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INTRODUCTION

Variation in both 18O/16O and 17O/16O ratios in natural materials can now be measured 
with unprecedented precision, with a broad range of potential geochemical applications. In this 
chapter, equilibrium 18O/16O and 17O/16O fractionation factors are calculated for a selection of 
minerals and molecules, using first-principles density functional theory models to estimate 
vibrational frequencies, with a particular focus on investigating the potential for detectable 
signatures of high-temperature equilibrium processes. Reduced partition function ratios as well 
as mass-fractionation exponents are tabulated versus temperature. The results are compared 
with previous theoretical studies, laboratory experiments, and field-based calibrations. Effects 
of nuclear field shift isotope fractionation and double-well potential anharmonicity on the 
relationship between 18O/16O and 17O/16O are also investigated. The estimated field shift effect is 
much smaller than mass-dependent fractionation, yielding no more than 1 per meg in measured 
∆′17O at 25 ºC, and correspondingly less at higher temperatures. Anharmonic vibration in a 
double-well potential, such as might be found in a Si–O–Si linkage in polymerized silicates, 
also does not seem to generate dramatic ∆′’17O signatures for plausible potential shapes, and 
non-Born–Oppenheimer effects on ∆′17O signatures also appear to be limited. None of the 
studied effects appear likely to generate the negative ∆′17O anomalies observed in polymerized 
silicate mineral samples from high-temperature rocks on the Earth & Moon.

D17O signatures of equilibrium processes

Large mass-independent fractionation signatures in oxygen, sulfur, and mercury isotopes 
in natural samples are well known, and are generally thought to result from a restricted set of 
disequilibrium reaction processes including photochemistry and molecular recombination (e.g. 
Heidenreich and Thiemens 1986; Mauersberger 1987 for ozone; Clayton et al. 1973; Mc Keegan 
et al. 2011 for early solar system materials; Farquhar et al. 2000, for the Archean sulfur cycle; 
Bergquist and Blum 2007, for mercury). Over the last two decades, possible uses of subtle 
variability in the mass-dependence of isotope fractionation caused by more mundane processes 
have become a topic of broad interest in geochemistry (e.g., Young et al. 2002; Deines 2003; 
Farquhar et al. 2003; Barkan and Luz 2005; Rumble et al. 2007; Luz and Barkhan 2010; Cao 
and Liu 2011 ; Levin et al. 2014; Pack and Herwartz 2014; Passey et al. 2014; Bao et al. 2015; 
Dauphas and Schauble 2016). Variation in the mass dependence of equilibrium stable isotope 
fractionation has long been predicted (e.g., Grilly 1951; Hulston and Thode 1965; Matsuhisa et al. 
1978), but this phenomenon has not been widely exploited in geochemical studies until recently. 
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It is now recognized that measurements of variations in the mass dependence of equilibrium 
oxygen isotope fractionation may help in geochemical determinations of the formation 
temperatures of mineral precipitates as well as characterization of parent solutions (Cao and Liu 
2011 ; Levin et al. 2014; Pack and Herwartz 2014; Passey et al. 2014; Sharp et al. 2016).

So far, most work on the mass dependence of equilibrium oxygen isotope fractionation has 
focused on the hydrological cycle, and the precipitation of carbonates and silica from aqueous 
solution. Cao and Liu (2011) made the first detailed theoretical study, using molecules and 
molecular analogues of carbonate and silicate structures in crystals and solution. This work 
focused on estimating the scaling relationships between 18O/16O and 17O/16O fractionations for 
different species depending on temperature, i.e.,

qa–b(T ) = ln17/16aa–b/ln18/16aa–b (1)

∆′17Oa–b (‰) = 103 (ln17/16aa–b—qref ln18/16aa–b) (2)

where qa–b is the mass-fractionation exponent for substance “a” relative to substance “b”, 
17/16aa–b is the equilibrium 17O/16O fractionation factor, 18/16aa–b is the equilibrium 18O/16O 
fractionation factor, and qref is a reference exponent (typically but not always chosen to be 
0.528). ∆′17Oa–b (‰) is used here to mean a differential measure of the 17O/16O ratios in the two 
substances, relative to what would be predicted by the reference exponent—equivalent to what 
is sometimes called ∆∆′17Oa–b—and it is not referred to a particular isotope standard material. 
Bao et al. (2015) made a generalized statistical study of mass dependence in hypothetical 
systems for both equilibrium and kinetic processes, showing the expected limits of mass-
dependence for chemically plausible materials. Most recently, Hayles et al. (2018) modeled 
18O/16O and qa–b for quartz, carbonates, apatite, magnetite, and water using molecular-cluster 
methods, and Liu et al. (2019) modeled 18O/16O and qa–b in the sulfate minerals gypsum and 
basanite. Guo and Zhou (2019) and Hill et al. (2020) calculated 18O/16O and qa–b for water, 
CO2, Dissolved Inorganic Carbon (DIC), and carbonate minerals. Guo (2020) also examined 
potential signatures of kinetic processes on ∆′17OCaCO3-H2O(l)

.

There is tantalizing evidence of seemingly unexplained ∆′17O values for some high-
temperature minerals on the Moon and on Earth (Fig. 1) at the ~10 to 20 per meg level. 
In particular, some tectosilicates exhibit lower ∆′17O values than their more mafic counterparts. 
A striking example is the low ∆′17O values for both terrestrial and lunar anorthosites (Fig. 1). 
The low ∆′17O values for lunar anorthosites, ferroan anorthosites, and troctolites is a robust 
measurement made by numerous workers spanning two decades (e.g, Wiechert et al. 
2001; Young et al. 2016, Cano et al. 2020). Relationships like those in Figure 1 are seen 
in other terrestrial data (e.g., Pack and Herwartz 2014). The correlation hints at a crystal 
chemical control on ∆′17O, with tectosilicates generally exhibiting lower ∆′17O values than 
less polymerized silicate minerals. For example, a rough correlation between ∆′17O and 
bulk modulus is suggested; tectosilicates have both low ∆′17O and lower bulk moduli than 
orthosilicates, and the analyses summarized in Figure 1 suggest that quartz may have lower 
∆′17O values than less compressible plagioclase feldspars. Similar trends are obtained using 
thermal expansivity, and the distinctive effect for tectosilicates could be related to the nature 
of the 3-D framework of corner-sharing SiO4 tetrahedra.

Analyses of this type at sufficient analytical precision are not yet plentiful enough to 
ascertain their veracity by interlaboratory comparisons. As an example of potential analytical 
pitfalls, Pack et al. (2016) found a non-linearity in ∆′17O vs. δ′18O of ~ 1 per meg/per mil specific 
to their mass spectrometer. However, correcting for this effect is not sufficient to remove the 
correlation between ∆′17O and crystal chemistry. As new technologies become available (larger 
gas-source mass spectrometers, better collection systems), this trend will be scrutinized. In the 
meantime, we consider it prudent to investigate possible explanations for what would seem to 
be unexpected disparities in ∆′17O values among high temperature minerals.
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One possibility, explored here, is that there are anomalous and significant mass-
dependent effects based on crystal chemistry, and anharmonicity in particular, even in 
systems equilibrated at igneous or high-grade metamorphic temperatures. However, other 
explanations have been put forward. Cano et al. (2020) suggested that variable ∆′17O values 
for lunar samples are the result of a mass-independent effect carried by vapor early in the 
Moon’s history, followed by exchange of this vapor reservoir with the precursors to the lunar 
crust, including the anorthosites and troctolites. The suggestion is that identical ∆′17O values 
for lunar and terrestrial basalts is serendipitous. Additional possibilities include pervasive, 
incipient alteration of feldspars in the terrestrial environment and analytical artifacts related 
to fluorination. The latter would be consistent with an historical difficulty in analyzing alkali 
feldspars by laser-assisted fluorination methods.

Motivated by these observations and their potential importance, this chapter aims to 
assemble a broad survey of equilibrium isotope fractionation factors and mass fractionation 
exponents for geochemically significant minerals using a consistent computational method. 
We attempt to estimate both 18O/16O fractionations and θ exponents with reasonable accuracy. 
In order to avoid extraneous terminology, we generally adopt the notation scheme of Cao and 
Liu (2011) with one minor simplification. We describe the mass fractionation exponent between 
a substance a and an ideal gas of O-atoms as qa–atoms, analogous to qa–b, rather than using the 
Greek letter κ. We have also chosen to place some additional emphasis on the estimation of 
changes in ∆′17O resulting from equilibrium fractionation. The relationship defined by Cao 
and Liu (2011) between qa–atoms, qb–atoms, and qa–b is then written:

qa–b = qa–atoms + (qa–atoms − qb–atoms) ln18/16bb/ln18/16aa–b (3)

Figure 1. Triple oxygen isotope ratio analyses of lunar and terrestrial samples compared with the estimates 
obtained in this study. Each datum is expressed as ∆′17O relative to San Carlos olivine vs. δ′18O relative to 
VSMOW. For comparison, the calculations for a-quartz, low albite, anorthite, diopside and normal spinel 
from this study are normalized to the ∆′17O coexisting forsterite and the δ′18O of San Carlos olivine. Lunar 
and terrestrial anorthosites have low ∆′17O values compared with basalts and other mafic lunar and terrestrial 
mineral separates. Terrestrial samples include feldspar and spinel separated from a diabase from the Bushveld 
complex, anorthosite from the Bushveld, Lake County plagioclase, a commonly used plagioclase standard 
material, and a whole-rock and olivine sample from a Mauna Loa basalt. Also shown is an analysis of the 
Oliver Quarry Quartz (OQQ), a quartz oxygen isotope standard, with a similar precision showing that it too 
has low ∆′17O values relative to terrestrial mantle and to lunar and terrestrial basalt. Two mass fractionation 
lines defined by the exponent for triple oxygen isotope fractionation are shown for reference. One is for the 
theoretical high-temperature maximum exponent of 0.5305 and the other is for a value of 0.524. All analyses 
performed at the laboratory at UCLA using CO2 laser heating assisted fluorination (e.g., Young et al. 2016).
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here bb is the reduced partition function ratio for b and their relationship with ∆′17Oa–b (‰) 
becomes (Dauphas and Schauble 2016):

∆′17Oa–b (‰) = 103 (qa–atoms ln18/16ba − qb–atoms ln18/16bb − qref ln18/16aa–b) (4)

∆′17O has the advantage that it remains bounded (and small) near crossovers; i.e., where 
ln18/16aa–b approaches zero, and is more intuitively relatable to measurable deviations in mass 
dependence where 18/16aa–b is close to unity. Unless otherwise specified, we assume qref = 0.528, 
in keeping with most prior studies. Because of the overlap with Hayles et al. (2018) in materials 
studied, we will make a particular effort to compare their results with the present models.

Most theoretical studies of equilibrium stable isotope fractionation are based on the 
assumption that molecular and crystalline vibrational frequencies may be treated harmonically; 
though some recent studies have investigated anharmonic effects (Liu et al. 2010; Webb and 
Miller 2014; Pinella et al. 2015; Dupuis et al. 2017). Cao and Liu (2011) concluded that 
anharmonicity was not likely to have a major effect on the mass dependence of equilibrium 
fractionation in typical molecules.

