Modified magnetite and hydrothermal apatite in banded iron-formations
and its implications for high-grade Fe mineralisation during
retrogressive metamorphism

Kangxing Shi¹, Changming Wang¹, *, Leon Bagas¹, ², and Hongyu Duan¹

¹ State Key Laboratory of Geological Processes and Mineral Resources,
School of Earth Sciences and Resources, China University of Geosciences,
Beijing 100083, China

² Xi'an Center of China Geological Survey, Xi'an 710054, China

* Corresponding author: Changming Wang, E-mail: wangcm@cugb.edu.cn
Abstract

Modified magnetite and hydrothermal apatite in banded iron-formations (BIFs) are ideal minerals for studying hydrothermal and metamorphic processes, and are applied to linking with high-grade Fe mineralisation and metamorphism in iron deposits hosted by BIFs. This study investigates the geochemical composition of modified magnetite and hydrothermal apatite, and \textit{in situ} U–Pb geochronology on apatite from the Huogezhuang BIF-hosted Fe deposit in the northeastern China. The magnetite in metamorphosed BIF is modified, locally fragmented and forms mm- to μm-scale bands. The apatite is present surrounding or intergrowing with magnetite, and has corroded surfaces and contains irregularly impurities and fluid inclusions, indicating that it has been partly hydrothermal altered. Original element compositions (e.g., Fe, Al, Ti, K, Mg and Mn) of magnetite in BIFs have been modified during high-grade Fe mineralisation and retrogressive metamorphism with the temperature reduction and acids. The hydrothermally altered apatite has been relatively reduced in Ca, P, F, La, Ce, Nd, δCe, δEu, and total REEs contents compared to non-altered apatite. The magnetite and apatite in low-grade BIFs are poorer in FeO_Τ than those of from the high-grade Fe ores, indicating that Fe is remobilised during the transition from BIFs to high-grade Fe ores. The magnetite and apatite in high-grade Fe ores are overgrown by greenschist-facies minerals formed during retrograde metamorphism, suggesting that the high-grade Fe mineralisation may be related to retrogressive metamorphism. \textit{In situ} U–Pb geochronology of apatite intergrown with magnetite and zircon LA–ICP–MS U–Pb dating at Huogezhuang deposit reveal that the BIF-hosted magnetite was altered and remobilised at ca. 1950–1900 Ma, and deposition...
of the BIF began during the Late Neoarchaean. The changes of elements in
the modified magnetite, and different geochemical compositions of the altered
and unaltered apatite confirm that the modified magnetite and hydrothermal
apatite can be effective in tracing high-grade Fe mineralisation and
retrogressive metamorphism in BIFs.

Keywords: Banded iron-formation; Apatite; Magnetite; High-grade iron
ore; Mineralisation and metamorphism; Huogezhuang deposit
Introduction

The banded iron-formations (BIFs)-hosted iron deposits are one of the important iron resources, with the quantity of both exploitation and resource reserve ranking as the first in the world (Zhang et al. 2014a, 2014b, 2021; Li et al. 2015a). The high-grade Fe ores in China only account for less than 2%, which is significantly different from other countries where the high-grade ores are mainly BIFs-type iron ores (Zhang et al. 2014a, 2014b, 2021; Li et al. 2015a; 2016, 2019). Most of them are high-grade hematite deposits, with multistage fluids moved downward and leached the BIFs along deformation structures, including the Hamersley Province in Australia and the Quadrilátero Ferrífero region in Brazil (Hagemann et al., 2016; Sheppard et al. 2017a, 2017b; Rasmussen and Muhling 2018; Li et al. 2019). However, the high-grade Fe ores in China are related to magnetite deposits hosted by BIFs and have undergone retrograde metamorphism with fluid metasomatism (Li and Zhang 2013; Lan et al. 2019a, 2019b; Green et al. 2020). High-grade magnetite deposits hosted by BIFs have been mined mainly in the Anshan–Benxi area and eastern Hebei province-Miyun Terrane of the North China (Wan et al. 2018; Wang et al. 2018).

Magnetite and associated minerals (such as apatite, xenotime, and monazite intergrown with magnetite) are ideal provenance indicators for genetic studies of the Archaean to Early Palaeoproterozoic BIFs (Lan et al. 2019a, 2019b). Compositions of these minerals have been successfully used for tracing the genesis of BIFs and enrichment mechanism of the BIFs-related high-grade Fe ores (e.g., James 1954; Gross 1980, 1983; Clout and Simonson 2005; Dai et al. 2014, 2017; Li et al. 2019; Aftabi et al. 2021;
Most BIFs have undergone retrograde metamorphism at various grades after diagenesis (Klein 1978; Klein and Beukes 1993; Mücke et al. 1996; Konhauser et al. 2009; Li and Zhang 2013; Lan et al. 2019a, 2019b; Green et al. 2020). Magnetite (an abundant and widespread oxide mineral) and apatite (a common tracer mineral) in BIFs are ideal minerals to study the hydrothermal and metamorphic processes, and the genesis of high-grade iron ores of BIFs (Cook et al. 2016; Andersson et al. 2019; Xing et al. 2020). The hydrothermal alteration and metamorphism can modify the structure of magnetite and alter the apatite in BIFs. Some trace elements (e.g., Mg, Mn, Al, Cr, V, and Ti) could partially exchange with Fe in magnetite (Skublov and Drugova 2003; Klein 2005; Zhang et al. 2011; Angerer et al. 2013, 2016; Deng et al. 2017; Lan et al. 2019a, 2019b; Green et al. 2020), and compositions of the apatite intergrowing or coexisting with magnetite would be partly or completely changed (Piccoli and Candela 2002; Andersson et al. 2019; Xing et al. 2020; Gillespie et al. 2021). Previous studies have found that the hydrothermally altered apatite has been relatively depleted in Sr from the BIFs in Pääkkö of Finland and Hamersley Basin of Australia (Alibert 2016; Azadbakht et al. 2018; Andersson et al. 2019; Wudarska et al. 2020).

