Revision 2

A possible origin of the lunar spinel-bearing lithologies as told by the meteorite NWA 13191

LAN F. XIE1, HONG Y. CHEN1,*, BING K. MIAO1,*, WEN L. SONG2,
ZHI P. XIA1, GUO Z. CHEN1, JIN Y. ZHANG1, SI Z. ZHAO1,3, XU K. GAO1

1 Key Laboratory of Planetary Geological Evolution of Guangxi Provincial Universities and Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, College of Earth Sciences, Guilin University of Technology, Guilin 541006, China
2 State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China.
3 Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

ABSTRACT

Pink spinel anorthosite (PSA) and pink spinel troctolite (PST) are two lunar lithologies known to contain Mg-rich spinel. PSA rich in spinel and lacking mafic minerals, was detected by the visible and near-infrared reflectance spectroscopy. PST clasts were found in returned lunar samples and meteorites. NWA 13191 is a recently approved lunar meteorite that contains a large amount of spinel-bearing clasts and provides an opportunity to discuss its origin. In this paper, 64 spinel-bearing clasts are studied. These clasts are dominated by anorthitic feldspars (20.8 – 80.9 vol.%, An90.9-96.8), mafic-rich and aluminum-rich melt (14.7 – 72.1 vol.%) and spinels (0.19 – 5.18 vol.%). 49 of these clasts appears to have an unusually low modal abundance of mafic silicates (avg. olivine ± pyroxene, 1.87 vol.%), which distinguishes it from known spinel-bearing lunar samples (e.g., PST). The spinel composition (avg. Mg# = 90.6, Al# = 97.4) and mafic minerals content are basically consistent with those of PSA. The absorption characteristics of the melt in the reflection spectrum are not obvious, so it is not clear if the PSA contains melt. The simulated crystallization experiment clearly shows that it contains a large amount of melt at the spinel crystallization stage. These phenomena provide experimental and sample evidences for the existence of melt in the lunar spinel-bearing lithologies. NWA 13191 records the highest known bulk Mg# (avg. 89.8) and the spinel records the highest Al# (98.8) and Mg# (93.1) of lunar samples to date. The chemical properties of spinel-bearing clasts in NWA 13191 are consistent with the slightly REE-enriched and alkali-poor Mg-suite rocks, such as PST, magnesian anorthosites (MANs), and olivine-enriched Mg-suite rocks. These phenomena and previous simulated crystallization experiments indicate that the Mg-Al-rich melt may be produced by impact melting of Mg-rich anorthosite precursors. The spinel is a metastable crystallization product along with plagioclase and vitric melt near the Moon’s surface. This realization provides sample observational evidence for previous simulated crystallization experiments and theoretical speculations.

Key words: Lunar meteorite, spinel, Mg-rich anorthosites, origin, impact melting, PSA, PST

INTRODUCTION

PSA has been identified and defined by high-resolution mineralogical data (Pieters et al., 2011) from NASA’s test load Moon Mineralogy Mapper (M*) aboard the Chandrayaan-1 spacecraft (Pieters et al., 2009). The term PSA was adopted in homage to PST lithics of lunar Mg-suite samples (e.g., Prinz et al., 1973; Marvin et al., 1989). PSA shows no detectable absorption feature near 1000 nm, but it has a prominent absorption centered near 2000 nm (Pieters et al., 2010; 2011; Taylor and Pieters et al., 2013), thus PSA contains nearly pure MgAl2O4 spinel (hereafter referred as spinel), and unusually low abundances of mafic minerals. The abundances of olivine ± pyroxene are estimated to be no more than 5 vol.% for the PSA lithology, based on laboratory spectra and nonlinear mixing calculations (e.g., Dhingra et al., 2011; Cheek and Pieters, 2014). Lunar troctolitic cataclasites contain few spinel, only two contain more than ~ 5 – 6 vol.% spinel (Gross et al., 2014 and references therein), but these PSA outcrop zones are inferred to contain 20 – 30% spinel (Taylor and Pieters, 2013). Crystallization experiments on the composition of AHLA 81005 PST fragment (350 × 150 μm, ~ 30 vol.% spinel, Gross et al., 2011; Gross and Treiman,
did not yield spinel; however, composition similar to Apollo 65785 (~ 13 vol.% spinel, Prinz et al., 1973) crystallized ~ 8 vol.% spinel. Thus, the spinel-rich outcrop zones might not be as spinel-rich as previously thought and may only represent ~ 4 – 5 wt.% spinel (Gross et al., 2014). Sun et al. (2016) applied the spinel-pyroxene mixture model to the spectra detected by M^3 data for Tycho Crater and showed that the spinel represents only 5.4 – 6.4 vol.% of the spinel-pyroxene mix. However, only need 5 vol.% spinel (Mg2+ = 87) in the mixture samples to mask the crystalline plagioclase band and generate the 2000 nm absorption (Cheek et al., 2014). The PSA spectral data are consistent with spinels having Mg2+ > 88 (100 × Mg / [Mg + Fe], molar) (Jackson et al., 2014) and potentially Al3+ > 99 (100 × Al / [Cr + Al], molar) (Williams et al., 2016), based on the compositional and spectral analyses of synthesized spinel. The spinel is typically found in a dominantly anorthositic terrain, so the remaining mineral is inferred to be plagioclase (Dhingra et al., 2011), but its content is still relatively unconstrained. No plagioclase absorption (~ 1250 nm) is observed in these remote data, which could be due either to the effects of shock metamorphism destroying the plagioclase crystal structure or spinel masking the absorption of plagioclase crystal (Cheek et al., 2014). With the above comprehensive analysis, the main characteristics of PSA can be modified from Taylor and Pieters (2013): consist of ~ 5 – 8 vol.% spinel, base on mixture spectral experiments; with < 5 vol.% mafic mineral, and > 90 vol.% crystallized or shocked plagioclase; have < 10 wt.% FeO (Pieters et al., 2011) and high-Mg2+, low-FeO melt. The exact chemical or physical property of the lithology remains in question due to lack of laboratory samples.

Possible explanations for the petrogenesis of spinel-bearing lithologies range from low-pressure near-surface crystallization to a deep source in the lower lunar crust or upper mantle (Gross et al., 2014 and references therein). Three major hypotheses have been put forward: a. spinel formed at low pressure by impact melting of Mg-rich anorthosite precursors, such as troctolite or troctolitic anorthosite (Treiman et al., 2010). Low-pressure experiments on Apollo samples indicate that olivine + plagioclase components could be produced by partial or complete melting of Mg-rich anorthosites or troctolite materials from the lunar crust, and not necessarily by partial melting of material from the deep Moon (Walker et al., 1973). This hypothesis was confirmed by low-pressure experiments on plagioclase-olivine melt from natural samples (Marvin and Walker, 1985). b. Spinels formed at low pressure by chemical reaction between picritic magma or Mg-suites parental melts and anorthositic crust (Morgan et al., 2006; Gross and Treiman, 2011; Prissel et al., 2014). c. Spinels formed at high pressure in the deep crust (25 – 60 km), from basaltic or peridotitic precursors (Herzberg and Baker, 1980; Marvin et al., 1989; Wittmann et al., 2019). The hypotheses b and c contradict the apparent lack of mafic minerals in the PSA, because the picritic, basaltic, and peridotitic magma can produce abundant mafic minerals. This key phenomenon can be explained if the precursor material of olivine + plagioclase components undergoes shock melting and then recrystallizes at low pressure and high temperature to form spinel. Crystallization experiments at 1 bar (this pressure would be produced during cooling of a large impact melt sheet) conducted on olivine and plagioclase-rich rock compositions (e.g., Apollo PST 65785) show that the crystallized product is spinel (Mg2+ = 93.9 – 90.5, 3.0 – 8.0 wt.%) + plagioclase (≤ 39.6 wt.%) + glass (97.0 – 50.9 wt.%) + olivine (≤ 1.2 wt.%) at 1450 °C – 1300 °C; olivine appears abundantly (~ 13.6 wt.%) while spinel (5.2 wt.%, Mg2+ = 88.6) is relatively iron-rich at 1250 °C (Gross et al., 2014).

PSA is distributed on both the near and far side of the Moon. It was found in central peaks of 23% of the craters studied by Sun et al. (2017). This indicates that the formation of PSA may have occurred on a global scale. PST clasts found in Lunar samples (e.g., Prinz et al., 1973; Herzberg and Baker, 1980; Marvin et al., 1989; Cohen et al., 2001) and lunar meteorites (e.g., Gross and Treiman, 2011; Wittmann et al., 2019) are the closest samples to the spectroscopic interpretation of the spinel composition. However, the spinel is general slightly richer in Fe and Cr than that in PSA, just one elatic particle from the regolith breccia 10019 (Keil et al., 1970) and spinel-bearing troctolite 2003 from Luna 20 (Cohen et al., 2001) are the only two samples with small amounts of near-pure spinel (Mg2+ ~ 93, Al3+ ~ 98; Mg2+ ~ 91, Al3+ ~ 98, respectively) matching PSA. However, every known spinel-bearing lunar
sample contains significant proportions of olivine ± pyroxene (＞8 vol.%), which is inconsistent with an approximately mafic-free PSA lithology.