However, not all potentially relevant types of anharmonic potential have been examined. 
A secondary goal of the present study is to examine the effects of anharmonicity involving 
double-well potentials on the mass dependence of fractionation. This type of potential was 
not specifically tested in the studies cited above, but double-well potentials may be relevant to 
understanding systems with hydrogen bonding (such as in liquid water; e.g., Tachikawa and 
Shiga 2005) as well as oscillations involving Si–O–Si and Si–O–Al angles in polymerized 
silicate structures (e.g., Dove et al. 1995). These examples share the common property that 
there are two “stable” asymmetric configurations with associated potential minima that are 
separated by a potential barrier. For Si–O–Si the asymmetry, at its simplest, is caused by the 
greater stability of a crooked bond angle relative to a linear configuration with a 180º Si–O–Si 
bond angle. For hydrogen bonding, asymmetry comes from the preference for hydrogen to 
be nearer to one oxygen than to the other. Double-well potentials have distinct quantum-
mechanical properties, including splitting of energies and delocalization. Whether these might 
influence the mass dependence of fractionation is an interesting question.

Other equilibrium phenomena that may influence observed signatures are also discussed, 
including nuclear field shifts and non-Born–Oppenheimer effects. These effects are discussed 
in more detail in the following section.

PREDICTING 17O/16O SIGNATURES

Estimating mass-dependent fractionations in the harmonic approximation

In this chapter, mass fractionation laws for crystals and molecules are calculated theoretically 
using vibrational (phonon) spectra modeled with density functional theory. The harmonic 
oscillator approximation of the vibrational contribution to the Helmholtz free energy (i.e., 
Bigeleisen and Mayer 1947) is assumed, unless otherwise noted. Isotopic effects on the free 
energy are determined by comparing a series of models with isotopic substitution of 16O, 17O, 
and 18O on each crystallographically distinct oxygen site. Each heavy-isotope substituted model 
in the series contains an 17O or 18O substitution on a single atom per unit cell. In some cases, the 
perturbation associated with a phonon wave vector leads to the loss of symmetry. In these cases, 
single atom isotope substitutions are performed on multiple positions corresponding to the same 
crystallographic site in order to obtain a complete sample over the unit cell. The total fractionation 
factor for each isotope in the crystal is then determined by the weighted arithmetic average 
of the single-atom substitutions involving that isotope. We report the result as a fractionation 
factor relative to an ideal gas of oxygen atoms, analogous to the reduced partition function ratio. 
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Note, however, that this definition of β is slightly different than is commonly found in older 
literature, where β is determined from the vibrational frequencies of a substance with complete 
substitution of 18O or 17O for 16O, rather than as the weighted average of many independent single-
atom substitutions. Cao and Liu (2011) have shown that mass law estimations are inaccurate when 
the rule of the mean is applied to β determined in completely substituted isotopologues.

Here we focus on models with periodic boundary conditions, for crystalline mineral phases, 
constructed using density functional theory. Molecular and cluster-based models have also been 
used to assess mass dependence in crystalline phases (e.g., Cao and Liu 2011; Hayles et al. 
2018). An important advantage of molecular and cluster-based methods is that highly accurate 
electronic structure methods are more easily applied. However, an important disadvantage is 
the need to truncate such models at some finite number of atoms, introducing edge effects and 
complicating comparisons with relevant experimental data such as Raman spectra. Comparing 
results from both model types against each other is one way to test their relative merits. 
Ultimately it appears that both approaches yield similar results for most phases. The new model 
results reported here are based on the Perdew et al. (1996) gradient corrected density functional, 
abbreviated PBE. PBE is a widely used functional, including for previous studies of equilibrium 
isotope fractionation and related effects (e.g., Schauble et al. 2006; Meheut et al. 2007).

Pseudopotentials and Projector Augmented Wave (PAW) datasets are used in this study, 
greatly reducing the computational complexity of periodic boundary condition models by 
simplifying the treatment of both inner-shell and valence electrons; in recent years several 
public repositories of well-designed pseudopotentials and PAW datasets have become 
available, covering most elements in the periodic table. However, the application of these 
repositories to isotope fractionation calculations is still in need of testing. Here, anhydrous, 
carbon-free crystals are modeled primarily using ultrasoft pseudopotentials from the GBRV 
library (Garrity et al. 2014; including updates through version 1.5). An important parameter in 
pseudopotential-based calculations is the cutoff energy of the plane-wave basis set—in general 
a higher cutoff energy allows for more accurate representation of chemical bonds, while also 
increasing the computation time, and a range of cutoff energies should be tested to achieve 
a balance between convergence and efficiency in the system of interest. As a general matter, 
the choice of cutoff will be dependent on the pseudopotential, the electronic structure of the 
material, and the desired accuracy. The GBRV pseudopotential family is notable for tolerating 
relatively low cutoff energies across a broad range of elements (Garrity et al. 2014). Our testing 
with GBRV pseudopotentials indicated that an energy cutoff of 40 Rydberg (544 eV) was 
sufficient for the crystals studied here (Table 1). Models of LaPO4 in the monazite structure and 
LuPO4 in the xenotime structure used rare-earth element PAW data sets developed by Topsakal 
and Wentzcovitch (2014); these models had somewhat higher energy cutoffs of 55 Rydberg 
and 45 Rydberg, respectively, as recommended in testing done by the Standard Solid State 
Pseudopotential project (http://materialscloud.org/sssp). Hydrous and carbon-bearing crystals 
and molecules are modeled using a mixture of pseudopotentials drawn mainly from the 
GBRV and PSLibrary pseudopotential libraries, crudely following the recommendations of 
the Standard Solid State Pseudopotentials project (Dal Corso 2014; Lejaeghere et al. 2016; 
Prandini et al. 2018, with a higher energy cutoff of 80 Rydberg (1088 eV). All DFT calculations 
were made using version 5.4 of the Quantum Espresso software package (Giannozzi et al. 
2009; http://www.quantum-espresso.org).

Having chosen a functional, pseudopotential, and energy cutoff, the next important 
parameter is the grid over which electronic wave vectors are sampled. A finer grid will give 
a more accurate depiction of the actual electronic structure, but also slow calculations down 
and limit the complexity of crystals that can be modeled. Test calculations indicate that a 
range of one to 20 discrete electronic wave vectors can make a sufficiently accurate grid, 
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depending on the size and symmetry of a particular crystal’s unit cell. A detailed discussion 
of the choice and testing of wave-vector grids is beyond the scope of this review, and different 
researchers commonly make different choices for the same crystal structure. In principle, any 
sufficiently dense grid should yield a similar result. Because of the large range of materials 
studied here, it was decided to adopt a standard procedure for choosing grids: they are chosen 
so that the shortest real-space vector that belongs to the reciprocal of the wave-vector lattice 
formed by each grid is approximately 35 Bohr radii (~19 Å) or longer. The idea of a vector-
length metric for evaluating grid accuracy was proposed by the developers of the ABINIT DFT 
software package (www.abinit.org), though they do not specify the 35 Bohr threshold—this 
choice would indeed not be appropriate other types of materials: electronically conductive 
metals require finer grids, for instance. Our own parameter testing suggests that the 35 Bohr 
criterion is adequate to ensure convergence of unit-cell lengths at the ~0.1% level for the 
materials studied here, with reasonable consistency in calculated phonon frequencies. For 
each crystal, a thermodynamically representative sample of phonon frequencies is calculated 
using a somewhat coarser grid of phonon wave vectors, typically with a vector-length metric 
of approximately 19 Bohr radii (~10 Å). Both phonon and electronic wave vector grids are 
chosen to give good convergence in calculated isotopic fractionation and crystal structures at 
relevant temperatures. Similar tests have been described in previous studies (e.g., Elcombe and 
Hulston 1975; Schauble et al. 2006; Meheut et al. 2007, and others).

Table 1. Pseudopotentials used in the present study.

Element GBRV-based models Ref. PSLibrary/SSSP-based models Ref.

H h_pbe_v1.4.uspp.F.UPF 1 H.pbe-rrkjus_psl.0.1.UPF 3

C c_pbe_v1.2.uspp.F.UPF 1 C.pbe-n-kjpaw_psl.1.0.0.UPF 3

N n_pbe_v1.2.uspp.F.UPF 1 N.pbe.theos.UPF 4

O o_pbe_v1.2.uspp.F.UPF 1 O.pbe-n-kjpaw_psl.0.1.UPF 3

F f_pbe_v1.4.uspp.F.UPF 1

Na na_pbe_v1.5.uspp.F.UPF 1 unchanged 1

Mg mg_pbe_v1.4.uspp.F.UPF 1 unchanged 1

Al al_pbe_v1.uspp.F.UPF 1 Al.pbe-n-kjpaw_psl.1.0.0.UPF 3

Si si_pbe_v1.uspp.F.UPF 1 Si.pbe-n-rrkjus_psl.1.0.0.UPF 3

P p_pbe_v1.5.uspp.F.UPF 1 P.pbe-n-rrkjus_psl.1.0.0.UPF 3

S s_pbe_v1.4.uspp.F.UPF 1 unchanged 1

Cl cl_pbe_v1.4.uspp.F.UPF 1 Cl.pbe-n-rrkjus_psl.1.0.0.UPF 3

K k_pbe_v1.4.uspp.F.UPF 1 K.pbe-spn-rrkjus_psl.1.0.0.UPF 3

Ca ca_pbe_v1.uspp.F.UPF 1 unchanged 1

Y y_pbe_v1.4.uspp.F.UPF 1 unchanged 1

Zr zr_pbe_v1.uspp.F.UPF 1 Zr.pbe-spn-kjpaw_psl.1.0.0.UPF 3

Ba ba_pbe_v1.uspp.F.UPF 1

La La.GGA-PBE-paw-v1.0.UPF 2

Lu Lu.GGA-PBE-paw-v1.0.UPF 2

Pseudopotential References:
1. GBRV: Garrity et al. (2014); https://www.physics.rutgers.edu/gbrv/
2. Wentzcovitch et al. (2014); http://www.vlab.msi.umn.edu/resources/repaw/index.shtml
3. PSLibrary: Dal Corso et al. (2014); http://people.sissa.it/~dalcorso/pslibrary/index.html.
4. THEOS: http://materialscloud.org/sssp
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Phonon frequencies—the crystal analogue of molecular vibrational frequencies—are 
typically underestimated by several percent by the Perdew et al. (1996) functional. This is 
important because the calculation of equilibrium stable isotope fractionation depends on the 
differences in frequencies between isotopically substituted materials (Biegeleisen and Mayer 
1947). In order to partially correct for this systematic error, a frequency scale factor of 1.043 has 
been applied in all fractionation calculations; the scale factor is determined by a proportional 
regression of calculated phonon frequencies correlated with frequencies measured with Raman, 
infrared, and neutron spectroscopy (Fig. 2). This scale factor is similar to previous determinations 
for PBE-based models of periodic models of silicates, oxides and carbonates (e.g., Schauble et 
al. 2006, 2011; Meheut and Schauble 2014; Widanagamage et al. 2014). It should be noted that 
scale factors determined by general-purpose benchmark studies of the vibrational frequencies of 
small molecules (e.g., Merrick et al. 2007 and references therein) are typically closer to unity. 
However, in these studies larger scale factors (similar to ours) are found for low-frequency 
vibrational modes (< ~1000cm–1, depending on the study). This lower frequency range is much 
more common in the crystals studied here than in molecular data sets, and frequencies less than 
1200 cm–1 dominate our overall fit. Larger low-frequency scale factors appear to be typical 
for gradient-corrected functionals (such as PBE) as well as for hybrid methods that include a 
gradient-corrected functional component (such as B3LYP; Becke 1993); e.g., Merrick et al. 
(2007). Further details of the scale factor determination are presented in the following section.