Some previous studies have confirmed that the high-grade Fe ores attributed to hypogene hydrothermal enrichment of BIFs (Li et al. 2019, 2020; Sun et al. 2020). The two contentious models proposed for the detailed process of high-grade Fe mineralisation by hydrothermal and metamorphic events in the North China are: (1) remobilisation and re-precipitation of iron, i.e., iron is dissolved and migrated by hydrothermal fluids and then...
precipitated under favourable conditions (Yang et al. 2019; Zhang et al. 2021); and (2) desiliconization and iron enrichment, i.e., silica is removed from the BIFs by fluids and the residual magnetite remains in situ to form high-grade Fe ores (Zhang et al. 2014a, 2014b, 2021; Li et al. 2015a). Furthermore, in situ U–Pb geochronology on monazite and xenotime intergrown with magnetite and hematite has been attempted to date the high-grade BIF-hosted mineralisation (Li et al. 2015, 2016, 2019; Zi et al. 2015, 2018). Modified magnetite and hydrothermal apatite might offer insights into the intensity of chemical exchanges during the metamorphism of BIFs, and the metallogenic process of high-grade Fe ores (Urban et al. 1992; Duuring et al. 2012, 2018; Bouzari et al. 2016; Adomako-Ansah et al. 2017; Soares et al. 2017; Kumar et al. 2018; Chen et al. 2019; Lan et al. 2019a, 2019b; Green et al. 2020; Xing et al. 2020). However, how the original compositions in magnetite and apatite from BIFs have been modified in such process and its genetic link to high-grade Fe mineralisation remain unclear.

The Huogezhuang BIF-hosted iron deposit is a large metamorphosed deposit with a resource of 180 Mt and average 26.7% Fe. The deposit is located in the Miyun Terrane of the northeastern North China Block (NCB; Figs. 1 and 2; Shi and Shi 2016; Fang et al. 2017). The type of the BIF deposit, source of the iron, age of the deposition and mineralisation are previous studied. (1) The protoliths of the Huogezhuang BIF are modified during granulite- to amphibolite-facies metamorphism and retrogressed at greenschist-facies (Shi and Shi 2016). (2) The mineralised zone includes low-grade BIF and high-grade Fe ores (Fig. 2a; Shi and Shi 2016). (3) The magnetite in metamorphosed BIF is modified and locally fragmented, and the
Apatite is present surrounding or intergrowing with magnetite. These features make the Huogezhuang BIF-hosted Fe deposit an ideal target for studying the modification and remobilisation of iron, and hydrothermal alteration during the retrogressive metamorphism and high-grade Fe mineralisation.

In this paper, we present mineralogy, laser-ablation inductively-coupled-plasma mass-spectrometry (LA–ICP–MS) and electron probe micro-analysis (EPMA) of apatite and magnetite, and in situ apatite and zircon U–Pb geochronology from the Huogezhuang Fe deposit in the northeastern China. Systematic element compositions have been analysed in modified magnetite and hydrothermal apatite to reveal the high-grade Fe mineralisation and retrogressive metamorphism of the Huogezhuang BIF-hosted iron deposit. Apatite in situ U–Pb geochronology was used to date the hydrothermal and metamorphic events.

Geological background

The NCB associated with Archaean world-class metallogeny is a topic of widespread interest (Kusky et al. 2007, 2016; Zhai and Santosh 2011; Zhao and Zhai 2013; Zhai et al. 2005, 2015; Wang et al. 2015, 2016, 2018; Deng et al. 2017; Santosh et al. 2020). The continental-size region has been subdivided into the Western and Eastern zones separated by the ca. 1950–1850 Ma Trans-North China Orogen (Zhao et al. 2001; Kusky and Li 2003; Zhao 2007; Santosh 2010; Santosh et al. 2013), and Proterozoic and Phanerozoic basins (Fig. 1). Both zones include Neoarchaean BIF mineralisation (Diwu et al. 2010, 2014; Zhai and Santosh 2011; Tang and Santosh 2018; Zhai et al. 2020; Duan et al. 2021). The NCB records a long and complex geological history spanning almost continuously from the
Archaean to Cenozoic, including magmatism, sedimentation, metamorphism, and multiple deformation events extending into the Mesozoic (Bagas et al. 2020). Zhai and Santosh (2011) proposed that the NCB was an amalgamation of the Archaean Qianhuai, Jiaoliao, Xuhuai, Xuchang, Alashan, Jining, and Ordos microblocks, which were strongly deformed metamorphosed up to granulite-facies. The proposed microblocks consist of orthogneiss, amphibolite and lenses of BIF-bearing metavolcanic and metasedimentary rocks (Zhai et al. 2015; Tang and Santosh 2018; Duan et al. 2021). The BIF-hosted Fe deposits in the Eastern Zone are located at the Jianping, northern Liaoning, eastern Hebei and western Shandong provinces, and include the Anshan, Wuyang, and Miyun deposits (Fig. 1). The source of the iron is principally Neoarchaean to Early Palaeoproterozoic BIF (Fig. 1; e.g., Shen et al. 2011).

The Miyun Terrane is located to the north of Beijing, where Archaean granulite- to amphibolite-facies orthogneiss and paragneiss crop out (Fig. 1; Wan et al. 2012; Shi and Shi 2016; Fang et al. 2017; Deng et al. 2018; Santosh et al. 2020). The orthogneiss includes monzogranite, granodiorite, trondhjemite, tonalite. The supracrustal rocks form NE-trending belts consisting of ultramafic to felsic metavolcanic rocks, and paragneiss (included metamorphosed BIF) intruded by Palaeoproterozoic mafic dykes (Shi and Shi 2016; Fang et al. 2017; Tang et al. 2019; Santosh et al. 2020). The metamorphosed supracrustal rocks are assigned to the Miyun and Sihetang complexes (Shi and Shi 2016; Fang et al. 2017; Tang et al. 2019; Santosh et al. 2020). The Sihetang Complex is informally subdivided into the Yangpodi, Songyingzi, Xiwanzi and Shanshenmiao units (Shi and Shi 2016; Fang et al.
The Miyun Complex is informable subdivided into the Shachang, Weiziyu, and Dacao units (Tang et al. 2019; Santosh et al. 2020). The Miyun Complex records multiple magmatic events, including Archaean to Palaeoproterozoic orthogneiss, supracrustal rocks, metapyroxenite and metagabbro, mafic dykes and porphyritic monzogranite, and Mesozoic monzogranite (Shi and Shi 2016; Fang et al. 2017; Tang et al. 2019; Santosh et al. 2020). The tectonic structures are complex and include multiple generations of folds and faults, including the Banchengzi, Qifengcha, Shicheng and Huolangyu faults. The faults trend northeastward and constitute the boundary of complexes (Fig. 1; Santosh et al. 2020).

The Huogezhuang deposit is an example of a large, metamorphosed BIF-hosted Fe deposit located in the Archaean Miyun Complex (Fig. 2; Zhang et al. 2012; Shi and Shi 2016; Fang et al. 2017). The host rocks are orthogneiss, garnet-bearing gneiss and BIF metamorphosed at granulite- to amphibolite-facies and retrogressed at greenschist-facies (Shi and Shi 2016). The deposit is located at the intersection between E- and N-trending faults (Fig. 2). These structures are cross-cut by ENE-trending strike-slip faults (Fig. 2). The igneous rocks in the area are variably metamorphosed porphyritic monzogranite, gabbro and lamprophyre, and minor relatively later intermediate to felsic pegmatite veins and dykes that crosscut the deposit (Figs. 2 and 3a, b).