PSA is a MgO-rich, FeO-poor anorthosite. However, due to the lack of relevant samples, for the component and formation of the PSA, there is no direct evidence for its petrology, mineralogy, and major and trace element geochemistry. This paper presents a recently discovered lunar meteorite, spinel-bearing polymict breccia NWA 13191. Sixty-four typical spinel-bearing clasts are selected as the main objects of study. Through systematic petrological, mineralogical and geochemical studies, we aim to compare the sample with known PST clasts with similar chemical characteristics, and investigate its relationship to the PSA. In addition, analysis of the origin and chemical properties of the melt, spinel and olivine, elucidates the formation of spinel-bearing clasts in the NWA 13191 meteorite.

SAMPLE AND ANALYTICAL METHODS

Sample preparation
NWA 13191 is a spinel-bearing feldspathic breccia of lunar provenance, as will be shown later in the paper. The size of the hand specimen is ca. 9 × 4 × 3 cm. The fusion crust is missing, while the stone is covered with yellow-brown desert varnish (Fig. 1). In this paper, a 4.5 × 2.5 cm thin section of NWA 13191, 2 is used for petrological observation and analysis of the chemical composition of minerals (Fig. 2). A total of 130 mg of sub-samples are collected from the powder in the diamond wire saw cutting process and some fragments (particle size ~ 1 mm) in five different areas from the rim to core of the thin section. These fragments and powders can represent the average composition of the whole rock. The fragments are ground to less than 20 μm with an agate mortar. Therein samples of 30 mg are analyzed by the New Microprobe Fused Bead (NMFB) method for bulk major elements, and samples of 100 mg are measured by Inductively Coupled Plasma Mass Spectrometry (ICP–MS) for bulk trace elements.

Instruments and analytical methods
Scanning Electron Microscopy (SEM), Electron Probe Microanalyzer (EPMA), Laser Ablation Inductively Coupled Plasma Mass Spectrometry (ICP–MS) and ICP–MS analytical data are obtained at the Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, Guilin University of Technology (GUT). Backscattered electron (BSE) images of carbon-coated polished thin section are obtained using a ΣIGMA field emission SEM. An electron beam with an accelerating voltage of 15 kV and a 20 nA current is used. Major element compositions of spinel, plagioclase, olivine, pyroxene and glass are determined using a JEOL JXA-8230 EPMA. Spot analyses are performed on all minerals and glass using an electron beam with an accelerating voltage of 15 kV. The plagioclase are analyzed using a 5 μm diameter electron beam and a current of 10 nA. Spinel, glass, olivine and pyroxene are analyzed using a focused electron beam (<1 μm) and a current of 20 nA. Natural and synthetic crystals are used as standards for the analyses ZAF correction was applied to all analyses. The standard materials used for the calibration of measured elements and their limit of detection (ppm) were: Si (olivine, 130); Ti (rutile, 294); Al (albite, 88); Cr (Cr metal, 83); Fe (olivine, 154); Mn (MnO, 104); Mg (olivine, 130); Ca (wollastonite, 91); Na (albite, 97); K (phlogopite, 77); Ni (Ni metal, 201).

The X-ray mapping (Fig. 2) and the modes of the minerals (vol.%) are obtained using a TESCAN Integrated Mineral Analyzer (TIMA) system at the State Key Laboratory of Continental Dynamics, Northwest University, Xi’an, China. TIMA is a SEM and energy disperse spectroscopy (SEM-EDS) based automated mineralogy system, comprising a TESCAN MIRA-3 SEM equipped with four EDS detectors, as well as mineral data processing software. TIMA is designed to automatically identify and quantify minerals based on the BSE signal intensity and characteristic X-rays spectrum. During analysis, the dot mapping analysis mode is choosen with X-ray counts set to 10000, pixel spacing of BSE set to 1.5 μm, and dot spacing of EDS set to 4.5 μm. The measurements are conducted at an acceleration voltage of 25 kV, current of 9 nA, and a working distance of 15 mm. The beam current and BSE signals are calibrated by platinum Faraday cup and EDS signals by Mn standard (Hrstka et al., 2018).
The sample fabrication of NMFB method is performed at the Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences. This method is an improvement on the Microprobe Fused Bead (MFB; for further information, see Brown, 1977) commonly used in Apollo samples, and solves the problems of volatilization of low-boiling elements and rapid crystallization of high-melting point minerals such as spinel and forsterite (Zeng et al., 2015). The main procedures are: (1) weigh 30 mg of the ground powder sample, put it into a pre-customized platinum tube, and seal the platinum tube port with a platinum cap (to prevent the escape of volatile elements); (2) a silicon-molybdenum rod lifting electric furnace is used to heat the packaged platinum tube, the whole heating process adopts nitrogen atmosphere, pressure 5 kPa, heating gradient: 20 – 500℃, 60 min; 500 – 800℃, 60 min; 800 – 1200 ℃, 60 min; 1200 – 1480℃, 60 min; 1480℃, constant temperature for 120 min; (3) take out the sample and put it into cold water quickly, the whole quenching process is completed in 10 sec; (4) return the quenched sample into the electric furnace, and repeat the operation according to the above procedure to ensure the uniformity of the sintered glass sample; (5) the prepared glass sample and the platinum tube are processed into a polished thin section together. The bulk major elements of polished thin section are analyzed by EPMA at GUT.

Mineral phase is determined using a Renishaw inVia Raman spectrometer at the Key Laboratory of Nonferrous Metal Materials Processing Technology, Education Ministry of China, GUT, with a 20 mW, 780 nm Ar⁺ laser (Feng et al., 2011). All tests are performed under a 100× objective lens with a laser focus of less than 1 μm. The spectral resolution is 1 cm⁻¹, and the Raman shift test range is 100 to 1300 cm⁻¹. Raman calibration is performed using monocrystal silicon wafers, where the Raman shift is 520.7 cm⁻¹.

Whole rock trace element analysis is carried out on an Agilent 7700 cx ICP–MS using a chemical dissolving method. In situ trace element analysis of minerals and melts is carried out by LA–ICP–MS. Operating conditions of the LA–ICP–MS instrument as well as data reduction are the same as described by Zong et al. (2017). Raw count rate data, including uncertainty, concentration and detection limit were reduced using the ICPMSDataCal software (Liu et al., 2008).

EXPERIMENTAL OBSERVATION AND ANALYTICAL RESULTS

Petrologic characteristics

NWA 13191 is an impact-melted polymict breccia (Fig. 1). Clast types include lithic clasts, glass and mineral fragments. Lithic clast mainly includes spinel-bearing lithologies, MANs, ferroan anorthosites (FANs), troctolite and fine-grained basalt. The glass fragments can be divided into mafic-rich, Al-rich, mixed and special components. The mafic-rich, Al-rich and mixed glass are related to spinel and can be collectively referred to as spinel-bearing vitric melt (hereafter referred to as melt). The mineral content of the whole rock is obtained using a TIMA instrument, namely plagioclase ± maskelynite (73.8 vol.%), pyroxene (13.4 vol.%), olivine (3.31 vol.%), spinel-bearing melt (7.95 vol.%), glass with special components (0.4 vol.%) and silica phase (0.28 vol.%). Other minerals are less than 0.1 vol.%, e.g., spinel, ilmenite, troilite, chromite, iron-nickel and terrestrial weathering materials (e.g., baryte and calcite) (Fig. 2).

Characteristics of major lithic clast

Spinel-bearing clasts are composed of plagioclase, mafic-rich and Al-rich melt, crystallized spinel, pyroxene, olivine-melt, as well as a small amount of silica phase, ilmenite, chromite, troilite, and iron-nickel, taking the distribution zone of spinel-bearing melt as the boundary of the spinel-bearing lithologies. The abundance of spinel-bearing clasts is ~8 vol.% according to the evaluation of Mg-Al-rich melt (Fig. 2). The size of the clasts is 40-500 μm with irregular shapes (Supplementary Figs. S1-S8). These areas are divided into grids with a spacing of 1 μm to ensure that those minerals larger than 1 μm can be identified, and then confirm the content (vol.%) of a mineral or melt by counting the number of squares it occupies (Table 1). Based on the relative content (vol.%) between the melt and plagioclase (partially transformed into maskelynite, which can be judged by the development of continuous
planar fractures and optical extinction), the spinel-bearing clasts can be divided into three types: S1, S2 and S3 (Table 1).