Measured = 1.043 x Model
R² = 0.999
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Figure 2. Vibrational frequency correlations with Raman, infrared, and inelastic neutron scattering mea-
surements for estimating the frequency scale factor. In general, OH stretching and bending frequencies 
are not included in the correlation because of the larger anharmonic effects expected for these modes. 
Frequencies in H2O, CO2, and CO vapor are compared with empirically estimated harmonic frequencies, 
all other correlations are with measured fundamental frequencies. References for measured frequencies: 
a-quartz – Castex and Maddon (1995); albite – Aliatis et al.(2015); microcline – Zhang et al. (1996); 
diopside – Prencipe et al. (2012); jadeite – Prencipe et al. (2014); forsterite – Kolesov and Geiger (2004); 
zircon – Chaplot et al. (2006); grossular – Maschio et al. (2014); spinel – Chopelas and Hofmeister (1991); 
lizardite – Hofmeister and Bowey (2006); xenotime-Y – Giarola et al. (2011); xenotime-Lu – Mittal et 
al. (2007); monazite-La – Begun et al. (1981) and Geisler et al. (2016); fluorapatite – Leroy et al. (2000); 
anhydrite – Berenblut et al. (1973) and Iishi (1979); barite – Dawson et al. (1977) and Jayasooriya et al. 
(1996); gypsum – Iishi (1979); NaClO4 – Lutz et al. (1979) and Toupry-Krauzman et al. (1978); calcite – 
Pavese et al. (1992); aragonite – Carteret et al. (2013); dolomite – Pilati et al. (1998) and Gillet et al. (1993); 
magnesite – Rutt and Nicola (1974) and Hellwege et al. (1970); nahcolite – Bertoluzza et al. (1981); 
nitratine – Yamamoto et al. (1976), Brehat and Wyncke (1985), Eckhardt et al. (1970), and Lefebvre et al. 
(1980); H2O vapor – Benedict et al. (1956); CO2 – Zuñiga et al. (2001); CO – Mantz and Maillard (1975).
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During model testing, it became clear that pseudopotentials from the GBRV library are 
reliable, fast, and accurate for calculations on anhydrous, carbon-free crystals. However, 
hydrous materials and molecules with short, covalent bonds are more problematic—this group 
includes water vapor, carbon monoxide, and carbon dioxide. GBRV models overestimate 
O–H stretching frequencies in water vapor, the water vapor dimer (H2O)2, silicic acid vapor 
(H4SiO4) and disilicic acid vapor (H6Si2O7) by ~90–100 cm–1, and the asymmetric C–O 
stretching frequencies in carbon dioxide and carbon monoxide by ~40–50 cm–1, relative to 
benchmark calculations with the PBE functional and large atom-centered Gaussian basis sets 
(e.g, aug-cc-pVTZ). Large Gaussian basis sets such as these should approach the greatest 
possible accuracy achievable with the PBE functional, when applied to molecules. When 
tested in periodic boundary condition calculations of hydroxyl-bearing and hydrate minerals, 
we find that PBE-GBRV models show offsets of 10’s of cm–1 relative to the alternative 
pseudopotentials, suggesting that the artifacts are not limited to molecules modeled in vacuo. 
In contrast, other pseudopotential libraries show much closer matches to the Gaussian basis 
set results, suggesting that this is a problem isolated to the O- and H- (and to some extent C-) 
pseudopotentials in the GBRV library, which were designed to optimize computational speed 
as well as accuracy. We have generated alternative models using a mixture of pseudopotentials 
drawn mainly from the GBRV and PSLibrary pseudopotential libraries, because they match 
benchmark calculations for molecules more closely (rms errors of < 10 cm–1 for CO, CO2, 
H2O and the H2O dimer, and ~13 cm–1 for silicic and disilicic acid vapor). Both GBRV and 
alternative pseudopotentials yield very similar phonon frequencies in anhydrous, carbon-
free crystalline phases, with indistinguishable scale factors and residual root-mean-square 
(rms) errors after scaling. Models using the alternative pseudopotential set are considerably 
more computationally demanding than GBRV-based models, mainly because they require a 
higher energy cutoff. This limits their practical application to phases with relatively simple 
and compact unit cells. In general, we observe that the choice of GBRV vs. alternative 
pseudopotentials has a negligible effect on both fractionation factors and mass law exponents 
for anhydrous crystals. For hydrous species and molecules, the choice of pseudopotentials 
has only a modest effect on the mass fractionation exponent qa–atoms, but often substantial 
effects on estimated 18O/16O fractionation factors—up to several per mil at room temperature. 
We therefore report results using the alternative pseudopotentials for molecules, carbonates, 
and hydrous crystals, but GBRV results for anhydrous, carbon-free phases, even though we 
originally intended to focus on GBRV results for all materials studied.

Molecules are treated in much the same way as crystals, with the exception of H2O, CO2, 
and CO vapor. Harmonic frequencies and anharmonicity parameters have been determined for 
each of these molecules on the basis of detailed spectroscopic measurements, making more 
sophisticated (and presumably more accurate) fractionation factor estimates possible (e.g., 
Urey 1947; Richet et al. 1977; Rosenbaum 1997). Although there is disagreement about the 
best compromise between practicality and accuracy in incorporating anharmonic effects into 
isotope fractionation factor calculations, Urey (1947), Richet et al. (1977), Liu et al. (2010), and 
others have confirmed that the anharmonic effect on vibrational zero-point energy is typically 
the most significant correction. Therefore, we determined molecule-specific scale factors 
for each of these molecules by fitting model frequencies to previously determined harmonic 
frequencies for the dominant isotopologue, and applied a correction for anharmonicity in the 
calculation of ln18/16β by adjusting the zero-point energy term in the equation for the reduced 
partition function ratio (Urey 1947; Rosenbaum 1997). Anharmonic zero-point energies are 
estimated with the perturbational VPT2 method (Barone 2005) using the PBE functional and 
aug-cc-pVQZ basis sets ( Kendall et al. 1992), as implemented in the Gaussian 09 software 
package (Frisch et al. 2013). An alternative anharmonic method, CC-VSCF in the quartic 
force field approximation (Yagi et al. 2004) was also tested. Both methods give similar results 
for CO and CO2, but CC-VSCF appears to somewhat underestimate the anhmarmonicity of 
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H2O vibrations, leading to ~0.7‰ higher estimated ln18/16β at 298 K. VPT2 anharmonicity 
parameters for H2O, in contrast, come close to spectroscopic determinations (Benedict et 
al. 1956, and subsequent studies). We find substantially improved agreement with previous 
estimates of 18O/16O fractionation factors and ln18/16β using this correction method.

In all cases, qa–atoms is calculated using the harmonic oscillator assumption (Cao and Liu 
2011). In agreement with the earlier study, we find limited effects of anharmonicity on the 
mass dependence exponent of fractionation. Compared to the anharmonicity-corrected zero-
point energy method described above, a purely harmonic determination of θCO2–atoms is within 
~2 × 10–5 from 273–1573 K; for H2O(v) the difference is less than 1 × 10–5 below 1273 K. 
The simplified anharmonic correction procedure is not thermodynamically self-consistent 
because rotational and excited vibrational state energies do not arise from the same potential 
as the ground state (zero point) energy, and this introduces a (likely very small) artifact in θ 
that we prefer to avoid. For the sake of consistency, a harmonic H2O(v) model using the crystal 
frequency scale factor is used for estimating fractionations relative to ice and the hydration 
water of gypsum. The harmonic model predicts 2–3‰ higher 18O/16O than the anharmonicity-
corrected model over the temperature range 273–373 K (0–100 ºC).

Our model for liquid and supercritical water is based on the model for water vapor, modified 
by adding 103 ln18/16aliquid–vapor from Rosenbaum (1997) to 103 ln18/16bwater vapor. qliquid water–atoms is 
estimated three different ways: 

1.	 by applying qliquid water–water vapor = 0.529, as measured by Barkan and Luz (2005); 

2.	 by taking the lower of qliquid water–atoms as calculated by (1) and θ water vapor–atoms, in the 
expectation that condensed water will never have θ below the vapor, and

3.	 by taking a simple average of qwater vapor–atoms and qice Ih–atoms, based on the observation 
that predicted ice–vapor 18O/16O fractionation at 273 K is roughly twice as large as 
the observed liquid–vapor fractionation, and fractionations for both phases relative 
to water vapor are driven by similar H-bonding interactions. 

Methods (1) and (3) are crudely analogous to the “semi-empirical” and “ab initio” 
approaches taken by Hayles et al. (2018) in that they incorporate empirical qliquid water–water vapor 
estimates in the first case, and ab initio model results for clusters of water molecules in the 
second case. In practice, the choice of estimation method does not matter very much at low to 
moderate temperature—the various phases of H2O stay close to the limiting harmonic value of 
qwater–atoms ≈ 0.530 regardless of the details of the theoretical treatment, and the three methods 
outlined above agree to within 1 × 10–4 from 263–673 K (–10 ºC to 400 ºC). Above 400 ºC, 
a naïve application of method (1) (i.e., assuming a supercritical fluid–vapor exponent of 0.529 
even though the temperatures are far above those studied by Barkan and Luz) yields rapidly 
increasing qliquid water–atoms, eventually reaching unrealistically high values. For this reason, 
results from methods (2) or (3) are probably more reliable for higher temperatures; (2) and (3) 
are also in good agreement with each other in this temperature range. Note that an alternative 
parameterization of the liquid–vapor fractionation parameterization has been proposed by 
Horita and Wesolowski (1994). Their fitted fractionation curve is generally quite close to that 
of Rosenbaum (1997) up to the critical temperature of water, and the choice of one model over 
the other has little effect on our results at most temperatures.

At this time, it is simply not possible to routinely determine anharmonic parameters for 
crystals with significant structural complexity. However, the practical impact of this restriction 
may be limited because the vibrational thermodynamics of H2O are more strongly affected 
by anharmonicity than typical materials, and because the general scale factor determination 
for crystals is fitted to fundamental frequencies. Fundamental frequencies will typically 
deviate from harmonic frequencies in the same direction as the anharmonic zero-point energy 
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correction, albeit by a slightly larger magnitude, and so the crystal models will already tend to 
overestimate this component of the anharmonic effect.

Crystal structures calculated with the PBE functional and pseudopotentials are compared 
with structures measured by X-ray and neutron-diffraction in Table S1 in the Supplemental 
Information. In general, unit cell volumes are overestimated by approximately 3%, as is typical 
for the PBE functional. Calculated phonon frequencies are compared with Raman, infrared, 
and inelastic neutron-scattering measurements in Table S2 and Figure 2. In general, model and 
measured frequencies are in excellent agreement after applying the fitted scale factor, with 
a root-mean-square misfit of 13 cm–1, compared to a root-mean-square frequency of about 
689 cm–1, indicating an average scatter of roughly 2%. We have included the molecules H2O, 
CO2 and CO in this scale factor fit, so as to sample as wide a range of bond environments 
as possible, but have correlated harmonic frequencies rather than fundamentals for these 
molecules. In practice, these three molecules represent relatively few modes, so their impact 
on the calculated scale factor is modest (1.043 with molecules, vs. 1.045 without). It should 
be noted that almost all correlated phonons correspond to a near-zero wave vector, and that 
other parts of the Brilluoin Zone might conceivably show larger misfits or different scaling. 
However, there are relatively few studies that probe non-zero wave vectors, particularly in the 
higher-frequency range that mainly controls O-isotope fractionation ( Kieffer 1982). Overall, 
vibrational frequency correlations suggest that the models will be able to make useful estimates 
of mass-dependent equilibrium isotope fractionations and mass dependence exponents. Likely 
uncertainties in these estimates arising will be discussed in more detail below.