The mineralised zone averages 26.7% Fe, including low-grade BIF (~20.0% Fe) and high-grade Fe ores (~50.0% Fe), consisting of three lensoidal and sigma-shaped orebodies with a thickness reaching ~10 m and a total length of around 10 km (Fig. 2a; Shi and Shi 2016). The occurrence of
the high-grade Fe orebodies is roughly consistent with that of the BIFs, and there is a smooth transition from high-grade Fe ores to BIFs (Figs. 2 and 3c, e, f). The orebodies are bound by several normal faults (F1, F2, F3, F4) that dip 25°-45°SW and trend ~340° (Figs. 2 and 3a, b). The high-grade Fe ores are often close to the faults (Fig. 2). The orebodies are folded and locally form boudins (Figs. 2 and 3a, b). The Fe ores are mainly characterized by banded (BIFs) or massive (high-grade Fe ore) structure and granular texture (Fig. 3e, f). The mineralisation is hosted by interlayered granulite- to amphibolite-facies magnetite-bearing quartz mafic gneiss, and magnetite-bearing quartz amphibolite, which have retrogressed to greenschist-facies indicated by the presence of chlorite, epidote, allanite and titanite alteration (Fig. 4). The host sequence is interpreted as metamorphosed mafic volcanic and BIF units. The contact between the Fe-ore and garnet-bearing gneiss is rich in garnet and magnetite (Fig. 3c). The mineralisation and host rocks are altered by carbonate, chlorite, and titanite (Fig. 3c, d), and chlorite has also crystallised along the foliation in the wall rocks (Fig. 3b). The carbonate, chlorite and titanite alteration has significantly affected the orebodies and is indicative of a late greenschist-facies event.

Samples and methods
Samples
Samples of BIF and high-grade Fe ore were collected from the Central ore block at the Huogezhuang deposit for analyses. A brief summary of the field occurrence and petrography of the samples is given below. The BIF sample is dark grey to black, fine-grained, has a gneissic texture, and consists magnetite (~55 vol.%), quartz (~25 vol.%), hornblende (~5 vol.%),
clinopyroxene (~10 vol.%), apatite (~4 vol.%), and minor amounts of plagioclase, chlorite and epidote (up to 1 vol.%; Fig. 3e). The high-grade Fe ore sample is dark black, fine-grained, gneissic, and consists of magnetite (~65 vol.%), quartz (~15 vol.%), hornblende (~5 vol.%), clinopyroxene (~10 vol.%), apatite (~4 vol.%), and minor amounts of plagioclase, chlorite, and epidote (up to 1 vol.%; Fig. 3f).

The magnetite is fragmented (Fig. 4c). The apatite forms clusters or around and intergrowth with the magnetite and quartz, and contains irregularly minerals and fluid inclusions (Fig. 4g–i). Allanite, epidote and titanite have often crystallised around apatite grains (Fig. 4g–i).

Backscattered electron and cathodoluminescence imaging

Backscattered electron (BSE) and cathodoluminescence (CL) images were generated at the Beijing Research Institute of Uranium Geology using a Tescan GAIA3 scanning electron microscope (SEM) with a focused ion beam (FIB) and equipped with an Oxford Instruments CL detector. Polished 50 μm thick sections were carbon coated (15–20 nm) and analysed at 10 keV with a beam current of 0.5 to 5 nA.

Electron probe micro-analysis and mapping

Mineral chemical concentrations and mapping were analysed using a JEOL JXA-8230 EPMA at the Beijing Research Institute of Uranium Geology. The electron microprobe was optimized for non-destructive, high-sensitivity spot analyses and element mapping in order to reduce sample damage and preserve the samples for additional analyses. The elements Ca, P, F, Cl, La, Ce, Sm, Nd, Gd, Ho, Yb, and Y were chosen for analyses. The operation conditions included an acceleration voltage of 15 keV, a beam current of 200
A beam diameter of 5 μm, 300 s counting time on peak and 150 s on each background peak. High-sensitivity, low-resolution trace element mapping of one sample was carried out using a method of spot analyses, whereas counting times for Ca, P, F, Cl, La, Ce, Sm, Nd, Gd, Ho, Yb, and Y were reduced to 100 s on peak and 60 s off peak to decrease analysis time. The mapping consumed 12 hours of instrument time resulting in a small loss of sensitivity, based on 5 μm spot analyses within a 520 × 520 μm rectangle.

Apatite in situ U–Pb geochronology and trace elemental analysis

In situ LA–ICP–MS U–Pb geochronology of apatite was performed at the Nanjing Hongchuang Geological Exploration Technology Service Company. The Resolution SE model laser ablation system (Applied Spectra, USA) was equipped with a 193 nm ATL (ATLEX 300) excimer laser with spot sizes of 30 μm at 5 Hz and a fluence of 2 J/cm². The laser ablation system was coupled to an Agilent 7900 ICP–MS (Agilent, USA). Detailed tuning parameters were documented by Thompson et al. (2018). The iolite software package was used for data reduction (Paton et al. 2010). Apatite Madagascar was used as a primary standard, and Apatite Durango was used as a secondary (McDowell et al. 2005). NIST 610 and ⁴³Ca were used to calibrate the trace element concentrations as external and internal standard samples, respectively.

Zircon U–Pb dating

Zircons were separated from crushed rock samples using standard heavy-liquid and magnetic methods at the Beijing Geo-Analysis Company, Limited. The CL images were obtained prior to analysis, to reveal internal zonation and enhance analytical targeting. Zircon samples were selected for LA–ICP–MS zircon U–Pb dating at the Mineral Laser Micro-Analysis
Laboratory, China University of Geosciences, Beijing. The zircon grains were ablated using a NewWave 193UC ArF excimer laser with a 35 μm diameter laser spot, 8 Hz laser repetition rate, and laser energy of 8.5 J/cm2. Isotopic intensities were measured using an Agilent 7900 quadrupole ICP–MS. The ablated material was carried in a high-purity helium gas into the ICP–MS. The integration time of Th is 10 ms, the integration time of U and 208Pb is 15 ms, the integration time of 207Pb is 30 ms, the integration time of 204Pb and 206Pb is 20 ms, and the integration time of all other elements is 6 ms. The international glass standard NIST 610 was used as the primary standard to calculate most elemental concentrations and to correct for instrument drift. The U–Pb isotope fractionation effects were corrected using the zircon 91500 as an external standard (Wiedenbeck et al. 2004). The zircon GJ-1 standard was used for data quality assessment (Jackson et al. 2004). Mass bias, laser-induced mass fractionation and instrument drift were corrected using ICPMSDataCal 10.2 (Liu et al. 2010).