S1 type (53, accounting for 82.8% in 64 clasts) is the most common, in which the content of plagioclase ± maskelynite (48.8 vol.% – 80.9 vol.%, avg. 66.4 vol.%) is higher than that of the melt (14.7 vol.% – 42.2 vol.%, avg. 28.5 vol.%). The mafic-rich melt fills along the plagioclase fissure surface or intercrystal space, forming a lattice-like filling and interlocking textures (Figs. 3a-b). The spinels (0.2 vol.% – 5.2 vol.%, avg. 1.5 vol.%) occur as euhedral are incorporated into plagioclase containing mafic-rich melt (Fig. 3a). Mafic mineral ≤15.0 vol.%, only one clast with a spinel-bearing gabbro (No.14) containing ~15 vol.% olivine ± pyroxene (Table 1, Fig. S2).

The melt content (47.7 vol.% – 72.1 vol.%, avg. 58.6 vol.%) is more than that of plagioclase ± maskelynite (20.8 vol.% – 43.9 vol.%, avg. 35.9 vol.%) for the S2 type. The melt of S2 type has a finer and more uniform texture than S1 type, and it consists of nanoscale fine lines, honeycombs, fish-like scales and tail feathers (e.g., in the middle of Fig. 3c). Spinel and olivine ± pyroxene contents are 0.4 vol.% – 2.6 vol.%, avg. 1.1 vol.% and 0.1 vol.% – 8.6 vol.%, avg. 4.3 vol.%, respectively. There are also spinel-bearing clasts that contain a large amount of impact melt pockets, molten veins, and mineral fragments, which are also classified as S2 type, and these phenomena further indicate the impact origin of the melt.

For S3 type, lath-shaped plagioclase and subhedral to euhedral spinels (1.6 vol.% – 2.2 vol.%) are dispersed in the homogeneous melt (52.8 vol.% – 70.3 vol.%, avg. 65.7 vol.%) and form a porphyritic texture (Figs. 3d). The average contents of spinel and olivine ± pyroxene are 1.8 vol.% and 0.56 vol.%, respectively. From S1, S2 to S3 type, the mixed degree between the melt and plagioclase increases, the content of plagioclase and mafic minerals decreases, the content of melt increases, and the content of spinel shows no significant change (Table 1).

FANs clasts are mainly composed of plagioclase (≥ 95 vol.%, An\text{95.5-97.6}, avg. Mg\# = 39.6) (Supplementary Table S1-1). Shock-induced planar fractures appear in the plagioclase, containing finely dispersed dark mineral inclusions (Fig. S1). MANs clasts are composed of lath-like euhedral plagioclase crystals (An\text{93.4-97.7}, avg. Mg\# = 56.5) (Table S1-2), olivine and pyroxene and a small amount of impact melt (Fig S2). There is no clear boundary between MANs clasts and spinel-bearing clasts. In addition to containing spinel, the distinctive feature of spinel-bearing clasts is that most plagioclases (An\text{90.9-96.8}, Mg\# =55.4, Table S1-3) have been converted into maskelynite by impact. Sorting by Mg\# value from highest to lowest: MANs > spinel-bearing clasts > FANs, whereas sorting by An value from highest to lowest: FANs > MANs > spinel-bearing clasts (Table 2). Among them, spinel-bearing clasts and MANs have similar plagioclase compositions.

Melt

All spinel-bearing clasts contain Mg-Al-rich melts. The occurrence of melts is closely related to spinel and plagioclase. Based on the relationship of occurrence and composition analysis, it is assumed that these melts are derived from impact melting and mixing of mafic minerals and plagioclase. To represent the precursor material properties of mixed melts, the concept of M value is introduced.

\[M \text{ value} = \frac{(\text{FeO} + \text{MgO})}{\text{Al}_{2}\text{O}_{3}} \text{, wt.%} \]

The whole rock M value of a lunar meteorite is an important criterion for classifying lunar lithologies (M ≥ 1, mainly mare basalt; M < 1, mainly highland lithologies; this standard is obtained through statistics of 446 lunar meteorites published by the Meteoritical Bulletin, URL: www.lpi.usra.edu/meteor). The concept of M value is applicable to both chemical properties of melts and the determination of lunar rock types. The M value is a further promotion and improvement of previous foundation (Korotev et al., 2003). If M ≥ 1, it means that the melt mainly originates from mafic minerals; if M < 1, it means that the melt mainly originates from plagioclase (Table 2).

According to the above definitions, melt in spinel-bearing clasts can be divided into two types: one is relatively enriched in FeO + MgO (M = 6.17 – 30.5, avg. 15.9; Mg\# = 55.9 – 86.3, avg. 67.5, Table S1-4). The other is relatively enriched in Al\text{2}O\text{3} (M = 0.17 – 0.89, avg. 0.39, Table S1-5).
The melt shows no fixed shape and is divided into three types according to the occurrence: a. the melt looks like filled in interstitial or crack between plagioclase crystals (M1, Fig. 3b). b. fine lines and veins (M2, Fig. 3c). c. completely melted (Fig. 3d). M1 is mainly a mafic melt (M ≥ 1), M2 contains both melts (mafic-rich melt and Al-rich melt), and M3 is mainly a melt with a high degree of mixing. Taking the spinel as the center, from the core to rim are mafic-rich melt, Al-rich melt and plagioclase (Figs. 3e-f). Compared to the plagioclase, the Al content in the melt containing spinel is significantly lower (Fig. 3g), and the content of Mg is significantly higher (Fig. 3h). The Al-rich melt is closely related to plagioclase, which is manifested by the partial melting and recrystallization of plagioclase (Fig. 3i). The mafic-rich melt is distributed in parallel bands in the plagioclase (Fig. 3j). The Mg-Al-rich melt, the mafic melt and plagioclase are interwoven (Fig. 3k). The spinel with an inclusion of silica-enriched glass crystallizes first in a Mg-Al-rich melt, it shows that rapid quenching and unbalanced crystallization (Fig. 3l).

Abundance statistics of the different phases in 64 spinel-bearing clasts can be found: there is a clear inverse correlation between melt content and plagioclase content, and spinel content and olivine ± pyroxene content also have a similar inverse correlation (Fig. 4).

Spinel

Most spinels are euhedral to subhedral, with a particle size of 1 μm to 10 μm, and the maximum size does not exceed 15 μm (Figs. S1-S8). According to the composition, The spinel can be divided into a main group and a subgroup. The main group is rich in magnesium and aluminum (Mg\(^{#}\) = 89.2 – 93.1, avg. 90.7; Al\(^{#}\) = 95.2 – 98.8, avg. 97.4, Table S1-7). The subgroup has a higher content of Cr and Fe (avg. Mg\(^{#}\) = 55.5, Al\(^{#}\) = 77.1, Table S1-8) compared to the main group (Fig. 5a). The main group spinel has a weak growth zonation from core (avg. Mg\(^{#}\) = 91.3) to rim (avg. Mg\(^{#}\) = 90) (Table 2, Figs. 3a, 5b). Three types of spinel-bearing clasts (S1, S2 and S3) have the similar spinel composition. The Mg\(^{#}\) value of the main group is consistent with laboratory studies that connect mineral composition (Mg\(^{#}\) > 88) to spectroscopic observations (Jackson et al., 2014), and the Al\(^{#}\) value is close to the experimental results of mineral spectroscopy simulation (Al\(^{#}\) > 99, Williams et al., 2016). Some of the main group spinel cores are subgroup spinel, mainly Cr-Fe-spinel (Mg\(^{#}\) = 18.2 – 19.0, Al\(^{#}\) =30.7 – 30.8), e.g., Clasts No. 28 (Fig. 3f).

Olivine and pyroxene

The content of olivine ± pyroxene in 49 of spinel-bearing clasts is not more than 5 vol.\% (avg. 1.9 vol.\%, Table 1), which is consistent with the remote sensing definition of PSA (Pieters et al., 2011). The content of olivine ± pyroxene in the remaining 15 spinel-bearing clasts is greater than 5 vol.\%, avg. 8.4 vol.\%, which is similar to the previous definition of PST (e.g., Prinz et al., 1973; Marvin et al., 1989). Olivine in basaltic clasts is relatively iron-rich (Mg\(^{#}\) = 35.4, Table S1-9), while olivine in MANs (Table S1-10) and spinel-bearing clasts (Table S1-11) are relatively magnesium-rich (Mg\(^{#}\) = 68.7, 66.7, respectively, Table 2). Olivine in spinel-bearing clasts may have undergone different degrees of impact melting. The olivine is filled with nano-sized melt (Fig. 6a). Compared to olivine in basaltic and MANs clasts (avg. Al\(_{2}O_3\) = 0.29 wt.%, 0.23 wt.%, M value = 220, 275, respectively), the olivine-melt from spinel-bearing clasts is obviously enriched in Al (avg. Al\(_{2}O_3\) = 1.77 wt.%, M value = 51.2, Table S1-11), indicating that Al element entered the olivine-melt. The Raman peak positions of the olivine-melts have the characteristics of amorphous glass, while olivines in basaltic and MANs clasts are not obvious change compared with the standard Raman peaks of olivine (Fig. 6b). The pyroxene composition varies greatly, including low-Ca pyroxene (FS\(_{19.5-45.7}\)WO\(_{1.0-7.4}\), Table S1-12), pigeonite (FS\(_{22.5-45.2}\)WO\(_{5.6-20.7}\), Table S1-13) and high-Ca pyroxene (FS\(_{7.45-28.2}\)WO\(_{26.2-42.6}\), Table S1-14). Most of the low-Ca pyroxenes contain lamellar exsolutions of high-Ca pyroxene (Fig. 6a).