Effects beyond the harmonic approximation

Anharmonicity in a double-well potential. To extend earlier work on the effects of 
anharmonicity on the mass dependence of fractionation (e.g., Cao and Liu 2011), a highly 
simplified model system consisting of a one-dimensional quantum oscillator in a double-well 
potential is investigated. The potential is assumed to take the form of a harmonic potential that 
is perturbed by a central Gaussian peak (V = V0 + kfc x2/2 + b e–cx2

) where kfc is the harmonic 
spring constant, b determines the height of the Gaussian perturbation, and c controls the width 
of the Gaussian perturbation (c here should not be confused with the speed of light). This is 
only one of many possible types of double-well potentials, but it has two important advantages 
for the present purpose:

1.	 the ground state and many low-lying excited state energies can be calculated quickly 
with high precision, and

2.	 the potential and its solutions converge to the well-understood harmonic oscillator in 
both the limit of small perturbations (b/kfc → 0, and/or c → ∞) and in the limit of 
high energy: En → hnharmonic (n + 1/2) as n→ ∞, where nharmonic = (kfc/m)1/2/(2π) is the 
characteristic vibrational frequency of the harmonic part of the potential.

Solution of the Schrödinger equation for this potential is simplified by substituting parameters 
scaled to the characteristic frequency nharmonic, i.e. B = b/(hnharmonic) for the height of the 
Gaussian above the minimum of the harmonic potential, γ = ch/(mnharmonic) for the sharpness 
of the Gaussian, and y = x(mnnharmonic / h)1/2 for the positional coordinate. In the present 
work, the Schrödinger equation for this potential is solved via the matrix method of Earl 
(2008), using Scilab (v. 6.0.0). Accurate eigenvalues corresponding to energy states up 
to n = 73 are obtained in roughly one CPU-minute per potential on a laptop computer by 
solving separate 49 × 49 matrices for even and odd quantum numbers. Such matrices actually 
yield estimates of energies for states up to n = 97, but the highest energy states are poorly 
converged because of the truncation of higher-order terms that would require larger matrices 
(i.e., the energies typically varied by ~10–5 hnharmonic or more in test calculations with B = 
1–5 between 49 × 49, 48 × 48, and 47 × 47 matrix solutions). Representative examples of 
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Figure 3. Examples of double-well potentials consisting of a central Gaussian peak within a harmonic 
potential. The potential and distance units are scaled with respect to the quanta of the harmonic component 
of the potential, as described in Earl (2008). a) Variation in peak height (B). b) Variation in the sharpness 
of the central Gaussian (γ). c) Quantum energy levels in an example potential. Solid horizontal lines 
represent the lowest even quantum numbers n = 0, 2, 4, 6, and 8; dashed horizontal lines represent odd 
quantum numbers n = 1, 3, 5, 7, and 9.
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potentials and calculated vibrational energies corresponding to different values of B, γ, and 
n are shown in Figure 3. Attempts to construct larger matrices generated software errors, 
and it was not judged necessary to try to pursue more complex calculations. Beyond n = 73, 
energies are approximated by assuming a power-law convergence towards the harmonic limit, 
i.e., En − En − 2 − 2hnharmonic ∝ n–3/2 (Fig. S1). Separate convergence power-laws were used for 
even and odd n. To explore the effects of the size and width of the central potential peak, reduced 
partition function ratios and mass fractionation exponents are calculated on a grid of varying 
Β, γ, and hnharmonic/kBT, where kB is Boltzmann’s constant and T is the absolute temperature. 
Numerical precision was generally worst at the highest temperatures (hnharmonic/kBT ≪ 1), and 
with very localized Gaussian perturbations (γ ≫ 1). However, the impact of these imprecisions 
is likely rather limited for two reasons. 

1.	 Fractionations become very small at high temperatures and all mass fractionation 
laws should approach the harmonic high-T limit at these conditions, providing an 
analytic benchmark for determining numerical accuracy. 

2.	 Highly localized Gaussians barriers are probably not physically realistic, as they 
are much sharper than the minima they separate. For example, the inversion mode 
in ammonia (NH3), one of the simplest and best studied examples of a double-well 
potential, is fit well with γΒ ≈ 0.9–2.2 (Lin et al. 2007: γ ≈ 0.05, B ≈ 17; Earl 2008: 
γ ≈ 0.3, B ≈ 8), corresponding to a broad, large Gaussian perturbation.

Reconnaissance vibrational frequency calculations on the gas-phase H6Si2O7 molecule in 
its ground-state bent conformation, compared to a strained configuration with the Si–O–Si angle 
fixed at 180º, suggest that γB for the Si–O–Si bending coordinate is also of order unity, with 
B ≫ 1 and γ ≪ 1. In particular, the similar absolute value of the force constants associated with 
the imaginary modes in “straight” Si–O–Si (nbend ≈ 50i cm–1), relative to the force constants of 
Si–O–Si bending in the relaxed, bent molecule (nbend ≈ 60–100 cm–1), constrains γB ≤ ~2, while 
the large energy barrier (> 1000 cm–1) between the relaxed and straight configurations indicates 
B ≥ ~10, and thus γ ≤ ~0.2. For the sake of simplicity, the calculations reported here assume 
nharmonic(16O) = 200 cm–1. This corresponds roughly to the frequency of the soft-mode Si–O–Si 
vibrational frequency in α-quartz measured by Raman spectroscopy (e.g., Castex and Maddon 
1995) but it should be noted that the characteristic frequency of the energy minima in the perturbed 
potential will not be the same as the harmonic frequency of the unperturbed potential—they will 
also depend on γB. Harmonic frequencies of isotopically-substituted oscillators in the model are 
assumed to scale in proportion to the reciprocal of the square root of the oxygen isotopic mass, 
as is observed for the soft-mode Si–O–Si vibration in completely 18O-substituted quartz (Sato 
and McMillan 1987). This model is crude in important respects, for instance it treats the bending 
vibrational mode of one bridging oxygen as completely isolated from all other vibrations in the 
structure. However, this model does explore a scenario of anharmonic behavior that is likely to 
affect many important silicate and aluminosilicate minerals to a greater or lesser degree.

The nuclear field shift effect. The nuclear field shift effect has long been studied in high-
resolution atomic spectroscopy (e.g., King 1984). It results from interactions between electrons 
and the finite volume and sometimes distorted shapes of atomic nuclei. All else equal, an electron 
inside the volume occupied by the nuclear charge “feels” a weaker Coulomb attraction than it 
would at the same distance from an infinitesimal point nucleus, and the resulting binding energy 
and orbital shape change slightly. Typically, nuclei with more neutrons (i.e., heavier isotopes) 
take up a greater volume of space, and overlap with a larger proportion of the electron cloud, but 
the correlation between mass and volume is irregular for many elements, including Oxygen (e.g., 
Miska et al. 1979). The nuclear field shift has been proposed to explain non-mass dependent 
isotope effects in some elements with high atomic number (e.g., Bigeleisen 1996; Nomura et 
al. 1996; Schauble 2007, for U and Tl, respectively) as well as a number of moderate-atomic 
number elements (e.g., Fujii et al. 2009). Theoretical calculations generally indicate that this 



Mass Dependence of Equilibrium Oxygen Isotope Fractionation 149

effect is much smaller for low atomic number elements such as sulfur and (presumably) oxygen 
(Knyaezev and Myasoedov 2001; Schauble et al. 2007), but D17O measurements at the per meg 
level of precision suggest that quantitative estimates are now needed to evaluate hypotheses 
about the relationship between the Earth and Moon (e.g., Young et al. 2016; Herwartz et al. 2017) 
and other subtle oxygen isotope signatures. We estimated the volume component of the nuclear 
field shift effect on oxygen isotope fractionation in silicates using the method of Schauble 
(2013). In this method, the effect of varying the nuclear charge radii of oxygen atoms on the 
electronic energies of a calibration set of small molecules is calculated using relativistic all-
electron quantum mechanics. These results are compared to electron densities at oxygen nuclei 
in the same molecules determined by Density Functional Theory models based on the Projector 
Augmented Wave (DFT-PAW) method. The calibrated energy/electron density relationship 
can then be used to estimate nuclear volume isotope effects with DFT-PAW models of crystal 
structures that are too complex to be directly modeled by the relativistic all-electron method.

Relativistic all-electron models use a high-accuracy electronic structure method, the 
coupled-cluster technique CCSD(T), including single and double excitations and a perturbative 
estimate of triple excitations, combined with the cc-pVTZ family of basis sets (Dunning 1989). 
Test calculations show little difference between field shift effects determined with this basis set, 
relative to the larger (and likely more accurate) aug-cc-pVTZ and cc-pVQZ basis sets, indicating 
that cc-pVTZ is accurate enough for the present purpose. In fact, the CCSD(T) energy differences 
are closely approximated by computationally simpler Dirac–Fock models, as was found previously 
in studies of higher atomic number elements (Cd, Sn, and Hg; Schauble 2013). Relativistic all-
electron calculations were performed using the DIRAC15 code (Jensen et al. 2015).

There appears to be substantial uncertainty in experimental determinations of nuclear 
charge radii of the stable oxygen isotopes. For the present purpose, 18O/16O and 17O/16O field 
shift effects on relativistic CCSD(T) energies are calculated using the radii tabulated by Angeli 
and Marinova (2013) (2.6991 fm, 2.6932 fm, and 2.7726 fm for 16O, 17O, and 18O respectively). 
Alternative radii determined by Singhal et al. (1970) and Miska et al. (1979) have also been 
considered. The Miska et al. (1979) results closely agree with Angeli and Marinova (2013), 
but Singhal et al. (1970) find a ~25–30% smaller difference in mean squared radii between 18O 
and 16O. However, all of these sets of radii yield very similar deviations from typical mass-
fractionation exponents (i.e., disagreements in radii largely cancel so that any calculated D17O 
is less sensitive to the choice of a radius reference).

DFT-PAW models are constructed mainly using version 1.0 of the JTH set of PAW data 
(Jollet et al. 2014), which is a publicly available library covering most of the periodic table 
that is similar in many respects to the GBRV and PSLibrary repositories described earlier. 
The JTH set has the advantage of being easier to set up for automatic computation of electron 
densities at the nuclei of oxygen atoms. A slightly modified PAW data set for O is used, with 
a shortened cut-off radius of 1.3 a0 (0.69Å) and a finite-radius nucleus, as well as short cut-off 
radii PAW datasets for hydrogen and carbon (1.0 a0 ≈ 0.53 Å) from an older (pre-2013) public 
library associated with the AtomPAW project (see http://users.wfu.edu/natalie/papers/pwpaw/
periodictable/oldperiodictable.html; Holzwarth et al. 2001). These short-cutoff PAW datasets 
are chosen to provide realistic results for molecular species with short bonds, including H2O, 
CO, and CO2, because PAW calculations generally work best when interatomic distances are 
at least as large as the sum of PAW cutoff radii. All DFT-PAW calculations used plane-wave 
basis sets with a kinetic energy cutoff of 60 Hartree (1633 eV). The models also all have 
periodic boundary conditions: crystal structures are modeled in experimentally determined 
periodic unit cells, and molecules are isolated individually in cubic or rectangular-prismatic 
cells that are at least 20 Bohr radii (10.3 Å) on a side to approximate the in vacuo condition of 
the corresponding relativisitic all-electron models.
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Deviations from the Born–Oppenheimer appromixation of electronic structure. Typically, 
electronic structure models of molecules and crystals adopt the Born–Oppenheimer approximation, 
which assumes that the motions of electrons and nuclei can be treated separately because nuclei 
are much more massive (and slower-moving) than electrons (Born and Oppenheimer 1927). 
A consequence of this assumption is that electronic energies are insensitive to the masses of 
isotopes, and equilibrium mass-dependent isotope effects arise only from the quantization of 
nuclear motion. However, in more accurate quantum-mechanical treatments nuclear masses do 
influence the coupled nuclear/electronic structure and energy in a way that is not captured by the 
Born–Oppenheimer approximation (e.g., Kleinman and Wolfsberg 1973; Bigeleisen 1996).