Results

Magnetite and apatite texture

The metamorphosed BIF is commonly banded, fine-grained, and consists of quartz, magnetite, clinopyroxene, hornblende, plagioclase, and minor amounts of biotite and apatite (Fig. 4). The magnetite is modified and locally fragmented, subhedral to anhedral measuring ~1.5 mm across, and forms mm- to μm-scale bands (Fig. 4c). Subhedral to anhedral, 0.3-0.03 mm wide apatite commonly forms clusters or is present surrounding or intergrowing with magnetite and quartz, which is indicative of a contemporary mineralising event (Fig. 4d, e). The apatite grains have corroded surfaces and contain
irregularly impurities and fluid inclusions, and are overgrown by chlorite, allanite, epidote, and titanite (Fig. 4g–i), showing partly hydrothermal alteration features.

Magnetite and apatite chemistry

The geochemistry of the magnetite and apatite is listed in Supplementary Tables S1–S2.

The magnetite grains from the BIF assay average 0.06 wt.% Na₂O + K₂O, average 1.28 wt.% Al₂O₃, average 0.81 wt.% TiO₂, and average 90.29 wt.% FeO₇ (Supplementary Table S1; Fig. 5).

The magnetite grains from the high-grade Fe ore assay average 0.04 wt.% Na₂O + K₂O, average 0.35 wt.% Al₂O₃, average 0.25 wt.% TiO₂, and average 92.98 wt.% FeO₇ (Supplementary Table S1; Fig. 5).

The apatite grains in the samples of BIF and high-grade Fe ore have both been partly hydrothermal altered and are characterised on CI images by dark-grey zones corresponding to alteration and light-grey apatite zones representing non-altered areas (Figs. 6b, 7b and 8b). The altered apatite is relatively reduced in La, Ce, Nd and total REEs compared with the non-altered apatite (Supplementary Tables S1–S2).

Apatite in situ U–Pb geochronology

The apatite grains from the high-grade Fe ore (Sample D01B6) are light brown, euhedral to subhedral, ranging up to 100 μm long with a length to width ratio of ~2:1. Some of the apatite grains are partly rounded and decayed (Fig. 9a). Thirteen analysed spots assay 0.1 to 6.6 ppm Th and 0.4 to 2.6 ppm U with Th/U ratios of 0.4–2.7 (Supplementary Table S3), and yielded a lower
The intercept age of 1902 ± 18 Ma with a 2σ error and MSWD value of 2.4 (Fig. 9a).

The apatite grains from the BIF sample (Sample D01B5) are light brown, euhedral to subhedral, range up to 200 μm long, and have a length to width ratio of 4:1. The apatite is partly rounded and decayed (Fig. 9b). Nineteen spots assay 0.2 to 5.3 ppm Th and 2.8 to 14.2 ppm U with a Th/U ratio of 0.04–0.37 (Supplementary Table S3), and yielded a lower intercept age of 1951 ± 29 Ma with a 2σ error and MSWD value of 2.5 (Fig. 9b).

Zircon U–Pb dating

Twenty-six zircons from the high-grade Fe ore (Sample D01B3) were U–Pb dated (Supplementary Table S4). The zircons are colourless or brownish, with a maximum length of 150 μm and a length to width ratio of 3:1 to 1:1 (Fig. 10a). Twenty-six analysed spots assay 7–234 ppm Th, and 14–599 ppm U with a Th/U value of 0.11–2.95. The analyses form three age groups within analytical error, with an upper intercept age of 2495 ± 64 Ma and a lower intercept age of 1849 ± 100 Ma (MSWD = 2.0; Fig. 10a). The first group yielded a weighted mean 207Pb/206Pb age of 2511 ± 47 Ma (MSWD = 2.1; Fig. 10a). The second group yielded a weighted mean 207Pb/206Pb age of 2226 ± 78 Ma (MSWD = 2.0; Fig. 10a). The third group yielded a weighted mean 207Pb/206Pb age of 1855 ± 43 Ma (MSWD = 1.5; Fig. 10a).

Twenty-eight zircons from the BIF sample (Sample D01B5) are colourless or brownish, with a maximum length of 120 μm and a length to width ratio of 2.5:1 to 1:1 (Fig. 10b). Twenty-eight analysed spots assay 57–320 ppm Th and 94–944 ppm U with a Th/U value of 0.33–3.73. Twenty-six analyses yielded an upper intercept age of 2496 ± 76 Ma, a lower intercept
age of 1969 ± 77 Ma (MSWD = 2.7), and a weighted mean $^{207}\text{Pb}/^{206}\text{Pb}$ age of 2497 ± 16 Ma (MSWD = 2.8; Fig. 10b). Another two analyses yielded weighted mean $^{207}\text{Pb}/^{206}\text{Pb}$ ages of 2883 ± 19 and 2084 ± 34 Ma (Fig. 10b).

The density probability plot in Fig. 10c highlights two major peaks at ca. 2500 and 1900 Ma.

Discussion

Ages of BIFs deposition and remobilisation

There have been many studies aiming to date BIF-hosted Fe deposits throughout the northeastern China and other terranes in the world using U–Pb zircon geochronological analyses (e.g., Klein 2005; Li et al. 2010, 2011, 2012, 2014, 2015a, 2015b; Shen et al. 2011, 2015; Zhang et al. 2012; Wang et al. 2014, 2015; Sheppard et al. 2017a, 2017b). Meso– to Neoarchean rocks of the Yilgarn Craton located in Western Australia consist of granite–greenstone lithologies and BIFs. The BIF metallogenic age is indirectly constrained to be ca. 2800–2600 Ma by the ages of syenogranitic to tonalitic orthogneiss and greenstones (e.g., Angerer et al. 2013; Haugaard et al. 2017; Soares et al. 2017; Rasmussen and Muhling 2018; Perring et al. 2020). The BIF–hosted Fe mineralisation in the NCB is hosted by the Meso- to Neoarchaean gneisses and supracrustal rocks. Zhang et al. (2012) proposed that the age of the peak deformation affecting BIF horizons in the region was ca. 2560–2520 Ma with the earliest BIF-hosted Fe deposit being Palaeoarchean in age and the youngest was early Palaeoproterozoic dated at ca. 2400 Ma. Most of the BIFs in eastern Hebei Province were deposited in the Late Neoarchaean peaking at ca. 2600–2500 Ma, and there is only one BIF horizon in the area dated at ca. 3400 Ma (e.g., Zhang et al. 2012; Wang et al. 2018). The age of the BIFs
at the Anshan–Benxi area in the Liaoning Province is also Late Neoarchaean
dated at ca. 2550–2500 Ma, and one dated at ca. 3100 Ma (e.g., Wan et al.
2018; Wang et al. 2018). Wan et al. (2012) proposed that the BIF units in the
eastern NCB were formed between ca. 2550 and 2500 Ma. These ages,
however, only limit the upper and lower ages of the BIFs. The gneisses and
supracrustal rocks were deformed, metamorphosed at granulite- to
amphibolite-facies and retrograded to greenschist-facies during ca. 2500–
1800 Ma (Deng et al. 2017). These events might lead to the deformation,
metamorphism, and remobilisation of the Fe deposits hosted by BIFs (Shi et
al. 2019a).