Bulk composition and trace elements

The bulk major element compositions of NWA 13191 are determined by the NMFB method, using the average value of 20 analysis spots. The bulk Mg\(^{#}\) ranges from 88.1 to 91.9, avg. 89.8, M value is 0.22-0.24 (Table S2). The spinel-bearing clasts average bulk Mg\(^{#}\) and M value are 67, 0.62, respectively (Table S3). The chondrite-normalized
rare earth element (REE) patterns of plagioclase in all clasts have LREE > HREE with positive Eu anomalies (δEu = 10.8 ± 4.51 for MANs, 15.1 ± 2.51 for FANs) (Table S4, Fig. 7a), it is similar to that of lunar meteorite MANs (Xu et al., 2020) and Apollo FANs (Papike et al., 1997; Floss et al., 1998). The REE of the olivine (10.5 ppm) is much lower than that of the olivine-melt (avg. 55.2 ppm) (Fig. 7b). The chondrite-normalized REE pattern of the whole rock has slightly LREE > HREE with positive Eu anomalies (δEu = 1.41) (Table S4, Fig. 7c). The total amount of trace elements (avg., ppm), excluding REEs, in descending order is: olivine-melt (656), whole rock (431), spinel-bearing clasts (135), olivine (69.7), plagioclase in MANs (37.6), pyroxene (28.8), plagioclase in FANs (5.91) (Table S5).

DISCUSSION

Evidence of the lunar origin of NWA 13191 meteorite

NWA 13191 is a polymict spinel-bearing breccia (Figs. 1 and 2). The extensive development of impact melt indicates its identity as a meteorite. The main evidence for its lunar origin is as follows: a. The Fe/Mn (atom) ratio of olivine (84.3 – 131, avg. 104 for FANs; 82.5 – 125, avg. 96.8 for MANs; 67.0 – 141, avg. 101 for spinel-bearing clasts; Tables S1-9 – S1-11) and pyroxene (35.9 – 85.1, avg. 58.0, Table 2) are on the lunar trend line, different from Martian and HED meteorites (Figs. 8a and 8b). The deviation of individual data from the lunar trend line may be due to the fact that shock changes the crystal structure of olivine, while Fe$^{2+}$ or Mn$^{2+}$ has different M$_2$ position priorities in pigeonite (Cameron and Papike, 1981). b. The An value of plagioclase is the criterion for judging the evolution of planetary geology, and plagioclase from the Earth, Moon, Mars and Vesta has different An and K (afu) trends (Papike, 1998). The An value of NWA 13191 (avg. 95.4 – 96.6, Table 2) is higher than that of HED (66 – 96, Mittlefehldt, 2014) and Martian meteorites, and the range of variation is much smaller than that of HED and Martian meteorites. c. Most of M values of melts fall on the line of the mare basalt (average value for “olivine + pyroxene + ilmenite”) and highland anorthosite (Fig. 8d). Some data are close to the highland anorthosite, which represents the composition of anorthosite breccia, and other data are close to lunar basalt, which represents the composition of mafic melt or basaltic clasts. At the same time, there are two abnormal distribution clusters: one is an Al-Mg-rich melt ($\text{Al}_2\text{O}_3 = 31.3 \pm 12.3 \text{ wt.\%}, \text{MgO} = 11.2 \pm 5.6 \text{ wt.\%}$), and this melt can possibly form spinel; the other is Al-poor and rich in mafic components ($\text{Al}_2\text{O}_3 = 3.3 \pm 1.7 \text{ wt.\%}, \text{MgO} = 23.4 \pm 6.9 \text{ wt.\%}, \text{FeO} = 20.5 \pm 8.0 \text{ wt.\%}$), which may be derived from impact melting of mafic minerals. The composition of spinel is within the range of spinel in PSA discovered by M2 remote sensing data (Fig. 5, Prissel et al., 2014), which is the same as the trend range of spinel in Luna 20 soil (Fig. 9a, Keil et al., 1970; Cohen et al., 2001), suggesting that they may have a similar genesis.

The spinel-bearing clasts of NWA 13191 vs the spinel-bearing troctolite 2003 of Luna 20

According to the compositional and spectral analyses of the spinels synthesized, remote sensing defined PSA is consistent with spinel having Mg$^+$ > 88 (Jackson et al., 2014) and Al$^+$ > 99 (Williams et al., 2016). Among all lunar samples, spinel compositions basically meet the characteristics of PSA only for NWA 13191 and returned soil samples Luna 20 (Figs. 5 and 9a, Prinz et al. 1973; Wittmann et al., 2019). For further comparison, we compiled analytical data for Luna 20 samples (Bansal et al., 1972; Haggerty, 1973; Helmeke et al., 1973; Prinz et al., 1973; Vinogradov, 1973; Snyder et al., 1992). We found that NWA 13191 and Luna 20 samples share the same types of clasts, such as PST, norite, basalt, and anorthosite, and similar mineral compositions. The anorthosite, spinel-bearing anorthosite and the whole rock of NWA 13191 and Luna 20 have mostly consistent major element compositions (Fig. 9b, Vinogradov, 1973). In terms of trace element content, the spinel-bearing clasts and whole rock compositions of NWA 13191 have the same range of REEs and other trace element concentration ranges as the soil particles from Luna 20, e.g., Sm, Sc and La (Figs. 9c and 9d). Therefore, the spinel-bearing clasts in NWA 13191 may have the similar origin as the spinel-bearing troctolite 2003 from Luna 20. Could the micron-scale spinel-bearing lithologies represent the PSA found by a spatial resolution of 140 – 280 m/pixel M2 (Pieters et al., 2009)? The answer is “No”. However, these spinel-bearing clasts have the same mineral chemical composition as PSA, which provides a possibility for its genesis.
The petrological type of spinel-bearing clasts in NWA 13191

The lunar crust is composed of numerous igneous rocks, including FANs, Mg-rich rocks (Papike et al., 1998) and mare basalts. FANs typically are composed of > 90 vol.% plagioclase rich in calcium (An > 96, Dowty et al., 1974a, 1974b), pyroxene and olivine that are relatively iron-rich (Mg# < 70). Mg-rich rocks are a lithologically diverse group (Shearer et al., 2015 and references therein). Papike et al. (1998) subdivided Mg-rich highland rocks into Mg-suites, alkaline suites and KREEP lithologies [lunar components rich in potassium (K), rare earth elements (REEs), and phosphorus (P)]. The Mg-suites include ultramafics (e.g., dunites, pyroxenites and harzburgites), PST, troctolites, anorthositic troctolites, norites and gabbronorites (Papike et al., 1998; Shearer et al., 2006). FANs, mare basalt and KREEP basalt have significantly different Ti/Sm and Sc/Sm ratios from Mg-suite lithologies and spinel-bearing clasts in NWA 13191, the Mg# between them is also different (Figs. 10a-b, Fig. 11a). The Mg-suite and spinel-bearing clasts are very Mg-rich silicates (Figs. 10a-e) and have relatively high abundances of incompatible trace elements (e.g., REEs, Th, Y, Sc) compared with FANs (Figs. 9c, 10b-c, 11b, Table S5), however, they are significantly lower than those of KREEP basalts or quartz monzodiorites (QMD) (Fig. 10c). REEs and Th element are mainly concentrated in the residual phases of highly evolved magmas, and the representative lithologies are KREEP basalts or QMD. Using the partitioning behavior of Th between mafic silicates (pyroxene, olivine) and basaltic melt, the calculated Th contents of parent melts are similar to those of KREEP basalts (Hagerty et al. 2006). Although the Mg# of mafic silicates, Mg-suite and spinel-bearing clasts in NWA 13191, is higher than that of the mare basalts, Cr2O3 (wt.%), Ni and Co concentrations are generally lower in the Mg-suite and spinel-bearing lithologies than those in the mare basalts (Figs. 10d-f). The Mg-suite rocks represented by PST, troctolites and anorthositic troctolites have similar ranges of Mg# and trace element concentrations as spinel-bearing clasts in NWA 13191, indicating that they are derived from the same or similar magma sources.