Zhang and Liu (2018) made a comprehensive examination of effects beyond the harmonic, 
Born–Oppenheimer approximation on equilibrium isotope fractionation, including an adaptation 
of the Born & Huang (1956) perturbative Diagonal Born–Oppenheimer Correction (DBOC) to 
account for nuclear/electronic coupling. They find that non-Born–Oppenheimer corrections are 
important for H/D substitution in molecules, and can even be significant (if much smaller) for 
isotope substitutions of heavier elements such as 13C/12C and 18O/16O. For instance, in the 18O/16O 
fractionation between CO2 and H2O(v), they find a DBOC correction of ~1‰ at 300 K, very 
similar in magnitude to the ~1‰ anharmonic ZPE correction described in the preceding section.

Although Zhang and Liu (2018) do not directly address possible ∆′17O signatures arising from 
Born–Oppenheimer corrections, subsequent work (Cao et al. 2019; personal communication) 
indicates that the effects are very small (~1 ppm) at igneous temperatures, but may be more 
significant (several ppm) at ambient conditions. We have not included DBOC corrections into the 
results tabulated in this chapter, and this is an area where uncertainty remains.

How important are effects beyond the harmonic approximation?

Nuclear field shift fractionation. Calculated nuclear field shift fractionations are shown 
in Table 2. Because the nuclear charge radius of 17O is similar to (or even smaller than) the 
charge radius of 16O, while the radius of 18O is larger, field shift effects on ∆′17O are anti-
correlated with (and somewhat smaller than) field shift 18O/16O fractionation. The range of 
estimated field shift fractionations is quite small, among O2− species the largest fractionations 
are approximately 2 per meg in 18/16α and 1 per meg in ∆′17O relative to a reference 0.528 
mass fractionation exponent at 25 ºC. The field shift will tend to increase 18O/16O in oxides, 
particularly silicates, because these species have the smallest electron densities at the oxygen 
nucleus. Higher oxidation states, including O– in hydrogen peroxide, O0 in dioxygen, and 
O2+ in F2O, are predicted to be progressively depleted in 18O, with positive field-shift induced 
∆′17O. Nuclear field shift contributions to apparent ∆′17O in inter-mineral fractionation among 
silicates (or for silicates relative to H2O) are predicted to be very small (< 1 per meg) at all 
temperatures above 0 ºC, relative to a θ = 0.528 reference exponent. F2O, containing oxygen 
in the 2+ oxidation state, is predicted to somewhat more strongly fractionated by the field shift 
effect relative to oxide and silicate species. These fractionations are expected to scale as 1/T, 
and thus to be only ~1/3 to 1/6 as large (~0.1 per meg or less) in igneous and metamorphic 
rocks at near-solidus temperatures as they are at room temperature. Overall, field shift effects 
on both 18O/16O and 17O/16O fractionation appear to be so small that they are not considered 
further in this chapter. However, they may need to be taken into account if the accuracy of 
future analytical studies improves significantly beyond ±1 per meg level.

Anharmonic double-well potential. Representative results for the reduced partition 
function ratio 103 ln18/16β and the exponent qa–atoms are given in Table 3. In general, this type 
of potential does not appear to generate large deviations from typical mass-dependence for 
plausible values of the potential parameters. Models with B = 10–20 and γ = 0.1, which may 
roughly approximate Si–O–Si bending modes in polymerized silicates such as H6Si2O7(v) and 
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Table 2. Calculated 18O/16O and 17O/16O nuclear field shift fractionations, based on DFT-PAW 
electronic structure models calibrated against all-electron relativistic CCSD(T)/cc-pVTZ estimates 

of the nuclear volume effect on electronic energies.

Nuclear field shift effect in oxygen 106 ln18/16a(X−H2O) D′17O vs. 0.528 (per meg)

Oxidation 
State

|Ψ(0)|2 
(e–/a0

3)
298 K 1000 K 298 K 1000 K

Molecules

OF2 2 16.9 −4.1 −1.2 2.5 0.7

O2 0 16.2 −2.6 −0.8 1.6 0.5

H2O −2 15.1 − − − −

CO2 −2 15.7 −1.3 −0.4 0.8 0.2

CO −2 15.9 −1.9 −0.6 1.2 0.3

Crystal Structures

SiO2 
a-quartz

−2 14.7 0.8 0.2 −0.5 −0.2

KAlSi3O8 
microcline

−2 14.8 0.7 0.2 −0.4 −0.1

CaAl2Si2O8 
anorthite

−2 14.8 0.6 0.2 −0.4 −0.1

CaMgSi2O6 
diopside

−2 14.9 0.4 0.1 −0.3 −0.1

Mg2SiO4 
forsterite

−2 14.9 0.3 0.1 −0.2 −0.1

H4SiO4 −2 14.9 0.3 0.1 −0.2 −0.1

CaCO3 

calcite
−2 15.1 0.0 0.0 0.0 0.0

hnharmonic/kT

B g 1 0.5 0.2

0 
(harmonic)

10.5 2.8 0.5

1 1 6.7 2.5 0.5

2 1 0.9 2.3 0.5

5 1 −2.8 3.0 0.6

5 0.1 5.3 1.8 0.4

10 0.1 6.3 2.1 0.4

20 0.1 19.1 5.7 0.7

Table 3. Mass dependence of oxygen isotope fractionation in a double-well potential in the form of a 
harmonic potential with a central Gaussian peak. Each entry gives D′17O (in per meg) resulting from 
a single vibrational mode, consisting only of movement of an oxygen atom, relative to a q = 0.528 
reference exponent. The shape of the central peak is described by its height (B) and sharpness (g). 
B = 0 corresponds to an unperturbed harmonic potential. For a harmonic potential with a characteristic 
frequency of 200 cm–1, hnharm/kT = 0.2, 0.5, and 1 corresponds to T = 288 K, 576 K, and 1439 K, 
respectively. B ≈ 10, g ≈ 0.1 may be a reasonable approximation for the Si–O–Si bending mode in 
H6Si2O7. B ≈ 5, g≈1 (italics) may not be chemically reasonable for normal chemical bonding systems.
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room-temperature α-quartz, show qa–atoms between 0.529 and 0.531 at temperatures above 
273 K, and are within 0.001 of the pure harmonic 200 cm–1 oscillator. Because this is above the 
reference exponent of 0.528, the effect of these vibrational modes will be to slightly increase 
∆′17O in polymerized species, relative to other substances. 103 ln18/16β is more variable within 
this range of potential parameters, from ~4‰ at 288 K for B = 10 to ~11‰ at B = 20. This can 
be rationalized as reflecting the increase in the curvature of the potential at the energy minima 
as B increases, leading to a larger effective force constant, and would be accompanied by a 
larger measured fundamental vibrational frequency. Relative to a 0.528 reference exponent, 
103 ln18/16β and 103 ln18/16β for the B = 10, γ = 0.1 potential would yield ∆′17O = +6 per meg at 
288 K and +0.4 per meg at 1439 K; the B = 20, γ = 0.1 potential would yield ∆′17O = +19 per meg 
at 288 K and +0.7 per meg at 1439 K. For comparison, a pure harmonic oscillator at 200 cm–1 
yields ∆′17O = +10 per meg at 288 K, and +0.5 per meg at 1439 K. In fact, no combination of 
parameters with Bγ ≤ 2, B ≤ 20 appears to generate ∆′17O signatures ≥ 10 per mg at ambient 
temperatures (~300 K), or ≥ 1–2 per meg at temperatures above 1000 K. Potentials with larger 
Bγ can (Fig. 4), especially at low temperatures and at large B, but this parameter range may 
not be relevant to normal natural materials. Note that the parameter sampling used to generate 
this contour plot is rather coarse and certainly is not exhaustive, so interpolated variations 
should be taken as a rough guide. It should also be noted that a perturbed harmonic potential 
is only one of many possible, chemically plausible double-well and multiple-well potentials. 
Other realistic variants could conceivably generate larger signatures at temperatures of interest.

In summary, these reconnaissance calculations appear to show that at least one form of 
double-well anharmonicity can generate ∆′17O signatures of order ±10 per meg at near-ambient 
or hydrothermal temperatures, and thus may be useful to consider as a correction to harmonic 
estimates in future high-precision theoretical studies of polymerized silicates, hydrogen bonded 
materials such as liquid water, ice, and organic matter. However, it is unlikely to explain the 
negative ∆′17O observed in polymerized silicate minerals fractionated at high temperatures 
(Sharp et al. 2016; Young et al. 2016) for two reasons. First, the effect appears to be too small 
(< 1 per meg at T > 1200 K), and second, the calculated effects have the opposite sign to observed 
signatures (> 0 for the model potential, vs. < 0 in measured granite and feldspars). Anharmonic 
effects on the mass fractionation exponent will be ignored in the discussion that follows, excepting 
the anharmonic zero-point energy correction previously described for H2O(v), CO2, and CO.

∆′17O signatures of equilibrium

Based on the discussion and findings above, it appears likely that mass-dependent effects 
within the Born–Oppenheimer approximation are usually the predominant driver of ∆′17O 
at equilibrium, including at high (metamorphic and igneous) temperatures, and that even 
simplified calculations based on these assumptions can generate reasonable estimates of 
signatures found in natural systems. Newly calculated mass dependent 103 ln18/16β and qa–atoms 
results from the present work are reported in Table 4. Polynomials in 1/T have been fit to each, 
in order to facilitate interpolation (Tables 5 and 6) for temperatures above 243.15 K. Fits for 
103 ln18/16β are accurate to within 0.03‰, and fits for qa–atoms are accurate within 1 × 10–4 over 
this temperature range. Model properties for liquid and supercritical water are also tabulated 
(273.15–647 K for liquid water and 647+ K for supercritical water), by adding 103  ln18/16α for 
liquid–vapor or supercritical fluid–vapor (Horita and Wesolowski 1994; Rosenbaum 1997) to 
the present H2O vapor results. qliquid water–atoms is estimated as described above.

Uncertainties in estimated mass-dependent fractionations. Leaving aside anharmonicity, 
which has been addressed in a special case above, more generally by Richet et al. (1977), Schauble 
et al. (2006) Méheut et al. (2007), and others for the calculation of stable isotope fractionation 
factors, and in greater detail by Cao and Liu (2011) for estimating qa–b exponents, the main 
contributors to uncertainty in estimated 18O/16O and qa–b are likely to be errors in calculated 
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vibrational frequencies, errors in the frequency shifts upon isotope substitution, errors from 
incomplete sampling of the phonon density of states, and errors stemming from the interaction of 
18O or 17O substitutions in adjacent unit cells. We will attempt to address each of these sources of 
error in turn, though it is still not possible to provide a rigorous quantitative analysis.