This study focuses on a rare example of BIF in the Miyun Terrane. Shi
and Shi (2016), Fang et al. (2017) and Shi and Zhao (2017) documented that
the BIF units in the Miyun Terrane yielded LA–ICP–MS U–Pb zircon dates of
ca. 2550–2450 Ma, based on the dates obtained from BIF ore and the host
rocks. The granite, gneiss, amphibolite, and hornblende in the Miyun Terrane
reveal emplacement ages from 2594 to 2496 Ma, and record metamorphic
events at ca. 2550, 2440, 1950 and 1820 Ma (Shi and Zhao 2017). In this
study, zircon U–Pb dating of the high-grade Fe ore and BIF sample from the
Huogezhuang deposit yields dates of ca. 2500–1850 Ma (Fig. 10a–c). Apatite
in situ U–Pb geochronology shows lower intercept ages of ca. 1950–1900 Ma
(Fig. 9). The results indicate that the Huogezhuang BIF-hosted iron deposit
formed ca. 2500 Ma, and was altered and remobilised during ca. 1950–1900
Ma. In addition, Li et al. (2019) described the Gongchangling BIF-hosted Fe
deposit in the Anshan-Benxi area of the northeastern NCB, and concluded
that the high-grade iron ore in this deposit formed at ca. 1860 Ma based on in
situ U–Pb geochronology of monazite and zircon. Sun et al. (2020) tested the garnet from the altered wall rock of high-grade iron ore in the Gongchangling BIF-hosted Fe deposit. These garnets yielded a Sm–Nd isochron age of 1888 ± 77 Ma, interpreted as the time of metamorphism in this area, which further confirmed that the remobilisation of high-grade iron ore in the deposit was later than the late Neoarchean. Li et al. (2020) reported an age of 1940 Ma represented the metamorphic-hydrothermal monazite/xenotime growth after deposition of the BIFs, based on in situ U–Pb geochronology of monazite and xenotime intergrown with hematite from the Yuanjiacun BIF-hosted Fe deposit in the central NCB. These ages are similar to the ca. 1950–1900 Ma date mentioned above, which are coincident with the major regional metamorphic events (1950–1850 Ma in the Miyun Terrane) and related to amalgamation of the Western and Eastern zones of the NCB along the Trans-North China orogen. Besides, the orebodies are bound by several normal faults and the high-grade Fe ores are often close to the faults in the Huogezhung area (Fig. 2). The results may provide new clues to the age of BIFs and Fe mineralisation in eastern NCB. The close relationship in time and space between metamorphism of BIFs and host rocks in the Huogezhung area and remobilisation of the Huogezhung BIF iron ores indicates a genetic link. The metamorphism may induce a metamorphic-hydrothermal event and drive the remobilisation of BIF iron. It is possible to be a potential for prospecting for high-grade iron ores hosted by BIFs in the metamorphic region and faults.

Modified magnetite and hydrothermal apatite in BIFs

Magnetite is an ideal indicator of the provenance of BIF deposits (Lan et al. 2019a). However, many BIF-hosted Fe deposits in the NCB have
undergone various degrees of metamorphism, recrystallisation, and hydrothermal alteration (Deng et al. 2017; Rasmussen and Muhling 2018; Lan et al. 2019b). It is still unclear whether the original magnetite compositions in BIFs were modified during secondary processes and, if so, to what extent have the compositions been modified (c.f. Lan et al. 2019a, 2019b). In this study, we completed mineralogical and EPMA trace elemental analyses of magnetite from the BIFs and high-grade Fe ores, northeastern NCB. The results were compared with those of unmetamorphosed BIFs worldwide to understand how the original compositions of magnetite in BIFs were modified during different metamorphic grades (Chung et al. 2015). The high-grade metamorphic and modified magnetite in the BIFs and high-grade Fe ores of the eastern NCB is locally fragmented or fractured, embayed, forms mm- to μm-scale bands (Fig. 4c), which is significantly different from the primary, fine-grained, granular magnetite in unmetamorphosed BIFs (Chung et al. 2015). Furthermore, the modified magnetite in the high-grade Fe ores of the eastern NCB has elevated Fe and reduced Al, Ti, K, Mg and Mn compared with that in BIFs (Supplementary Table S1; Fig. 11). Such a change in the magnetite composition is largely controlled by silicate and retrograde greenschist-facies minerals that formed during retrogressive metamorphism with the decreasing temperature (Rasmussen and Muhling 2018). For example, our EPMA trace element map shows that the edges of magnetite grains in the high-grade Fe ore are in contact with retrograde greenschist-facies minerals such as epidote and allanite, and the rims are remarkably enriched in Al, Ti, K, and Mg compared to the cores (Fig. 5). The magnetite in the high-grade Fe ore is also enriched in Fe locally (Fig. 5a). All these features indicate that elemental
diffusion and exchange have proceeded between magnetite and retrograde mineral assemblages during high-grade Fe mineralisation and retrogressive metamorphism. These metamorphic events have resulted in the extensive modification of the original compositions of magnetite in BIFs (c.f. Rasmussen and Muhling 2018; Lan et al. 2019a, 2019b). Other examples of the high-grade mineralisation and retrogressive metamorphic magnetite in modified BIF-hosted iron deposits along the southern margin of the NCB have similar characteristics (Lan et al. 2019a, 2019b). These results remind us that it is necessary to calibrate the original experimental data of Al and Ti when determining the metamorphosed magnetite in the BIFs (Fig. 11). The compositions of these elements from magnetite in the BIFs were modified during remobilisation and retrogressive metamorphism.