Based on constraints on key features of PSA lithologies modified from Taylor and Pieters, 2013: (1) spinel-bearing clasts in NWA 13191 contain 0.2 – 5.2 vol.% (avg. 1.5 vol.%) spinel, slightly less than the ~ 5 – 8 vol.% assumed for the spinel base on spectral mixing experiments; 20.8 – 80.9 vol.% (avg. 60.9 vol.%) plagioclase ± maskelynite, 14.7 – 72.1 vol.% (avg. 34.2 vol.%) mixed melt, cumulative average content of plagioclase and melt is greater than 95 vol.%; (2) 49 spinel-bearing clasts contain less than 5 vol.% olivine ± pyroxene, and 15 spinel-bearing clasts contain olivine ± pyroxene between 5 – 15 vol.%; (3) bulk composition of NWA 13191 have 1.13 wt.% FeO (Table S2), avg. Mg# = 89.7, and the spinel-bearing clasts have avg. 4.6 wt.% FeO (Table S3), have the features of a high-Mg#, low-FeO melt (Pieters et al., 2011). Among the 64 spinel-bearing clasts, 49 meet the index characteristics of PSA, but it is not clear if there is a large amount of melt in PSA defined by remote sensing (Pieters et al., 2011), because the melt, maskelynite (shocked plagioclase) or fine grained matrix (equivalent to mature lunar soil) does not have an obvious absorption peak and cannot be effectively identified by reflectance spectrum (Dhingra et al., 2011; Pieters et al., 2014). Based on the extensive development of impact melting on the lunar surface and the fact that most plagioclase are transformed into maskelynite, it is reasonable to speculate that at least some PSA lithologies contain a certain amount of melts. However, based on the definitive evidence currently available, the spinel-bearing clasts in NWA 13191 is different from both PST and PSA.

Formation of spinel-bearing clasts in NWA 13191

Since the first discovery of spinel-bearing clasts in Apollo samples, scientists have explored their formation, but have not formed an unified opinion (Gross et al., 2014 and references therein). The petrological characteristics and computational results of the isothermal, isobaric phase diagrams of enthalpy versus composition support recrystallization from impact melts (Treiman et al., 2015). Similarly, impact melting has been suggested as the mode of formation of fine-grained, glassy melt breccias in Dho 1528 and GRA 06157 that contain <10 - 20 μm spinel phenocrysts (Wittmann et al., 2019). The presence of spinel in meteorite NWA 13191 is closely related to melting, but is the origin of the melts caused by impact melting (exogenic) or magma (endogenic)? As the meteorite underwent
complex impact deformation, it is difficult to distinguish on the basis of occurrence alone. It is necessary to rely on
global judgments such as “occurrence + compositions”. The melts invade along crystal planes, or other fracture of
the plagioclase in NWA 13191, forming a reticulated filling texture (Fig. 3). The interlaced reticulated texture is a
typical feature of the impact melt (e.g., Wittmann et al., 2019). The olivine (avg. Mg$^\#$ = 68.7) in MANs and olivine-
melt (avg. Mg$^\#$ = 66.7) in spinel-bearing clasts have similar chemical compositions. The olivine in spinel-bearing
clasts may have undergone metamorphic interactions with the aluminum-rich melt, resulting in its relatively high
content of Al$_2$O$_3$ (1.77 ± 0.94 wt.%) (Table 2).

To obtain more information on the origin of the melt, we completed the analysis of trace elements such as REEs
and incompatible elements in situ for plagioclase, olivine and spinel-bearing clasts. These results show that the REE
distribution pattern of plagioclase is consistent with the previous analysis, and can be divided into FANs and MANs
(Fig. 7a, Floss et al., 1998; Papike et al., 1997; Xu et al., 2020). The ΣREE of plagioclase in MANs (avg. 43.1 ppm)
is higher than that of FANs (avg. 14.1 ppm), which may be the result of an evolved parental magma (e.g., Hess 1994;
Papike et al., 1996; Shearer et al., 2015). It is particularly notable that the olivine-melt has a higher 2REE (avg. 55.2
ppm) than the olivine in mare basalts, but is still lower than the olivine-enriched Mg-suite (Fig. 7b). The pattern of
REE distribution in spinel-bearing clasts is consistent with that of the whole rock, and their ΣREE are much higher
than those of plagioclase, pyroxene and olivine but slightly lower than that of the Mg-suite (Figs. 7b-c).

Liquidus equilibria in simple systems show that bulk rock compositions rich in olivine + plagioclase components
will produce melts that crystallize spinel (Walker et al., 1973). Low-pressure experiments on natural Apollo samples
indicate that such compositions could be produced by partial or complete melting of lunar crustal materials, not
necessarily by partial melting of material from deep within the Moon (Walker et al., 1973). This would be equivalent
to impact melting of troctolitic rocks. In this hypothesis, spinel-bearing rocks were formed from olivine-plagioclase
melts produced by impact melting on or near the surface (Marvin and Walker, 1985). This scenario has been
confirmed by low pressure experiments on plagioclase-olivine melting rates (Marvin and Walker, 1985) from natural
samples. Using the bulk composition (Longhi et al., 2010) similar to the spinel-bearing clast No.63 of the meteorite
NWA 13191 (Table S3), a subhedral to euhedral combination of “spinel (1 – 10 μm, Mg$^\#$ = ~ 94, Al$^\#$ = ~ 95) +
anorthite + glass” has been formed under phase equilibrium conditions of 1 atm, f$_{O_2}$ (~IW-1), and 1300 °C (Prissel et
al., 2016). Simulated crystallization experiments show that with a similar composition to the melt (forsterite +
anorthite), up to 7.7 wt.% spinel (Mg$^\#$ = 91.3) can be be crystallized at 1 bar, 1450 – 1350 °C, without any olivine
and pyroxene formation (Gross et al., 2014). Under the same pressure and oxygen fugacity conditions on the Moon,
as the temperature drops (1450 – 1150 °C), spinel crystallizes first, followed by calcium-rich plagioclase, Mg-rich
olivine (Mg$^\#$ = 89.1 – 93.9) and pyroxene crystallize in sequence (Gross et al., 2014). spinel-bearing clasts with
plagioclase and melt as the main components, with a small amount of spinel and olivine, is the inevitable result of
rapid quenching and unbalanced crystallization of the impact mixed melt.

In summary, the spinel-bearing clasts in NWA 13191 are consistent with the Mg-suite in terms of geochemical
properties, particularly for PST, troctolites, anorthositic troctolites, MANs and olivine-rich rocks. However, spinel-
bearing clasts contains a large amount of melt (14.7 – 72.1 vol.%, avg. 34.1 vol.%) and a small amount of spinels (<
1 – 15 μm, avg. Mg$^\#$ = 90.6, Al$^\#$ = 97.5, 0.19 – 5.18 vol.%, avg.1.45 vol.%, Table 1). These phenomena indicate that
these spinel-bearing clasts may originate from the rapid quenching of Mg-rich troctolites or MANs after impact
melting. The spinel and anorthite crystallize sequentially at 1450 – 1350 °C, no olivine and pyroxene crystallize at
this stage.

IMPLICATIONS

NWA 13191 is a lunar spinel-bearing polymict breccia meteorite. The clast types, mineral compositions, whole
rock major and trace element compositions are all similar to those of the soil samples returned by Luna 20, especially
for the composition trend of spinel (e.g., spinel-bearing troctolite 2003, Cohen et al., 2001). Therefore, the spinel-
bearing clasts in NWA 13191 may have an origin similar to that of the spinel-bearing troctolite 2003 from Luna 20. Luna 20 soil was collected from the South rim of the Crisium Basin. Meanwhile, the spinel-bearing lithologies have been detected near Crisium Basin (Moriarty et al., 2022; Simon et al., 2022). The comparative study between the spinel-bearing clasts in NWA 13191 and spinel-bearing Luna 20 lithics will be published in the future paper. The composition of the spinel (avg. Mg\(^{#}\) = 90.6, Al\(^{#}\) = 97.4) and bulk composition (high-Mg\(^{#}\), low-FeO) in the spinel-bearing clasts of NWA 13191 are basically consistent with the characteristics of PSA defined by remote sensing (Pieters et al., 2011). Massive mixed melts are discovered in spinel-bearing clasts. It is not clear whether a melt is present in the PSA speculated by remote sensing, as the melt or shocked plagioclase has no obvious absorption peak and cannot be effectively identified (Dhingra et al., 2011; Pieters et al., 2014). The simulated crystallization experiment proves that a large amount of melt can exist in rocks containing spinel + plagioclase (Gross et al., 2014). Therefore, the spinel-bearing clasts in NWA 13191 can be selected as one of the samples corresponding to the PSA or PST lithologies, but no whole PSA lithology have been found for laboratory study so far.

Detailed information of the spinel-bearing clasts in NWA 13191 is obtained for the first time: in addition to plagioclase and newly formed spinel, a very small amount of mafic minerals and a large amount of Mg-Al-rich melt are found. There are three different occurrences and compositions of melts in the spinel-bearing clasts (M1, M2 and M3). The discovery of many mafic and mixed melts, and olivine-melt, indicates that the spinel-bearing clasts of NWA 13191 underwent partial melting and rapid disequilibrium crystallization. Only the spinel with a higher crystallization temperature is fully crystallized, and a small amount of forsterite and Mg-rich pyroxene crystallized in individual clasts (e.g., No. 2 clast in Fig. S1). Equivalent to the lunar impact melting conditions (1 bar), the temperature range for the formation of “spinel + plagioclase + glass” assemblage is 1450 – 1300 °C (Gross et al., 2014).