Scale factor effects. Application of a frequency scale factor is intended to correct for the 
typical systematic error in the PBE gradient-corrected approximation of the density functional. 
This work and many previous studies have found consistent underestimation of both measured 
and harmonic frequencies, by ~3–6% in materials most closely resembling the crystals 
studied here. However, there are still potentially significant mismatches between measured 
and calculated frequencies even when the scale factor is applied. One approach to estimating 
this source of uncertainty is to compare our results with a general fitted PBE scale factor  

Figure 4. Contour plots showing variation in the calculated ∆′17O (in per meg), relative to a θ=0.528 refer-
ence exponent, for an anharmonic oscillator in a double-well potential, versus the height (B) and sharp-
ness (γ) of the central Gaussian. Temperatures are given for each panel, based on the assumption that the 
harmonic component of the potential has a characteristic frequency of 200 cm–1. The corresponding ∆′17O 
for the unperturbed harmonic potential is shown with a white line labelled “B = 0” in each color scalebar. 
The dashed black line indicates Bγ = 2; it is likely that silicates and other molecules with double-well po-
tentials are best fit by values of B and γ that fall below this line.
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to alternative calculations using separate, mineral specific or mineral-type specific scale 
factors, for instance applying a ~3% correction for carbonates, 4–5% for silicates, and ~5–6% 
for sulfates, phosphates, and perchlorates, based on correlations of subgroups of crystals 
with measured spectra reported in this study. As detailed by Meheut et al. (2007), the effects 
of such scale factor adjustments can be estimated using an effective power law scaling, e.g. 
ln β(SF1)/ln β(SF2) = (SF1/SF2) p, where β are predicted 18O/16O reduced partition function 
ratios calculated by applying two different scale factors (SF1 and SF2) to a given set of modeled 
vibrational frequencies for some substance. The exponent p is expected to be slightly less than 2 
for typical oxygen-bearing compounds at geochemically relevant temperatures. Alternatively, 
one can simply scale the temperature, because frequency and temperature always appear as 
a ratio in the calculation of a reduced partition function ratio; i.e., ln β(SF1) at T = T1 is equal 
to ln β(SF2) at T = T1(SF2/SF1). Either way, one would expect that ~1% uncertainty or scatter 
in frequency scale factors will lead to ~2‰ scatter in 1000 ln18/16β, given typical values of 
~80–110‰ for 1000 ln18/16β at 300 K for many of the crystals in this study. Errors will be 
correspondingly smaller at high temperatures. This uncertainty is much larger than typical 
18O/16O measurement precisions, and is likely to be a major source of potential error in the 
present calculations. However, the effect of scale factor uncertainty on calculated qa–atoms is 
much smaller. Test calculations with varying scale factors for α-quartz, diaspore, anhydrite, 
and calcite indicate a typical perturbation of ~2 × 10–5 on qa–atoms when the scale factor is varied 
by 1%, which is a precision well beyond current measurement capabilities. This result agrees 
with the scaling arguments presented by Cao and Liu (2011), suggesting that the mass law 
exponent will be a robust product of theoretical models in the absence of large errors in the 
electronic structure or major anharmonic effects. Uncertainties from residual random scatter in 
frequencies after scaling are expected to be even smaller due to partial cancellations of errors.

Another approach to estimating uncertainties stemming from using the PBE functional to 
calculate vibrational frequencies is to compare models using different electronic structure methods, 
in the expectation that both systematic and random errors will change as well. Comparisons 
with molecule-based and cluster models using hybrid density functional theory (e.g., B3LYP; 
Becke 1993) and higher-order methods such as Møller-Plesset theory (MP2; Møller and Plesset 
1934) provide the most robust tests of this sort. The qa–atoms results of Cao and Liu (2011) and 
Haynes et al. (2018) using such methods are thus of particular value, and are discussed in detail 
in a later section. As an additional check, we created models of a subset of crystals (α-quartz, 
diaspore, anhydrite, calcite) and molecules (water vapor and carbon dioxide) using two different 
density functionals: the Local Density Approximation functional (as parameterized by Perdew 
and Zunger 1981), here abbreviated LDA, and the PBEsol gradient corrected density functional 
optimized for accurately reproducing lattice constants of solids (Perdew et al. 2007). Frequency 
scale factors are determined independently for the models using each functional, these are 3.8% 
for PBE (slightly different from the 4.3% scaling fitted to the whole PBE model suite), 1.6% 
for the LDA models, and 2.7% for the PBEsol models. The residual scatter after fitting the scale 
factors for the PBE and PBEsol models for these six substances is similar (rms misfit of 17 cm–1 
vs. 16 cm–1 respectively). The rms frequency over the correlated modes is 962 cm–1, suggesting 
slightly less than 2% relative scatter, which is similar to the larger set of correlated PBE models. 
The residual scatter for the LDA models is slightly larger (23 cm–1). Calculated reduced partition 
function ratios and qa–atoms are shown in Table 7. The two gradient-corrected functionals show 
typical mismatches of ~1–2‰ at 300 K, consistent with the crude scale-factor based estimate 
above, but this test may be overly optimistic given the close theoretical relationship between 
PBE and PBEsol. The LDA models are more variable, with mismatches of up to 4‰. qa–atoms is 
much less sensitive to the choice of functional, varying by less than 5 × 10–5 between PBE and 
PBEsol models, and by less than 1x10–4 between PBE and LDA models.
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Effects of sampling the phonon density of states. The potential effects of incomplete 
phonon sampling on reduced partition function ratios and isotopic clumping have been 
discussed previously (e.g., Elcombe and Hulston 1975; Schauble et al. 2003, 2006; Méheut 
et al. 2007). As in prior work, these effects are estimated in the present study by comparing 
models of a subset of crystals (α-quartz, diaspore, anhydrite, calcite, and aragonite) using a 
coarser phonon wave vector sampling (with roughly half as many distinct wave vectors). The 
test results are shown in Table 8. They show a limited dependence of 18O/16O fractionation, 
with less than 0.2‰ variation at 298.15 K in all cases. qa–atoms varies by no more than 5 × 10–5 
in all cases. The lack of sensitivity of qa–atoms to phonon wave vector sampling suggests that 
adequate results can often be obtained on a sampling grid containing only one distinct wave 
vector, so long as it is chosen with care.

The variation in calculated reduced partition function ratios with fine vs. coarse phonon 
wave vector grids is notably smaller than the ~1‰ variation found in previous work on 
rhombohedral carbonates (Schauble et al. 2006) using phonon wave vector samples of similar 
size. An important difference in the earlier work is that in general only one atomic position per 
unit cell in each crystallographic site was included in the thermodynamic calculation, whereas 
the present study accounts for all oxygen atoms on each unit cell through a series of one-atom 
isotopic substitutions. This improves convergence because the crystallographic symmetries of a 
lattice are commonly split along the phonon wave vector, so that (for instance) 18O substitution 
on one of the O(2) atomic positions in aragonite will not necessarily generate the same frequency 
shifts for a particular phonon wave vector as 18O substitution on another O(2) atom. As it turns 
out, this asymmetric response has very little effect on qa–atoms. It also has little effect on the Keq of 
multiply substituted isotopologues in carbonate minerals, which is the main focus of the Schauble 
et al. (2006) study. A re-calculation of Keq[3866] in calcite using a grid with two distinct wave 
vectors from the present test models indicates that the asymmetry effect might be responsible 
for an up to 8 × 10–6 (i.e., 8 per meg) deviation for a particular C–O bond from the average over 
all bonds at 25 ºC, and the failure to account for this effect may be responsible for most of the 
difference in the Keq values calculated with 2 wave-vector vs. 5 wave-vector grids in that study 
(Table 9). In fact, the re-calculated result using a 2 wave-vector sample of phonon frequencies 
from this study, combined with the frequency scale factor of 1.0331 from Schauble et al. (2006) 
and averaging over all 6 C–O bonds in the primitive calcite unit cell, yields a Keq that is within 1 
per meg of the Schauble et al. (2006) 5 wave-vector sample result, despite being based on models 
constructed using different pseudopotentials, electronic wave vector grids, and cutoff energies. 
This asymmetric substitution effect is smaller than other likely sources of error considered in 
the Schauble et al. (2006) study (such as anharmonicity and uncertainty in the frequency scale 
factor), and it does not change any of the significant conclusions reached in that work.

Comparison with previous determinations of 18O/16O fractionation. Although the present 
work is primarily concerned with the estimation of the mass dependence of oxygen isotope 
fractionation qa–b, comparisons with measured or previously estimated 18O/16O fractionation 
factors are important for two reasons. 

1.	 First-principles models that accurately reproduce 18O/16O fractionation factors can 
be reasonably be inferred to predict 17O/16O with similar accuracy, and thus yield 
realistic qa–b. They can also be inferred to predict 18O/16O fractionation factors for 
materials that have not yet been experimentally or empirically calibrated.

2.	 18/16aa–b is itself an important term in the conversion between qa–atoms, qb–atoms, qa–b, 
and ∆′17Oa–b. 

Calibration of 18O/16O fractionation factors has been an ongoing project of stable isotope 
geochemistry for more than a half-century, and there is a large literature to provide a basis 
for comparisons. It is beyond the scope of the present chapter to provide a comprehensive 
evaluation of these calibrations, and excellent compilations are available in earlier volumes 
of this series, e.g., Chacko et al. (2001). However, it is worthwhile to examine a subset of 
materials spanning as much variability in crystal structure types and chemistries as is feasible. 
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Here we focus on species with experimental calibrations and (ideally) ongoing interest for stable 
isotope studies, including calcite, the silicates quartz, albite, anorthite, diopside, forsterite, and 
zircon, and the rare-earth element phosphate mineral monazite. These are examined in terms 
of 18/16aquartz–x, the fractionation relative to quartz. The sulfate minerals barite and gypsum, the 
phosphate mineral fluorapatite, and the carbonate minerals calcite and dolomite are compared 
with liquid water, using the liquid–vapor model of Rosenbaum (1997) and our anharmonicity-
corrected model for H2O vapor to estimate the properties of liquid H2O. This procedure likely 
introduces some error—and is clearly no longer ab initio. However, the systematics of model 
crystal fractionations vs. liquid water will still depend on the accuracies of the crystal models 
relative to each other. These comparisons are shown in Figure 5.

Table 7. Comparison of reduced partition function ratios and exponents calculated with different 
density functionals, using frequency scale factors determined just for these six species. The PBE 

results are thus slightly different from the results listed above.

298.15 K 1000 ln18/16b qa–atoms

Substance PBE PBEsol LDA PBE PBEsol LDA

a-quartz 107.87 108.52 109.99 0.528129 0.528154 0.528176

Diaspore 89.91 91.42 93.59 0.529202 0.529158 0.529118

Anhydrite 96.40 98.27 100.20 0.528525 0.528487 0.528457

Calcite 98.83 99.96 101.67 0.528623 0.528604 0.528584

H2O vapor 64.45 63.57 62.73 0.530030 0.530033 0.530035

CO2 114.84 113.89 114.07 0.527949 0.527951 0.527945

RMS Misfit vs. PBE: 1.23 2.71 0.000027 0.000051

Table 8. Comparison of reduced partition function ratios and exponents calculated with different phonon 
wave vector grids. The number of distinct phonon wave vectors for each species is given in parentheses.

298.15 K 1000 ln18/16b qa–atoms

Substance Fine grid Coarse grid Fine grid Coarse grid

a-quartz (4,2) 108.70 108.69 0.528118 0.528118

Diaspore (4,2) 90.65 90.65 0.529193 0.529193

Anhydrite (2,1) 97.16 97.32 0.528515 0.528511

Calcite (5,2) 99.75 99.59 0.528609 0.528614

Aragonite (2,1) 99.16 99.20 0.528592 0.528591

RMS Misfit 0.10 0.000002

Table 9. Comparison of calculated 13C–18O–16O–16O clumping equilibrium constants in calcite. 
Results are given using both the carbonate-specific 1.0331 frequency scale factor used in  

Schauble et al. (2006), and the general 1.043 scale factor from the present study.

