χ^2</th>
<th>ΔE (eV)</th>
<th>I_A/I_B</th>
<th>FWHM$_{B/A}$</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb cerianite</td>
<td>2.55</td>
<td>0.75</td>
<td>1.47</td>
<td>0.06</td>
<td>2.29</td>
<td>0.96</td>
<td>1.73</td>
<td>0.06</td>
</tr>
<tr>
<td>Nb$_2$O$_5$</td>
<td>3.28</td>
<td>0.94</td>
<td>1.73</td>
<td>0.04</td>
<td>3.06</td>
<td>1.24</td>
<td>1.92</td>
<td>0.04</td>
</tr>
<tr>
<td>Fluorcalcio.pyrochlore</td>
<td>3.90</td>
<td>1.18</td>
<td>1.48</td>
<td>0.09</td>
<td>3.83</td>
<td>1.55</td>
<td>1.69</td>
<td>0.06</td>
</tr>
<tr>
<td>Hydropyrochlore</td>
<td>3.76</td>
<td>1.07</td>
<td>1.62</td>
<td>0.05</td>
<td>3.64</td>
<td>1.41</td>
<td>1.67</td>
<td>0.04</td>
</tr>
<tr>
<td>Columbite</td>
<td>3.41</td>
<td>1.11</td>
<td>1.48</td>
<td>0.06</td>
<td>3.32</td>
<td>1.47</td>
<td>1.73</td>
<td>0.06</td>
</tr>
<tr>
<td>Niocalite</td>
<td>3.43</td>
<td>1.17</td>
<td>1.38</td>
<td>0.11</td>
<td>3.44</td>
<td>1.55</td>
<td>1.63</td>
<td>0.10</td>
</tr>
<tr>
<td>Lueshite</td>
<td>3.54</td>
<td>1.05</td>
<td>1.68</td>
<td>0.08</td>
<td>3.75</td>
<td>1.42</td>
<td>1.28</td>
<td>0.09</td>
</tr>
<tr>
<td>Nb perovskite</td>
<td>3.96</td>
<td>1.20</td>
<td>2.08</td>
<td>0.39</td>
<td>3.95</td>
<td>1.60</td>
<td>2.35</td>
<td>0.16</td>
</tr>
<tr>
<td>Nb hematite</td>
<td>3.44</td>
<td>1.08</td>
<td>1.12</td>
<td>0.28</td>
<td>3.47</td>
<td>1.45</td>
<td>1.39</td>
<td>0.10</td>
</tr>
<tr>
<td>Nb goethite</td>
<td>3.46</td>
<td>1.08</td>
<td>1.18</td>
<td>0.25</td>
<td>3.48</td>
<td>1.46</td>
<td>1.47</td>
<td>0.11</td>
</tr>
<tr>
<td>Nb anatase 1% Nb</td>
<td>3.38</td>
<td>1.10</td>
<td>1.58</td>
<td>0.51</td>
<td>3.30</td>
<td>1.48</td>
<td>1.84</td>
<td>0.19</td>
</tr>
<tr>
<td>Nb anatase 5% Nb</td>
<td>3.34</td>
<td>1.14</td>
<td>1.62</td>
<td>0.41</td>
<td>3.29</td>
<td>1.55</td>
<td>1.88</td>
<td>0.17</td>
</tr>
<tr>
<td>Nb anatase 10% Nb</td>
<td>3.33</td>
<td>1.14</td>
<td>1.61</td>
<td>0.39</td>
<td>3.28</td>
<td>1.55</td>
<td>1.92</td>
<td>0.15</td>
</tr>
<tr>
<td>Nb rutile 5% Nb</td>
<td>3.45</td>
<td>1.03</td>
<td>1.54</td>
<td>0.21</td>
<td>3.31</td>
<td>1.25</td>
<td>1.78</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Table 3. Crystal-field multiplet (CFM) parameters that best reproduce the experimental spectra.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Nb point group symmetry</th>
<th>Slater integrals reduction</th>
<th>10Dq (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb-substituted cerianite</td>
<td>O_h</td>
<td>0.51</td>
<td>2.80</td>
</tr>
<tr>
<td>Nb-substituted hematite</td>
<td>O_h</td>
<td>0.51</td>
<td>3.70</td>
</tr>
<tr>
<td>Hydropyrochlore</td>
<td>O_h</td>
<td>0.54</td>
<td>3.90</td>
</tr>
<tr>
<td>Nb perovskite</td>
<td>O_h</td>
<td>0.35</td>
<td>3.90</td>
</tr>
</tbody>
</table>
Table 4. Crystal-field and charge-transfer parameters that best reproduce the experimental spectra.

| Sample | Nb point group symmetry | Slater integrals reduction | $|\text{Dq}|$ (eV) | U_{dd} (eV) | U_{dc} (eV) | Δ (eV) | V_{eg} (eV) | V_{t2g} (eV) |
|-------------------------|-------------------------|----------------------------|----------------|--------------|--------------|--------------|--------------|--------------|
| Nb-substituted hematite | O_h | 0.70 | 2.25 | 2.0 | 6.0 | 4.0 | 4.0 | -2.0 |
Fig. 1

Normalized absorbance (a.u.)

[a]Nb

[b]L_2-edge

A_2

B_2

C_2

Normalized absorbance (a.u.)

[a]Nb

[b]L_3-edge

A_3

B_3

C_3

Normalized absorbance (a.u.)

[a]Nb-cerianite

[b]Nb_2O_5

[b]F-Ca-pyrochlore

[b]H_2O-pyrochlore

[b]Columbite

[b]Niocalite

[b]Luchoite

[b]Nb perovskite

[b]Nb-goethite

[b]Nb-hematite

[b]Nb-anatase

[b]Nb-rutile

Normalized absorbance (a.u.)

[a]Nb-bearing references

[b]Nb-substituted references

Energy (eV)

2360 2370 2380 2390

2455 2465 2475 2485

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Fig. 3

(a) Nb-substituted cerianite

(b) Nb-substituted hematite

(c) Hydropyrochlore

(d) Nb perovskite

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Fig. 4

Nb-substituted hematite

Normalized absorbance (a.u.)

Energy (eV)

A3 B3 L3-edge

C3

Exp. Cal.

A2 B2 L2-edge

S K-edge
Fig. 5

(a) L$_3$-edge
(b) L$_2$-edge

Nb perovskite

Energy (eV)
Intensity (a.u.)

V_{mix} (eV)