Lunar meteorite NWA 13191 records the highest bulk Mg\(^{#}\) (avg. 89.8) among the lunar samples thus far, higher than the next highest average value (82.0) of lunar meteorite NWA 10401 (Gross et al., 2020). The highly Mg-rich melt may be one of the conditions for spinel crystallization. The spinel in NWA 12279 has very high Al\(^{#}\) and Mg\(^{#}\) (avg., 97.4 and 90.6, max., 99.7 and 93.6, respectively). The chemical properties of spinel-bearing clasts in NWA 13191 are consistent with the slightly REE-enriched and alkali-poor Mg-suite rocks, such as PST, MANs, anorthositic troctolites and olivine-enriched Mg-suite rocks. However, most of the spinel-bearing clasts contain only a very small amount of mafic minerals, while a large amount of melt hosts some Mg-rich micro-spinels. These phenomena indicate that the spinel-bearing clasts in NWA 13191 are imbalanced crystalline product from rapidly quenched impact melts of Mg-rich troctolite or anorthosite precursors.

ACKNOWLEDGMENTS

This research is supported by National Natural Science Foundation of China grants (41866008), Guangxi Yong and Middle-aged Teacher Ability Improvement Project (2022KY0240) and Guangxi Scientific Base and Talent Special Projects (AD1850007). The authors would like to express their gratitude to EditSprings (https://www.editsprings.cn/) for the expert linguistic services provided, Axel Wittmann (Arizona State University) and Wenzhe Fa (Peking University) for constructive discussions of early manuscript drafts.

REFERENCES CITED

179, 74–76.

Figure captions

FIGURE 1. Appearance characteristics of NWA 13191 lunar meteorite (the sampling position is shown by the white dotted line).

FIGURE 2. TESCAN result for thin section sample of NWA 13191, 2.

FIGURE 3. Characteristics of spinel-bearing clasts in NWA 13191. (a) Clast No.13 is type S1; (b) The lattice-like filling and interwoven texture of type S1 for clast No. 9; (c) Clast No. 7 is type S2, note the fish scale interlacing texture on the left side (enlargement); (d) Clast No. 63 is type S3, Most spinel is embedded in the melt and a few in plagioclase. (e) BSE image (left) and corresponding Mg, Al, Ca, X-ray-intensity map (right) of clast No. 4, which shows the details of spinel in the mafic and Al-rich melt, and a large amount of lath-shaped plagioclase (2 – 10 μm) are distributed in the melt; (f) Cr-Fe-spinel is wrapped by a spinel with a compositional zonation; (g) X-ray-intensity map for aluminum of clast No.1; (h) X-ray-intensity map for magnesium of clast No.1. (i) Dissolution and recrystallization of plagioclase for clast No. 1; (j) The parallel veined mafic melts (M1) develop on the surface of plagioclase for clast No. 7; (k) Complete miscibility between mafic-melt and plagioclase for clast No. 4; (l) Differentiation of the elements after full miscibility for clast No. 36. Pl, Plagioclase; Mas, Maskelynite; Pyr, Pyroxene; Ol-M, Olivine-melt; Spi, spinel; Ilm, Ilmenite; Chr, Mg-Al-chromite; G, Glass debris; Si, silica-enriched glass; Mafic-M, Mafic-rich melt; Al-M, Al-rich melt; Mg-Al-melt, Mg-Al-rich melt; Im-Vein, Impact vein; M1, M2, and M3 correspond to impact melts for types S1, S2, and S3, respectively.

FIGURE 4. Phase abundance (vol.%) in 64 spinel-bearing clasts.

FIGURE 5. Plot of Mg\(^{\#}\) vs. Al\(^{\#}\) for spinels in spinel-bearing lithologies (a, Shearer et al., 2015 and references therein) and detailed composition information in NWA 13191 (b). The compositions of all the main group spinel in NWA 13191 are located in the solid gray box (b shows enlarged image), and the main group spinel has weak compositional zonation, which is relatively enriched in magnesium in the core and enriched in iron on the rim (other data are from Herzberg and Baker, 1980; Marvin et al., 1989; Cohen et al., 2001; Gross et al., 2014; Prissel et al., 2014; Wittmann et al., 2019).

FIGURE 6. The characteristics of olivine and pyroxene in NWA 13191. (a) BSE image of spinel-bearing clast No. 16, olivine-melt and pyroxene are shown; (b) Olivine Raman spectra: b-1, olivine-melt; b-2, normal olivine; b-3, standard Raman
spectrum of olivine from the RRUFF database (https://rruff.info).

FIGURE 7.
CI-chondrite normalized rare earth elements (REEs) distribution patterns for plagioclase, olivine, spinel-bearing clasts and whole-rock samples. (a) Plagioclase in MANs and FANs clasts. The plagioclase REE range of Apollo FANs (Papike et al., 1997; Floss et al., 1998) and lunar meteorite MANs clasts (Xu et al., 2020) is shown as gray and purple shaded areas, respectively, for comparison. (b) The olivine-melt have a relatively higher REEs content than olivine, but lower than that in olivine-enriched Mg-suite (lilac shaded areas, Shearer et al., 2015 and references therein). (c) Spinel-bearing clasts and the whole rock have the similar REEs distribution, which has a slightly lower than that of the olivine-poor Mg-suite (faint yellow shaded areas, Shearer et al., 2015).

FIGURE 8.
Key indicators of NWA 13191 meteorite originating from the moon. (a) Fe (afu) vs Mn (afu) of olivine; (b) Fe (afu) vs Mn (afu) of pyroxene; (c) An (afu) vs K(afu) of plagioclase (Papike, 1998); (d) Al₂O₃ (wt.%) vs FeO + MgO (wt.%) in the melts (Korotev et al., 2003); afu indicates atoms per formula unit based on 4 oxygen atoms for olivine, 6 for pyroxene and 8 for plagioclase.

FIGURE 9.
The comparison of chemical composition between NWA 13191 and Luna 20 soils. (a) Spinel composition trends; (b) Major elements in different clasts and whole rock; (c) Sc versus Sm; (d) La versus Eu. Luna 20 data is from Bansal et al. (1972); Haggerty, (1973); Helmke et al. (1973); Ridley et al. (1973).

FIGURE 10.
Ranges observed in a series of bulk geochemical parameters for lunar lithologies (Shearer et al., 2015 and references therein) and spinel-bearing clasts in NWA13191. (a) Mg# vs. Ti/Sm. (b) Mg# vs. Sc/Sm. (c) Mg# vs. Th. (d) Mg# vs. Cr₂O₃ wt.%. (e) Mg# vs. Ni. (f) Co vs. Ni.