Average Keq(3866) with a 2 q-point phonon grid

273.15 K 298.15 K 373.15 K 573.15 K 1273.15K

Schauble et al. (2006) 1.000482 1.000403 1.000241 1.000073 1.000004

Present Study (SF 1.0331) 1.000491 1.000411 1.000247 1.000075 1.000005

Present Study (SF 1.043) 1.000500 1.000419 1.000253 1.000078 1.000005

Average Keq(3866) with a 5 q-point phonon grid

Schauble et al. (2006) 1.000490 1.000410 1.000247 1.000075 1.000005
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Figure 5. Comparison of calculated 18O/16O fractionation factors with previous experimental and theoretical 
studies. The models for anhydrite and fl uorapatite are also compared with previous calibrations of the dis-
solved sulfate–water fractionation (Zeebe et al. 2010; Halas and Pluta 2000) and the dissolved phosphate–
water fractionation (Chang and Blake 2015).
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Experiments and empirical (field-based) calibrations of oxygen isotope fractionation 
between quartz and calcite give varying results—the empirical study of Sharp and Kirschner 
(1994) finds fractionation twice as large as a laboratory calibration (Clayton et al., 1989). 
The present models closely track the empirical calibration of Sharp and Kirschner (1994). 
It should be noted, however, that at least some other silicate–calcite fractionations show 
good agreement with direct exchange experiments, for instance phlogopite–calcite (−1.5‰ 
vs. −1.7‰ at 750 ºC; Hu and Clayton 2003), and it should also be noted that the quartz–
calcite fractionation predicted by Hayles et al. (2018) is intermediate between the Sharp 
and Kirschner (1994) and Clayton et al. (1989) calibrations. Fractionations among silicate 
minerals show reasonably good consistency with experimental and empirical calibrations, 
particularly for quartz–albite, quartz–anorthite, quartz–forsterite, and quartz–diopside, which 
all remain within 0.2–0.3‰ of tabulated experimental calibrations (Chiba et al. 1989, Clayton 
and Kieffer 1991) above 600 ºC. Previous calibrations of the quartz–zircon fractionation are 
more variable, with theoretical estimates tending to predict larger fractionations than are 
observed. The present model behaves similarly, apparently overestimating the fractionation 
by 0.4–0.8‰ at 600 ºC—and is in fact remarkably similar to a much earlier theoretical 
prediction of Kieffer (1982). Qualitatively, the present model is reasonable even for this 
mineral pair, but it is conceivable that a slightly higher frequency scale factor would be 
appropriate to consider for zircon, as suggested by both the overestimated quartz–zircon 
fractionation and the Raman and IR correlations for zircon. Quartz–monazite fractionations 
measured by Breecker and Sharp (2007) are in good agreement with the present models.

Mineral–water fractionations for phosphates, sulfates, and carbonates likewise generally 
show reasonable agreement with experiment, as has been found previously for similar types 
of models (e.g., Schauble et al. 2006; Meheut et al. 2007). The present models appear to 
underestimate sulfate–water and phosphate–water fractionations by up to 4‰ from 273–423 K. 
Interestingly, a model of meridianiite, Mg(H2O)6∙SO4∙5H2O, which contains fully solvated 
SO4

2– molecules, runs very close to previous calibrations of the aqueous sulfate–water 
fractionation (Halas and Pluta 2000; Zeebe 2010), falling within 1‰ of the both calibrations 
from 273–423 K. Our models closely match experimentally determined calcite–water and 
dolomite–water calibrations (e.g., O’Neil et al. 1969; Kim and O’Neil 1997; Horita 2014). The 
present results also match some previous dolomite–calcite fractionations well (e.g., Northrop 
and Clayton 1966; Sheppard and Schwarcz 1970) with greater disagreement with Horita (2014).

Calculated fractionations between water ice and vapor (using the harmonic vapor model) 
are considerably larger than measurements (e.g., Majoube 1970; Ellehoj et al. 2013), by ~5‰ at 
273 K. Note that using anharmonically corrected values for vapor would worsen the mismatch (by 
~3–4‰ at 273 K). The present estimates are in reasonable agreement with a previous model using 
similar DFT parameters, however (Meheut et al. 2007), suggesting that this is a systematic error 
for the theoretical method. This misfit may in part be consistent with the underestimation of lattice 
constants for ice crystals by the PBE functional, in that both suggest that the hydrogen bonding 
network of ice is not reproduced as accurately as other bond types. Relatively poor descriptions 
of hydrogen-bonding interactions in water vapor clusters, liquid water, and ice are a well-known 
defect of DFT methods (e.g., Gillan et al. 2016), and it should perhaps not be surprising that 
this is one case where the methods used in the present chapter are less accurate. In contrast, the 
estimated fractionation between liquid water (using the harmonic model of water vapor and the 
liquid–vapor fractionation from either Rosenbaum 1997 or Horita and Wesolowski 1994) and the 
water of hydration of gypsum is within 1‰ of experiments and empirical calibrations (Gazquez 
et al. 2017; Herwartz et al. 2017), with ~4‰ higher 18O/16O in hydration water at ~20 ºC, and a 
temperature sensitivity of roughly −0.01‰/ ºC. This agrees with another recent theoretical result 
(Liu et al. 2019) using a similar type of model based on the PBEsol functional.
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Comparison with previous determinations of  qa–b and  qa–atoms. Much less is known about 
equilibrium deviations from the canonical mass-fractionation relationship than about 18O/16O 
fractionation factors. In this section the available theoretical, experimental, and empirical 
calibration data are compared to our present results. In general, comparison of qa–b with 
experimental data depends on qa–atoms, qb–atoms, and 103 ln18/16aa–b = 103 ln18/16ba − 103 ln18/16β b. 
The last term has just been discussed, with generally good agreement between model results 
and calibration, but suggesting some reason for concern that fractionations involving water will 
have modest systematic error. High-precision calibrations of θ have now been published for 
silica vs. liquid water, gypsum water vs. liquid water, and liquid water vs water vapor (Barkan 
and Luz 2005; Sharp et al. 2016; Gazquez et al. 2017; Herwartz et al. 2017). Theoretical 
calibrations for these and other systems have also been calculated recently by other authors 
(e.g., Cao and Liu 2011; Hayles et al. 2018). We compare these in turn (Fig. 6). In general, 
there is excellent agreement between the present results and those of Hayles et al. 2018, and 
reasonably good agreement with Cao and Liu (2011). This general agreement is consistent 
with the error analysis of Cao and Liu (2011), which demonstrated that theoretical estimates 
of qa–atoms, in particular, are relatively robust even for simplified models.

The most extensive comparison sets come from Cao and Liu (2011) and Hayles et al. 
(2018). In the earlier work, qa–atoms (reported as κ, in their notation) is estimated for CO2, 
CO, H2O, and H6Si2O7, as well as for gas-phase CO3

2– and molecular clusters mimicking the 
structure of carbonate and silicate mineral structures. Cao and Liu (2011) mainly use hybrid 
density functional theory (B3LYP; Becke 1993) to estimate vibrational frequencies in their 
calculations. This method is closely related to the PBE functional used the present work—both 
are substantially based on gradient-corrected density functionals—but B3LYP incorporates a 
component of exact electron exchange. The exact exchange component of B3LYP is not as 
easily adapted to systems with periodic boundary conditions as pure density functionals such 
as PBE or BLYP, and so the calculations in Cao and Liu (2011) are limited to isolated atoms, 
molecules, and clusters, using atom-centered basis sets rather than the pseudopotential+plane 
wave basis set method applied here. However, a significant potential advantage for B3LYP 
is that it is typically observed to reproduce vibrational frequencies, molecular structures, and 
thermodynamic properties somewhat more accurately than PBE; for harmonic vibrational 
frequencies and zero point energies the scale factor for B3LYP is close to unity for typical 
molecular benchmark comparisons (e.g., Kesharwani et al. 2014; Alecu et al. 2010—updated 
at https://t1.chem.umn.edu/freqscale/index.html), and no scale factor is applied by Cao and 
Liu (2011) to their model calculations. However, the residual misfit after scaling, compared to 
harmonic frequencies inferred from spectroscopic measurements, is similar for both methods 
(e.g., Kesharwani et al. 2014). So cross-comparing results between the two studies is likely to 
give useful information about the reliability of both methods. Typical mismatches are ~5 × 10−5 
or less for the small gas-phase molecules CO, CO2, and H2O, with somewhat larger mismatch 
of up to 2 × 10–4 for the bridging oxygen in vapor-phase disilicic acid H6Si2O7, and similar 
disagreements between calcite with CO3

2–(v), and anorthite with H6SiAlO7
–. The relatively 

large mismatch between the present calcite model and the “calcite” result from Cao and Liu 
(2011) comes mainly from their proposed crystal–vapor correction to the gas-phase carbonate 
model. The close overall correspondence suggests that both model approaches are sufficiently 
accurate to be useful. The good match between molecules and crystals with similar bonding 
configurations around oxygen also suggests that a “building block” approach analogous to the 
methods developed for predicting 18O/16O fractionation by e.g. Garlick (1966) and Zheng (1991) 
will be even more well suited to predicting or rationalizing the mass dependence exponents, so 
that signatures in complex, incompletely characterized, and amorphous materials can likely be 
anticipated on the basis of simpler, better studied crystals and molecules.
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Figure 6. Comparison of calculated qa–b and ∆′17O with previous experimental and theoretical studies in the 
quartz–water (a) and calcite–water (b) systems. For each system, the first row of three panels shows the expo-
nent as a function of temperature over a wide and narrow (low) range, and also a function of the equilibrium 
18O/16O fractionation. The irregular (hyperbolic) behavior of qcalcite–liquid water at ~700 K reflects a change in 
sign of the calcite–water fractionation factor. Three variant models for qliquid water–atoms from the present study 
are used, based on either qliquid water–water vapor=0.529 (Barkan l − v; Barkan and Luz 2005), the average of qwater 

vapor–atoms and qice-Ih–atoms (50% ice model), or the lesser of qwater vapor–atoms and the Barkan l − v exponent. Calibra-
tion references: Sharp et al. (2016), Cao and Liu (2011), and Hayles et al. (2018). The y-axis units are per meg.
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Hayles et al. (2018) focus on crystals and liquid water, mainly using a cluster-based method 
and hybrid density functional theory to estimate 18O/16O fractionation factors and qa–atoms. 
Many of the same crystals are modeled here, and in general the agreement is remarkably 
good, with a deviation in qquartz–atoms of about 1 × 10−4 (at 273–373 K, then converging at 
higher temperatures), and deviations < 2 × 10–5 for qcalcite–atoms, qdolomite–atoms, qfluorapatite–atoms, 
and θH2O vapor–atoms at 273 K and above. Calculated 18O/16O fractionations also generally agree, 
with the largest differences found for calcite and quartz at low temperatures. The present 
models predict ~1–1.5‰ higher ln18/16β for α-quartz over the 273–373 K temperature range, 
and 1.5–2.8‰ lower ln18/16β for calcite. Dolomite, fluorapatite, and water vapor models all 
agree within ~1‰ at temperatures ≥ 273 K. The overall magnitude of disagreement is similar 
to that observed between PBE and PBEsol-based models. There is at most a small systematic 
offset for the present PBE, periodic boundary condition models versus the Hayles et al. (2018) 
B3LYP, cluster models; the mean (signed) deviation in ln18/16β for the set of quartz, calcite, 
dolomite, fluorapatite, and water vapor is 0.1‰ or less above 273 K.