Apatite is relatively stable over a wide variety of geological processes including weathering, transport, and weak hydrothermal alteration (Cook et al. 2016; Andersson et al. 2019; Xing et al. 2020; Cao et al. 2021). However, it has also been noted that acids can alter apatite and, as a result, the compositions would be partly or completely modified (Peng et al. 1997; Piccoli and Candela 2002; Andersson et al. 2019; Xing et al. 2020; Gillespie et al. 2021). Apatite that has experienced significant hydrothermal alteration might offer insight into the intensity of chemical exchanges during alteration (e.g., Bouzari et al. 2016; Xing et al. 2020; Yu et al. 2021). In this study, altered zones in apatite are reduced in Ca, P, F, La, Ce, Nd, δCe, δEu, and total REEs contents compared with the non-altered zones in apatite (Figs. 12 and 13). The altered zones display sharp compositional boundaries with the non-altered zones (Figs. 6, 7 and 8). They also have pervasive micro-porosities
and fluid inclusions (Fig. 4g–i). Such features are consistent with a fluid-driven, coupled dissolution-reprecipitation process (Harlov et al. 2005; Li and Zhou 2015; Zeng et al. 2016; Azadbakht et al. 2018). During dissolution and reprecipitation, elements can be redistributed from the original apatite to newly crystallised apatite through hydrothermal fluids, and a series of complex chemical exchanges take place between apatite and the reactive fluid (Prowatke and Klemme 2006; Putnis 2009; Andersson et al. 2019). As a result, many trace elements such as Ca, P, F, La, Ce, Nd, and total REEs are leached out from the altered apatite zones (Figs. 12 and 13). This is consistent with the coexistence of apatite and greenschist-facies minerals that formed during retrograde metamorphism (e.g., epidote, allanite and titanite; Figs. 4g–i, 6a, 7a and 8a). Epidote, allanite and titanite can form in retrograde metamorphism when the REEs are released during fluid-driven alteration immediately reprecipitating into new zones (Harlov and Förster 2003; Harlov 2015; Andersson et al. 2019). The different geochemical compositions of the altered and non-altered apatite zones confirm that the Huogezhuang BIF-hosted iron deposit has undergone extensive metasomatism, during which some of the apatite grains have been hydrothermally altered.

Magnetite-apatite assemblage in BIFs and insights into high-grade Fe mineralisation during retrogressive metamorphism

Many authors have discussed source of iron and process of high-grade Fe mineralisation in BIFs based on studies involving trace element and isotope geochemistry, statistics, and thermodynamics (Alibo and Nozaki 1999; Li et al. 2008; Shi et al. 2019a, 2019b; Yang et al. 2019). The common proposed source of iron is from continents, sites of submarine hydrothermal
activities, the mixture of seawater and high-temperature hydrothermal fluids, and submarine hydrothermal leaching of the oceanic crust, and most of the magnetite (being the mixed ferrous and ferric Fe$_3$O$_4$) is formed by the replacement of siderite (FeCO$_3$) and other Fe-rich minerals after burial (e.g., Ghosh and Baidya 2017; Haugaard et al. 2017; Rasmussen and Muhl ing 2018; Tong et al. 2021). Two controversial models have been proposed for the process of high-grade Fe mineralisation induced by hydrothermal and metamorphic events: (1) iron is dissolved and migrated by hydrothermal fluids, and then precipitated under favourable conditions (Yang et al. 2019; Zhang et al. 2021); and (2) silica is removed from the BIFs by fluids, and the residual magnetite remains in situ to form high-grade Fe ores (Zhang et al. 2014a, 2014b, 2021; Li et al. 2015a). An analogy of the deformation of the BIFs in the NCB may help explain whether what is seen in this area is similar to the BIFs in Western Australia. Egglseder et al. (2017) combined micro-tectonic, field geology and 3D implicit modelling techniques to establish a link between deformation structures at various scales from the BIF-hosted high-grade iron deposits of the Hamersley Province in Australia, and concluded that the deformation not only formed suitable fluid channels, but that folding and shearing also resulted in significant synkinematic removal of gangue minerals. Angerer and Hagemann (2010) proposed that a late-stage brittle segmentation of BIF and reactivation of faults due to deformation of the Koolyanobbing greenstone belt in Western Australia. At the alteration stage, the silicon is leached out from the iron formation, a thin layer of residues of iron oxides and carbonate rocks have been hydrothermally altered (Egglseder et al. 2017). The hydrothermal alteration zones record the transformation of
low-grade BIF to high-grade iron ore (Thorne et al. 2014; Perring et al. 2020). Li et al. (2019, 2020) and Sun et al. (2020) further proposed that faults in the BIFs acted as channels through which silica undersaturated alkaline meteoric fluids moved downward and leached the BIFs during tectonic extension. Experimental studies by Hou et al. (2018, 2020) on the immiscible hydrous Fe–Ca–P melts provide new evidence for the generation of iron oxide-apatite (IOA) mineralisation. They proposed the possibility that iron-magma was either formed by liquid immiscibility or magnetite-bubble flotation. Crystallizing magnetite and apatite grains are preferentially wetted by immiscible Fe-rich melts, and complete crystallisation of a crystal Fe-rich melt mush leads to the formation of IOA mineralisation (Hou et al. 2018, 2020). The intergrowth of the magnetite-apatite assemblage is widely developed at the Huogezhuang BIF deposit, and may provide new clues to the initial hydrothermal genesis of the BIFs. As the precursor phase to the BIF minerals, ferrihydrite has acted as a carrier of Fe, Si and P elements to the seafloor (Alibert 2016). The material source of magnetite and apatite would be from Fe-rich silicate melts, and then the hydrothermal Fe + Si + P fluids mixed with seawater to crystallize the magnetite and apatite (Figs. 14 and 15a). The systematically analyses show the magnetite and apatite in BIFs are relatively richer in Na₂O + K₂O and Al₂O₃, and poorer in FeO_T + CaO + P₂O₅ than those of from the high-grade Fe ores (Supplementary Table S1; Fig. 14). The contents of SiO₂ in magnetite + apatite from BIFs and high-grade Fe ores are almost the same. These geochemical features may indicate remobilisation of Fe and immobility of silicon during the transition from BIFs to high-grade Fe ores. In addition, the magnetite and apatite in BIFs and high-grade Fe ores
are overgrown by greenschist-facies minerals formed during retrograde metamorphism (e.g., chlorite, epidote, allanite and titanite; Figs. 4g–i, 5a, 6a, 7a and 8a), suggesting that the high-grade Fe mineralisation may be related to retrogressive metamorphism. This is consistent with the later regional metamorphic event (ca. 1950–1850 Ma) in the Miyun Terrane of the eastern NCB. The retrograde metamorphism may induce and drive the remobilisation of iron in BIFs, making it high-grade Fe ores.

Therefore, we propose that the high-grade Fe ores represent products after leaching of iron during breakdown of the BIFs, the reprecipitation of iron is mainly responsible for the remobilisation and formation of magnetite during retrogressive metamorphism. Meanwhile, the remnant Na$_2$O + K$_2$O + Al$_2$O$_3$ with the REEs likely formed accessory silicate minerals (such as chlorite, epidote, allanite and titanite) within the BIFs and wall rocks (Fig. 15b).