FIGURE 11.
Plot of major and trace elements in mafic silicates and melt (Shearer et al., 2015 and references therein). (a) Mg# in mafic minerals or melt vs An in plagioclase of NWA 13191 and Mg-suite lithologies; (b) Y vs Ba in plagioclase of NWA 13191, KREEP basalts, FANs, mare basalts and Mg-suite lithologies.
<table>
<thead>
<tr>
<th>No.</th>
<th>Pl+Mas</th>
<th>Melt</th>
<th>Spinel</th>
<th>Ol+Pyr</th>
<th>Others</th>
<th>Type</th>
<th>No.</th>
<th>Pl+Mas</th>
<th>Melt</th>
<th>Spinel</th>
<th>Ol+Pyr</th>
<th>Others</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40.99</td>
<td>57.92</td>
<td>1.00</td>
<td>0.10</td>
<td>N. D.</td>
<td>S2</td>
<td>33</td>
<td>42.19</td>
<td>47.65</td>
<td>1.56</td>
<td>8.60</td>
<td>N. D.</td>
<td>S2</td>
</tr>
<tr>
<td>2</td>
<td>20.77</td>
<td>72.11</td>
<td>0.56</td>
<td>6.23</td>
<td>0.34</td>
<td>S2</td>
<td>34</td>
<td>65.50</td>
<td>30.87</td>
<td>0.25</td>
<td>3.39</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>3</td>
<td>27.36</td>
<td>70.28</td>
<td>1.60</td>
<td>0.76</td>
<td>N. D.</td>
<td>S3</td>
<td>35</td>
<td>67.87</td>
<td>27.06</td>
<td>1.42</td>
<td>3.66</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>4</td>
<td>66.50</td>
<td>29.87</td>
<td>2.55</td>
<td>1.08</td>
<td>N. D.</td>
<td>S1</td>
<td>36</td>
<td>45.26</td>
<td>52.76</td>
<td>1.71</td>
<td>0.27</td>
<td>N. D.</td>
<td>S3</td>
</tr>
<tr>
<td>5</td>
<td>42.69</td>
<td>54.61</td>
<td>0.78</td>
<td>1.91</td>
<td>N. D.</td>
<td>S2</td>
<td>37</td>
<td>74.29</td>
<td>23.09</td>
<td>0.51</td>
<td>2.11</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>6</td>
<td>26.37</td>
<td>65.46</td>
<td>0.76</td>
<td>7.41</td>
<td>N. D.</td>
<td>S2</td>
<td>38</td>
<td>76.02</td>
<td>20.82</td>
<td>0.58</td>
<td>2.59</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>7</td>
<td>34.45</td>
<td>63.34</td>
<td>0.43</td>
<td>1.77</td>
<td>N. D.</td>
<td>S2</td>
<td>39</td>
<td>70.98</td>
<td>26.49</td>
<td>0.27</td>
<td>2.26</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>8</td>
<td>71.20</td>
<td>23.60</td>
<td>1.87</td>
<td>3.33</td>
<td>N. D.</td>
<td>S1</td>
<td>40</td>
<td>71.50</td>
<td>25.12</td>
<td>0.19</td>
<td>3.19</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>9</td>
<td>70.04</td>
<td>26.87</td>
<td>1.64</td>
<td>1.45</td>
<td>N. D.</td>
<td>S1</td>
<td>41</td>
<td>72.22</td>
<td>23.01</td>
<td>1.67</td>
<td>2.87</td>
<td>0.22</td>
<td>S1</td>
</tr>
<tr>
<td>10</td>
<td>67.57</td>
<td>29.81</td>
<td>0.65</td>
<td>1.96</td>
<td>N. D.</td>
<td>S1</td>
<td>42</td>
<td>55.66</td>
<td>39.37</td>
<td>0.41</td>
<td>4.55</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>11</td>
<td>62.12</td>
<td>36.54</td>
<td>0.72</td>
<td>0.62</td>
<td>N. D.</td>
<td>S1</td>
<td>43</td>
<td>74.40</td>
<td>24.25</td>
<td>0.72</td>
<td>0.62</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>12</td>
<td>57.39</td>
<td>37.79</td>
<td>1.42</td>
<td>3.40</td>
<td>N. D.</td>
<td>S1</td>
<td>44</td>
<td>70.59</td>
<td>27.70</td>
<td>0.45</td>
<td>1.26</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>13</td>
<td>67.44</td>
<td>30.01</td>
<td>1.78</td>
<td>0.77</td>
<td>N. D.</td>
<td>S1</td>
<td>45</td>
<td>68.80</td>
<td>20.17</td>
<td>2.53</td>
<td>8.50</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>14</td>
<td>55.76</td>
<td>28.70</td>
<td>1.20</td>
<td>14.33</td>
<td>N. D.</td>
<td>S1</td>
<td>46</td>
<td>69.57</td>
<td>20.78</td>
<td>4.38</td>
<td>5.28</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>15</td>
<td>52.74</td>
<td>39.75</td>
<td>1.21</td>
<td>6.30</td>
<td>N. D.</td>
<td>S1</td>
<td>47</td>
<td>59.82</td>
<td>38.16</td>
<td>1.47</td>
<td>0.55</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>16</td>
<td>60.08</td>
<td>37.69</td>
<td>1.69</td>
<td>0.54</td>
<td>N. D.</td>
<td>S1</td>
<td>48</td>
<td>69.49</td>
<td>26.52</td>
<td>2.50</td>
<td>1.50</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>17</td>
<td>65.75</td>
<td>31.55</td>
<td>0.49</td>
<td>2.21</td>
<td>N. D.</td>
<td>S1</td>
<td>49</td>
<td>71.83</td>
<td>22.68</td>
<td>1.96</td>
<td>3.53</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>18</td>
<td>55.40</td>
<td>42.21</td>
<td>1.16</td>
<td>1.24</td>
<td>N. D.</td>
<td>S1</td>
<td>50</td>
<td>66.14</td>
<td>32.28</td>
<td>0.75</td>
<td>0.82</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>19</td>
<td>61.74</td>
<td>30.73</td>
<td>0.91</td>
<td>6.66</td>
<td>N. D.</td>
<td>S1</td>
<td>51</td>
<td>71.40</td>
<td>23.51</td>
<td>1.95</td>
<td>3.14</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>20</td>
<td>65.82</td>
<td>15.46</td>
<td>1.56</td>
<td>14.95</td>
<td>2.21</td>
<td>S1</td>
<td>52</td>
<td>63.31</td>
<td>34.93</td>
<td>0.98</td>
<td>0.78</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>21</td>
<td>52.50</td>
<td>39.77</td>
<td>0.88</td>
<td>2.78</td>
<td>4.07</td>
<td>S1</td>
<td>53</td>
<td>72.15</td>
<td>23.34</td>
<td>1.65</td>
<td>2.86</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>22</td>
<td>70.78</td>
<td>21.03</td>
<td>0.47</td>
<td>7.72</td>
<td>N. D.</td>
<td>S1</td>
<td>54</td>
<td>63.47</td>
<td>32.70</td>
<td>2.17</td>
<td>1.67</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>23</td>
<td>48.84</td>
<td>37.03</td>
<td>0.96</td>
<td>13.17</td>
<td>N. D.</td>
<td>S1</td>
<td>55</td>
<td>74.70</td>
<td>15.74</td>
<td>0.63</td>
<td>8.92</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>No.</td>
<td>Plagioclase</td>
<td>Maskelynite</td>
<td>Melt</td>
<td>Al-rich and mixed melt</td>
<td>Olivine ± Pyroxene</td>
<td>Other minerals</td>
<td>No.</td>
<td>Plagioclase</td>
<td>Maskelynite</td>
<td>Melt</td>
<td>Al-rich and mixed melt</td>
<td>Olivine ± Pyroxene</td>
<td>Other minerals</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>-------------</td>
<td>------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-----</td>
<td>-------------</td>
<td>-------------</td>
<td>------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>24</td>
<td>62.43</td>
<td>31.67</td>
<td>5.18</td>
<td>0.72</td>
<td>N. D.</td>
<td>S1</td>
<td>56</td>
<td>69.43</td>
<td>24.48</td>
<td>0.67</td>
<td>5.43</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>25</td>
<td>70.64</td>
<td>28.10</td>
<td>0.97</td>
<td>0.29</td>
<td>N. D.</td>
<td>S1</td>
<td>57</td>
<td>43.89</td>
<td>49.30</td>
<td>2.55</td>
<td>4.26</td>
<td>N. D.</td>
<td>S2</td>
</tr>
<tr>
<td>26</td>
<td>71.81</td>
<td>22.13</td>
<td>2.19</td>
<td>3.86</td>
<td>N. D.</td>
<td>S1</td>
<td>58</td>
<td>68.10</td>
<td>25.47</td>
<td>0.91</td>
<td>5.52</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>27</td>
<td>65.04</td>
<td>28.08</td>
<td>2.41</td>
<td>4.46</td>
<td>N. D.</td>
<td>S1</td>
<td>59</td>
<td>64.78</td>
<td>34.30</td>
<td>0.36</td>
<td>0.56</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>28</td>
<td>68.90</td>
<td>24.93</td>
<td>1.50</td>
<td>4.67</td>
<td>N. D.</td>
<td>S1</td>
<td>60</td>
<td>63.06</td>
<td>30.15</td>
<td>4.35</td>
<td>2.45</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>29</td>
<td>59.65</td>
<td>31.45</td>
<td>1.89</td>
<td>6.74</td>
<td>0.26</td>
<td>S1</td>
<td>61</td>
<td>60.36</td>
<td>38.27</td>
<td>0.78</td>
<td>0.60</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>30</td>
<td>71.08</td>
<td>27.27</td>
<td>0.21</td>
<td>1.39</td>
<td>0.05</td>
<td>S1</td>
<td>62</td>
<td>66.27</td>
<td>29.10</td>
<td>4.63</td>
<td>N. D.</td>
<td>N. D.</td>
<td>S1</td>
</tr>
<tr>
<td>31</td>
<td>73.70</td>
<td>25.61</td>
<td>0.69</td>
<td>N. D.</td>
<td>N. D.</td>
<td>S1</td>
<td>63</td>
<td>28.76</td>
<td>69.65</td>
<td>1.59</td>
<td>N. D.</td>
<td>N. D.</td>
<td>S3</td>
</tr>
<tr>
<td>32</td>
<td>80.89</td>
<td>14.65</td>
<td>2.78</td>
<td>1.68</td>
<td>N. D.</td>
<td>S1</td>
<td>64</td>
<td>26.33</td>
<td>70.24</td>
<td>2.24</td>
<td>1.19</td>
<td>N. D.</td>
<td>S3</td>
</tr>
</tbody>
</table>