The silica–water system has been studied empirically (Sharp et al. 2016), as well as with 
theoretical models, showing negative ∆′17O in SiO2 precipitates that is most pronounced in low 
temperature silica samples. All of the published theoretical models agree with the general trend 
of decreasing ∆′17OSiO2

 and qSiO2–liquid water in low temperature samples. In detail, the models 
appear to underestimate the deviation from the 0.528 exponent somewhat, particularly at the 
lowest temperatures, only reaching as low as qSiO2–liquid water ≈ 0.524 vs. 0.523 and D′17OSiO2

 
≈ –150 to –160 per meg vs.−180 to –190 per meg near 273 K. Note that the deviations in 
qSiO2–liquid water at high temperatures in some models may be misleading, because they are highly 
sensitive to small changes in the 18O/16O fractionation factor and θ liquid water–atoms that are difficult 
to resolve in measurements. The overall comparison suggests that these types of models will be 
useful guides to the behavior of ∆′17O and qmineral water as a function of temperature, potentially 
even in low temperature samples where it is not obvious that exchange equilibrium is obtained.

The 17O systematics of the water of hydration of gypsum has become a focus of interest 
in hydrological studies in arid climates. Gazquez et al. (2017) recommend qgypsum water–parent brine 
= 0.5297 ± 0.0012. In a set of re-hydration experiments equilibrated at 21 ºC, Herwartz et 
al. (2017) find qgypsum water–parent brine = 0.5272 ± 0.0019, and they recommend a compromise 
value of 0.5286. Our models predict qgypsum water–liquid water ≈ 0.528 at 25 ºC, in good agreement 
with measurements. Our calculated qgypsum water–liquid water is consistently about 0.001 lower than 
the model calculations of Liu et al. (2019), though it is difficult to pinpoint the cause of the 
difference, and both results are consistent with measurements, given their uncertainties.

A system of great potential interest in future work is CaCO3–liquid water, including both 
calcite and aragonite polymorphs of calcium carbonate. Although a number of measurements 
have been reported (e.g., Passey et al. 2014), it is difficult to convert these into a calibration vs. 
temperature. Initial results for calibration studies are beginning to appear in the literature (e.g., 
Wostbrock et al. in press; Voarintsoa et al. 2020; Bergel et al. 2020). The theoretical models 
of Hayles et al. (2018) and the present study are show excellent agreement; the adjusted, 
CO3

2–
(v)-based model of Cao and Liu predicts lower qcarbonate–liquid water than the other two 

models, but their unadjusted CO3
2–-based model is closer to the more recent theoretical results. 

The overall trend vs. temperature in qcarbonate–liquid water is similar in all models. The models are 
also generally in agreement with low ∆′17O observed in carbonate minerals (e.g., Passey et 
al. 2014), and in reasonable agreement with the qcarbonate–liquid water results of Wostbrock et al. 
(2020) (0.525–0.526 at 0 ºC vs. 0.5251 in the present study, 0.5250 in Hayles et al. 2018, and 
0.5253 in Guo and Zhou 2019). However, Voarinstsoa et al. (2020) and Bergel et al. (2020) 
measured a somewhat lower exponent (qcarbonate–liquid water ≈ 0.520–0.523 at 283–308 K).
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A final set of comparisons comes measurements of θ in higher-temperature systems, 
including tabulations aimed at finding a universally applicable mass fractionation exponent for 
silicate rocks (e.g., Rumble et al. 2007), including lunar samples (e.g., Young et al. 2016). As 
pointed out by Cao and Liu (2011), typical values in the range of 0.525–0.528 found in these 
compilations are broadly consistent with silicate–water fractionations at moderate–elevated 
temperatures, coinciding for instance with qquartz–water at temperatures from ~350–850 K. 
However, they are markedly at odds with the discovery of measurable ∆′17O of several per 
meg in feldspars and quartz from high-temperature rocks, including lunar and terrestrial 
anorthosites (Young et al. 2016). The characteristically low ∆′17O of feldspar-rich rocks, by 
~10 per meg relative to related olivine and/or pyroxene-rich rocks, cannot be easily explained 
in the framework of the Urey (1947) harmonic oscillator theory of stable isotope fractionation, 
by nuclear field shift effects, or even by more exotic models such as the double-well potential.

Taken together, these comparisons indicate that theoretical models, even highly simplified 
ones, provide a useful guide to actual 18O/16O fractionations and θ, though direct testing is still 
limited to a few materials.

General properties of ∆′17O in crystals relative to water vapor. Cao and Liu (2011), 
Dauphas and Schauble (2016), and Hayles et al. (2018) have shown that the variation in qa–atoms 
with changing chemical structure is highly systematic, moving below the high-temperature 
harmonic limit of ~0.5305 most strongly at low temperatures in materials with high force 
constants and relatively high-mass bond partners for oxygen. High force constants and relatively 
high-mass bond partners also correlate strongly with preferential incorporation of oxygen 
with high 18O/16O, so it is not surprising to find correlation between 18O/16O fractionation 
factors and deviations in ∆′17O in systems approaching equilibrium. The present results are 
also consistent with these principles. For instance, the low mass of hydrogen means that the 
mass fractionation exponent qwater vapor–atoms stays close to the high-temperature limit even at 
Earth surface conditions, and this property largely carries over to liquid water and ice, which 
will have 0–20 per meg higher ∆′17O than vapor at temperatures from 243 K (−30 ºC) up to the 
critical point. This observation is important because many of the most promising geochemical 
applications of high-precision ∆′17O measurements are in mineral–water systems.

Theoretical studies (e.g., Cao and Liu 2011; Hayles et al. 2018; and the present work) also find 
that the range of ∆′17O between different mineral/mineral and mineral/molecule pairs is predicted 
to decrease quickly at equilibrium as temperature increases towards hydrothermal, metamorphic, 
and igneous conditions. However, the choice of reference exponent becomes relatively important at 
elevated temperatures. At 773 K (500 ºC), the largest inter-phase ∆′17O will be less than 10 per meg 
(e.g., 9 per meg for the forsterite–water vapor pair), relative to a 0.528 reference exponent, but 
could be greater than 20 per meg if the high-temperature equilibrium limit exponent of 0.53052 
is the reference (where CO is a fractionating phase). Using the 0.528 reference, the range only 
slightly decreases to ~8 per meg at 1273 K (1000 ºC), but the range is less than 5 per meg at this 
temperature if the 0.53052 high-temperature limiting exponent is used instead.

To illustrate these systematic behaviors, we have plotted the difference in ∆′17O vs. 
103 ln18/16aa–water vapor for a sample of the crystal types studied. Although there is substantial 
scatter, the systematic correlation in behavior of these two fractionation properties is clear 
(Fig. 7). Within the silicate mineral class (and especially for anhydrous silicates), strong 
18O/16O fractionation is strongly correlated with negative ∆′17O, becoming most pronounced 
in structures with the highest Si:O ratios, such as quartz and alkali feldspars. Interestingly, 
hydrous Mg–Si–O–H silicates follow a similar trend of ∆′17O vs. α. Among the anhydrous 
silicates studied, high Si:O corresponds to higher polymerization, whereas among the hydrous 
silicates high Si:O corresponds to lower polymerization because of Al:Si substitution into 
tetrahedral sites and increased OH concentrations in sheet silicates. The similar predicted 
∆′17O of kaolinite and lizardite indicates that tetrahedrally coordinated cations in silicates mainly 
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control deviations from the reference fractionation exponent even though sites coordinated to 
octahedral Al3+ have a signifi cantly higher affi nity for 18O (and 17O) than sites coordinated 
to Mg2+. Divalent metal carbonates show the importance of strong, low-coordination 
cation-oxygen bonds in controlling ∆′17O even more strikingly, and it is possible to draw 
isothermal tie-lines at nearly constant ∆′17O from aragonite and calcite through magnesite, 
spanning 10‰ in 18O/16O but only a few per meg in ∆′17O at 273–373 K. In these crystals the 
strongest bonds are always internal to the carbonate group, and relative 18O/16O fractionation 
is controlled by weaker X2+–O bonds characterized by low vibrational frequencies that do 
not affect the exponent as strongly. This behavior suggests that details of cation chemistry in 

a. b.

c. d.

e. f.

Figure 7. Calculated deviations of ∆′17O from water vapor at equilibrium from 243–1573 K. a) anhydrous 
silicate minerals and molecules. b) hydrous silicate minerals, diaspore, and spinel. c) carbonates and nitratine. 
d) phosphates. e) sulfates. f) CO2, CO, and sodium perchlorate. g) ice, liquid, and supercritical water. Unless 
otherwise specifi ed, intermediate tick marks are given at 273 K, 373 K, 473 K, 573 K and 673 K on panels 
b–g. The same alpha-quartz data is shown in panels a–f, as a guide to the eye. The y-axis units are per meg.
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mixed-composition carbonates may not be very important for interpreting ∆′17O signatures. 
Nitratine, with a different trigonal oxyanion (NO3

–) and even weaker inter-molecular Na+–O 
bonds, closely resembles its crystallographic cousin calcite. Phosphates show a similar near-
invariance of ∆′17O versus crystal chemistry, as do sulfates (excepting the water of hydration 
of gypsum). Silicate, phosphate, sulfate, and perchlorate crystals with the ZTetO4 structural 
formula, including zircon, monazite, xenotime, barite, anhydrite, and NaClO4, all show similar 
∆′17O vs. water vapor at a given temperature, relative to the 0.528 reference line, echoing the 
similarity noted above for ZTriO3 carbonate and nitrate minerals. ∆′17O vs. 18O/16O fractionation 
relationships for silicates, sulfates, phosphates, carbonates, nitrates, and perchlorates relative 
to liquid (or supercritical) water and water vapor follow a characteristically concave-down 
trajectory as temperature decreases. This characteristic relationship suggests that ∆′17O relative 
to water could be crudely predicted even for crystals that have not be explicitly modeled, via 
comparison to other minerals of similar type. For silicates, in cases where ln18/16amineral–water can 
be reasonably well constrained, simply applying the ∆′17O vs 18/16aquartz–water relationship may 
be sufficient to give a useful approximation to the actual system of interest.

There is no indication that the apparent ~10 per meg deviations between different silicate 
phases found in lunar and terrestrial igneous rocks can be explained by equilibrium inter-mineral 
fractionation (Fig. 8). As an illustration, we compare the results obtained here with the high-
temperature rock data in Figure 1. While the trend of lower ∆′17O for quartz and feldspar relative 
to olivine and spinel is common to the data and the calculations, the magnitudes are entirely 
different. The calculations predict quartz and feldspar ~1 to 3 per meg lower in ∆′17O than 
olivine, at most, at magmatic temperatures while the data exhibit differences ten times larger.

SUMMARY

ln18/16β and θ (and by extension ∆′17O relationships at equilibrium) have been 
estimated for a variety of silicate, phosphate, sulfate, and carbonate minerals, as well as for 
representative nitrate, perchlorate, oxide, hydroxide, and ice crystals using first-principles 
electronic structure models. The results are generally in good agreement with previous studies 
of fractionation factors and mass-fractionation exponents, including both theoretical work and 
measurements. The nuclear volume component of the field shift effect is shown have a minor 
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or insignificant influence on fractionation and θ. A reconnaissance exploration of fractionation 
in an anharmonic, double-well potential does not find evidence for the generation of large 
∆′17O effects, at least for the most chemically plausible potential shapes. None of the results 
provide a convincing explanation for ~10 per meg ∆′17O signatures observed in polymerized 
silicates in high-temperature terrestrial and lunar rock samples.
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