Implications

The chemical compositions recorded in modified magnetite and hydrothermal apatite from BIFs provide essential insights into the supernormal enrichment of iron during retrogressive metamorphism of BIFs. Compared with low-grade BIFs, the modified magnetite in high-grade Fe ore has an increase in Fe, and decreases in Al, Ti, K, Mg, and Mn, which are controlled by breakdown of BIFs, and silicate and retrograde greenschist-facies minerals formed during retrogressive metamorphism with the decreasing temperature and acids. Retrograde metamorphism drives the remobilisation of iron in BIFs, and the high-grade iron ores are formed by leaching of iron during breakdown of BIFs. Diffusion and exchanges of elements between modified magnetite and retrograde mineral assemblages effectively demonstrate the high-grade
Fe mineralisation during retrogressive metamorphism, during which some of
the apatite grains have been hydrothermally altered. REEs are leached out
from the hydrothermal apatite and enter the retrograde greenschist-facies
minerals during retrogressive metamorphism. Furthermore, in situ U–Pb
geochronology on apatite intergrown with magnetite has also dated the high-
grade BIF-hosted mineralisation. Modified magnetite and hydrothermal apatite
in BIFs are ideal indicator minerals to study the enrichment mechanism from
low-grade BIFs to high-grade Fe ores during retrograde metamorphism, which
enables us to better understand the remobilisation of iron, and metamorphism
of iron deposits hosted by BIFs.

Acknowledgements

This study is jointly supported by the National Natural Science
Foundation of China (Numbers 92162101, 41872080), the National Key
Research and Development Project of China (Number 2020YFA0714802),
and the Most Special Fund from the State Key Laboratory of Geological
Processes and Mineral Resources in China University of Geosciences, Beijing
(CUGB), China (Number MSFGPMR201804). We thank Prof. Kunfeng Qiu
(CUGB) and associate Prof. Shengchao Xue (CUGB), and the staff at the
Huogezhuang deposit for their supports in the field. This paper benefits
greatly from constructive comments of Prof. Zhaochong Zhang and the
anonymous reviewers. We are also grateful to the Editor Prof. Hongwu Xu
and the Associate Editor Prof. Thomas Mueller for their valuable help in
handing this paper.
References cited

spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211, 47–69.

Klein, C. (2005) Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, 90, 1473–1499.

chemistry of the concealed, high-grade 4EE iron orebody at the Paraburdoo 4E deposit, Hamersley Province, Western Australia. Economic Geology, 109, 1529–1562.

China Craton: Implications for their origin and tectonic setting.
Precambrian Research, 255, 603–626.

Craton and their geological significance: A study advance and review.

Tectonophysics, 662, 153–166.

Figure captions

Figure 1. (a) Geological and tectonic framework showing the BIF-hosted Fe deposits in the North China Block (modified after Zhao et al. 2001; Zhao 2007; Zhang et al. 2012; Wang et al. 2018; Deng et al. 2018, 2020). Abbreviations of complexes: AS = Anshan; CD = Chengde; DF = Dengfeng; EH = Eastern Hebei; ES = Eastern Shandong; FP = Fuping; GY = Guyang; HA = Huai’an; HL = Helanshan; HS = Hengshan; JN = Jining; JP = Jianping; LL = Lvliang; MY = Miyun; NH = Northern Hebei; NL = Northern Liaoning; QL = Qianlishan; SJ = Southern Jilin; SL = Southern Liaoning; TH = Taihua; WD = Wulashan–Daqingshan; WL = Western Liaoning; WS = Western Shandong; WY = Wuyang; WT = Wutai; XH = Xuanhua; ZH = Zanhuang; ZT = Zhongtiao. Abbreviations of blocks: ALS = Alashan; JL = Jiaoliao; JN = Jining; OR = Ordos; QH = Qianhuai; XC = Xuchang; XH = Xuhuai. (b) Geological map of the Miyun area (modified after Beijing Bureau of Geology and Mineral resources 1991).

Figure 2. Geological map (a) and section (b) of the Huogezhuang Fe deposit (modified after Beijing Bureau of Geology and Mineral resources 1991).

Figure 3. Geological sections, field photographs and hand specimens of the ore samples and wall rock from the Huogezhuang BIF-hosted Fe deposit. (a-b) Geological sections showing the ore body with porphyritic granite, chlorite-alteration, and faults. (c) Garnet and calcite distributed in the contact of ore body and garnet gneiss. (d) Calcite vein from the high-grade Fe ore with chlorite-alteration. (e) BIF. (f) High-grade Fe ore.

Figure 4. Representative microphotographs under cross-polarized light and backscattered electron images of the ore samples from the Huogezhuang
BIF-hosted Fe deposit. (a) Magnetite-rich and quartz layers with granulite- to amphibolite-facies (clinopyroxene and hornblende) and greenschist-facies minerals (chlorite and epidote). (b) Magnetite, quartz, apatite, and epidote. (c) Magnetite showing destruction texture. (d-e) Magnetite and coexisting apatite. (f-i) Apatite showing partly altered zones with greenschist-facies minerals (epidote, allanite and titanite). Mineral abbreviations: Mt = magnetite; Ap = apatite; Qtz = quartz; Cpx = clinopyroxene; Hbl = hornblende; Pl = plagioclase; Chl = chlorite; Ep = epidote; Aln = allanite; Ttn = titanite.

Figure 5. Backscattered electron images (a-b) and distributions of selected elements (c-j) in the magnetite grain from the high-grade Fe ore. Mineral abbreviations: Mt = magnetite; Ap = apatite; Qtz = quartz; Ep = epidote.

Figure 6. Backscattered electron images (a), CL images (b) and distributions of selected elements (c-i) in the apatite grain from the high-grade Fe ore. Mineral abbreviations: Mt = magnetite; Ap = apatite; Ep = epidote; Aln = allanite.

Figure 7. Backscattered electron images (a), CL images (b) and distributions of selected elements (c-i) in the apatite grain from the BIF. Mineral abbreviations: Mt = magnetite; Ap = apatite; Ep = epidote; Ttn = titanite.

Figure 8. Backscattered electron images (a), CL images (b) and distributions of selected elements (c-i) in the apatite grain from the BIF. Mineral abbreviations: Mt = magnetite; Ap = apatite; Ep = epidote; Ttn = titanite.

Figure 9. Representative backscattered electron images and U–Pb concordia plots for apatite in situ from the Huogezhuang BIF-hosted Fe deposit. (a) High-grade Fe ore (Sample D01DB6). (b) BIF (Sample D01DB5).
Figure 10. Geochronology of high-grade Fe ore and BIF from the Huogezhuang BIF-hosted Fe deposit showing: (a) U–Pb concordia plot for high-grade Fe ore (Sample D01B3) and representative CL images of zircons; (b) U–Pb concordia plot for BIF (Sample D01B5) and representative CL images of zircons; and (c) combined probability density plot for samples D01B3 and D01B5.