No. is serial number of Mg-spinel-bearing clasts. Pl, Plagioclase; Mas, Maskelynite; Melt, mafic-rich, Al-rich and mixed melt; Ol ± Pyr, Olivine ± pyroxene; Other minerals include chromite, ilmenite, troilite and silica phase, etc. N. D. means not detected.
<table>
<thead>
<tr>
<th>Mineral or melt type</th>
<th>Plagioclase</th>
<th>Melt</th>
<th>Spinel</th>
<th>Main group</th>
<th>Olivine / olivine-melt</th>
<th>Pyroxene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clast or mineral type</td>
<td>FANs</td>
<td>MANs</td>
<td>Mg-spinel bearing</td>
<td>Mafic-rich</td>
<td>Al-rich</td>
<td>core</td>
</tr>
<tr>
<td>SiO₂</td>
<td>44.2 ± 0.78</td>
<td>44.4 ± 0.89</td>
<td>44.5 ± 0.78</td>
<td>44.6 ± 0.78</td>
<td>38.9 ± 12.9</td>
<td>0.24 ± 0.15</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.02 ± 0.02</td>
<td>0.04 ± 0.04</td>
<td>0.03 ± 0.02</td>
<td>0.33 ± 0.37</td>
<td>0.25 ± 0.42</td>
<td>0.02 ± 0.02</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>35.5 ± 1.35</td>
<td>35.0 ± 0.93</td>
<td>35.3 ± 1.13</td>
<td>3.32 ± 1.74</td>
<td>31.3 ± 12.3</td>
<td>0.24 ± 0.15</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.03 ± 0.05</td>
<td>0.03 ± 0.03</td>
<td>0.02 ± 0.03</td>
<td>0.21 ± 0.20</td>
<td>0.47 ± 0.86</td>
<td>2.63 ± 0.97</td>
</tr>
<tr>
<td>FeO</td>
<td>0.35 ± 0.18</td>
<td>0.23 ± 0.05</td>
<td>0.33 ± 0.18</td>
<td>0.02 ± 0.02</td>
<td>4.88 ± 1.61</td>
<td>4.37 ± 0.51</td>
</tr>
<tr>
<td>MnO</td>
<td>0.02 ± 0.03</td>
<td>0.02 ± 0.03</td>
<td>0.03 ± 0.03</td>
<td>0.22 ± 0.10</td>
<td>0.07 ± 0.05</td>
<td>0.05 ± 0.03</td>
</tr>
<tr>
<td>MgO</td>
<td>0.14 ± 0.12</td>
<td>0.19 ± 0.11</td>
<td>0.25 ± 0.15</td>
<td>23.4 ± 6.93</td>
<td>11.16 ± 5.64</td>
<td>25.6 ± 0.84</td>
</tr>
<tr>
<td>CaO</td>
<td>19.3 ± 0.86</td>
<td>19.3 ± 0.57</td>
<td>18.9 ± 0.69</td>
<td>6.32 ± 7.75</td>
<td>12.4 ± 4.74</td>
<td>0.17 ± 0.04</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.29 ± 0.07</td>
<td>0.45 ± 0.16</td>
<td>0.43 ± 0.1</td>
<td>0.09 ± 0.06</td>
<td>0.34 ± 0.20</td>
<td>0.01 ± 0.02</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.03 ± 0.02</td>
<td>0.06 ± 0.05</td>
<td>0.05 ± 0.03</td>
<td>0.10 ± 0.14</td>
<td>0.06 ± 0.04</td>
<td>0.01 ± 0.02</td>
</tr>
<tr>
<td>Total</td>
<td>99.9 ± 0.52</td>
<td>99.7 ± 0.35</td>
<td>99.8 ± 0.46</td>
<td>99.1 ± 1.29</td>
<td>99.8 ± 0.89</td>
<td>100 ± 0.46</td>
</tr>
</tbody>
</table>

Note: The table above represents the major elements of minerals and melts in different clasts of NWA 13191. The data includes oxide wt% and atomic afu for each element.
Evaluation parameter (avg.)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>5 ± 0.01</td>
<td>5 ± 0.01</td>
<td>5 ± 0.02</td>
<td>16.7 ± 0.68</td>
<td>15.8 ± 0.74</td>
<td>3 ± 0.01</td>
<td>3 ± 0.01</td>
<td>3 ± 0.01</td>
<td>2.99 ± 0.01</td>
<td>3.01 ± 0.02</td>
<td>17.5 ± 0.27</td>
<td>4.01 ± 0.04</td>
<td>4 ± 0.02</td>
<td>4 ± 0.03</td>
</tr>
<tr>
<td>An/Fa/En</td>
<td>96.6 ± 0.7</td>
<td>95.6 ± 1.73</td>
<td>95.4 ± 1.1</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>64.7 ± 18.3</td>
<td>31.3 ± 7.32</td>
<td>33.3 ± 6.33</td>
<td>60.6 ± 9.42</td>
<td>55.3 ± 7.83</td>
<td>46.1 ± 4.95</td>
<td></td>
</tr>
<tr>
<td>Or/Wo</td>
<td>0.21 ± 0.11</td>
<td>0.33 ± 0.28</td>
<td>0.32 ± 0.18</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>77.1 ± 1.07</td>
<td>86 ± 5.6</td>
<td>88 ± 10.5</td>
<td>96.4 ± 4.58</td>
<td>81.4 ± 9.43</td>
<td>82.2 ± 6.38</td>
<td>85.5 ± 3.91</td>
</tr>
<tr>
<td>Mg#</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>94.7 ± 5.38</td>
<td>99.3 ± 0.89</td>
<td>97.4 ± 0.98</td>
<td>97.4 ± 0.9</td>
<td>77.1 ± 1.07</td>
<td>86 ± 5.6</td>
<td>88 ± 10.5</td>
<td>96.4 ± 4.58</td>
<td>81.4 ± 9.43</td>
<td>82.2 ± 6.38</td>
<td>85.5 ± 3.91</td>
</tr>
<tr>
<td>M value</td>
<td>0.01 ± 0.01</td>
<td>0.01</td>
<td>0.02 ± 0.01</td>
<td>15.9 ± 8.51</td>
<td>0.39 ± 0.22</td>
<td>0.45 ± 0.03</td>
<td>0.45 ± 0.02</td>
<td>0.76 ± 0.04</td>
<td>220 ± 92.3</td>
<td>275 ± 281</td>
<td>51.2 ± 77.3</td>
<td>62.7 ± 33.1</td>
<td>25.7 ± 13.6</td>
<td>16.4 ± 7.5</td>
</tr>
<tr>
<td>Fe/Mn</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>104 ± 16.6</td>
<td>96.8 ± 16</td>
<td>101 ± 17.6</td>
<td>64.3 ± 9.32</td>
<td>54.4 ± 6.6</td>
<td>56.6 ± 15.0</td>
<td></td>
</tr>
</tbody>
</table>

N is the numbers of analysis spots. The “afu” indicates atoms per formula unit based on 4 oxygen atoms for olivine, 6 for pyroxene and 8 for plagioclase, 24 oxygen atoms for melt. 24 oxygen atoms are equal to the lowest common multiple of the oxygen atoms for plagioclase (8), olivine (4) and pyroxene(6). B. D. means below detection; N.A. means not applicable. The numbers following the “±” sign are the standard deviations of all analysis spots. The results of EPMA are better than 0.01%. An is afu \(\frac{\text{Ca}}{\text{Na} + \text{K} + \text{Ca}} \times 100 \) for plagioclase; Ab is afu \(\frac{\text{Na}}{\text{Na} + \text{K} + \text{Ca}} \times 100 \) for plagioclase; Or is afu \(\frac{\text{K}}{\text{Na} + \text{K} + \text{Ca}} \times 100 \) for plagioclase; Fa is afu \(\frac{\text{Fe}}{\text{Mg} + \text{Fe}} \times 100 \) for olivine; En is afu \(\frac{\text{Mg}}{\text{Mg} + \text{Fe} + \text{Ca}} \times 100 \) for pyroxene; Wo is afu \(\frac{\text{Ca}}{\text{Mg} + \text{Fe} + \text{Ca}} \times 100 \) for pyroxene. Al\(^{\text{ff}}\) is afu \(\frac{\text{Al}}{\text{Al} + \text{Cr}} \times 100 \) for spinel; Mg\(^{\text{ff}}\) is afu \(\frac{\text{Mg}}{\text{Mg} + \text{Fe}} \times 100 \) for spinel, olivine, pyroxene and melt; M value is express as \(\frac{\text{FeO} + \text{MgO}}{\text{Al}_2\text{O}_3} \) wt. % for whole rock and mineral phase. Fe/Mn is afu Fe/Mn for olivines and pyroxenes. The olivine-melt (olivine has been transformed into vitreous) contains 0.11 wt. % – 4.80 wt. % Al\(_2\)O\(_3\) and 0.42 wt. % – 1.95 wt. % CaO. Pig is pigeonite, a kind of pyroxene; Wo is 5 – 25 (afu).
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

(a)

(b)

(c)

(d)
Fig. 10
Fig. 11