Figure 11. (a) Normalised multi-elemental patterns of magnetite from the Huogezhuang BIFs. Normalization values are the average composition of magnetite from the unmetamorphosed BIF in the Sokoman Iron Formation (Chung et al. 2015; Ti = 31 ppm, Al = 128 ppm, Mn = 291 ppm, Mg = 153 ppm, Ca = 84 ppm, V = 23 ppm, Cr = 6 ppm, Co = 14 ppm, Cu = 1 ppm, Zn = 10 ppm). (b) Ti/100–Al/30–Mg + Mn diagram (after Nadoll et al. 2012, 2014). (c-d) Ti/100 + V/10 vs. Al/30 + Mn diagrams (after Nadoll et al. 2012, 2014).

Figure 12. (a) Chondrite-normalised REE patterns of the apatite in the Huogezhuang BIF-hosted Fe deposit. Chondrite normalization values are after Sun and McDonough 1989. (b) Total REE contents in altered and unaltered zones of the apatite. (c) δCe and δEu values in altered and unaltered zones of the apatite. (d) Concentrations of selected elements in altered and unaltered zones of the apatite.

Figure 13. Concentrations of selected elements in altered and unaltered zones of the apatite in the Huogezhuang BIF-hosted Fe deposit.

Figure 14. Geochemical diagrams. (a) TiO₂ + FeO₇ + MnO + MgO + CaO + P₂O₅–Na₂O + K₂O + Al₂O₃–SiO₂ diagram (after Hou et al. 2017, 2018). (b) Al₂O₃ vs. Na₂O + K₂O diagram (after Hou et al. 2017, 2018).
Figure 15. Schematic model for BIF-hosted high-grade magnetite mineralisation and modification of the Huogezhuang Fe deposit (after Shi *et al.* 2019a; Li *et al.* 2019). (a) BIF deposition. (b) BIF deposition at ca. 2500-1900 Ma, and high-grade magnetite mineralisation during retrogressive metamorphism, modification, and alteration of BIFs at < 1900 Ma.
Supplementary table captions

Supplementary Table S1. Mineral chemical concentrations under electron probe micro-analysis of the magnetite and apatite from the BIF and high-grade Fe ore.

Supplementary Table S2. LA–ICP–MS trace elemental analysis of the apatite *in situ*.

Supplementary Table S3. LA–ICP–MS apatite *in situ* U–Pb dating results.

Supplementary Table S4. LA–ICP–MS zircon U–Pb dating results from the BIF and high-grade Fe ore.
Figure 2

(a) Porphyritic monzogranite Pegmatite vein
High-grade Fe orebody BIF orebody

Sample location Mesozoic
Fault
Pegmatite vein
Porphyritic monzogranite

(b) Early Neoarchaean Miyun Complex
Supracrustal rocks and orthogneiss

North ore block
Central ore block
South ore block

Key: Sample location, Mesozoic, Fault, High-grade Fe orebody, BIF orebody

Figure 2
Figure 3
Figure 4
Figure 5

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)

Counts

Counts

Counts

Counts
Figure 7
Figure 8

(a) D01B5

(b) Tm

(c) Ca

(d) P

(e) F

(f) Cl

(g) La

(h) Ce

(i) Sm

Conc. 134.8

Conc. 56.10

Conc. 41.19

Conc. 12.85

Conc. 39.99

Conc. 12.65

Conc. 92.59

Conc. 81.02

Conc. 71.59

Conc. 5.15

Conc. 3.21

Conc. 1.61

Conc. 46.29

Conc. 34.72

Conc. 23.15

Conc. 11.57

Conc. 69.44

Conc. 57.87

Conc. 46.29

Conc. 34.72

Conc. 23.15

Conc. 11.57

Conc. 69.44

Conc. 57.87

Conc. 46.29

Conc. 34.72

Conc. 23.15

Conc. 11.57

Conc. 69.44

Conc. 57.87

Conc. 46.29

Conc. 34.72

Conc. 23.15

Conc. 11.57

Conc. 69.44

Conc. 57.87

Conc. 46.29

Conc. 34.72

Conc. 23.15

Conc. 11.57

Conc. 69.44

Conc. 57.87

Conc. 46.29

Conc. 34.72

Conc. 23.15

Conc. 11.57

Conc. 69.44
Figure 9

(a) Lower intercept age:
1902 ± 18 Ma
(n = 13; MSWD = 2.4)
Data-point error ellipses are 2σ

(b) Lower intercept age:
1951 ± 29 Ma
(n = 19; MSWD = 2.5)
Data-point error ellipses are 2σ
Zircon U-Pb age (Ma)

(a) 2552 ± 21 Ma
(b) 2280 ± 41 Ma
(c) 1900 ± 43 Ma

Mean $^{207}\text{Pb}/^{206}\text{Pb}$ age:
- 2072 ± 78 Ma (n = 5; MSWD = 2.0)
- 1855 ± 43 Ma (n = 8; MSWD = 1.5)

Upper intercept age:
- 2495 ± 64 Ma
- 2497 ± 18 Ma

Lower intercept age:
- 1849 ± 100 Ma
- 1969 ± 77 Ma

Mean $^{207}\text{Pb}/^{235}\text{U}$ age:
- 1855 ± 43 Ma (n = 8; MSWD = 1.5)

Mean $^{207}\text{Pb}/^{206}\text{Pb}$ age:
- 2511 ± 47 Ma (n = 13; MSWD = 2.1)
- 2226 ± 78 Ma (n = 5; MSWD = 2.0)

Upper intercept age:
- 2883 ± 19 Ma
- 2497 ± 16 Ma

Lower intercept age:
- 1849 ± 100 Ma
- 1969 ± 77 Ma

Mean $^{207}\text{Pb}/^{235}\text{U}$ age:
- 2495 ± 64 Ma
- 2497 ± 18 Ma

Figure 10
Figure 12

(a) Altered zone vs. Unaltered zone

(b) ΣREE Concentration (ppm)

(c) δCe and δEu

(d) Concentration (ppm) for Altered zone and Unaltered zone
Figure 13

- Altered zones
- Unaltered zones

La (ppm) Nd (ppm) Sm (ppm) Ce (ppm) Th (ppm) U (ppm) Pb (ppm)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p)
Si-rich phase
Fe-rich phase
Starting composition
Si-rich phase

Figure 14

(a) TiO₂ + FeO₂ + MnO + MgO + CaO + P₂O₅

(b) Magnetite in high-grade Fe ore
Magnetite in BIF
Apatite in high-grade Fe ore
Apatite in BIF

Fe-rich silicate melts
Fe-Ca-P melts
Fe-P melts