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INTRODUCTION

Sulfate is the most abundant electron acceptor in the ocean today. A large fraction of 
the buried organic matter in marine sediments is re-mineralized through microbial sulfate 
reduction (MSR) during which the sulfate is reduced to H2S (Jørgensen 1982; Kasten and 
Jørgensen 2000). The H2S can be re-oxidized to sulfate or buried as pyrite in sediments 
(Jørgensen 1977). The burial of pyrite ultimately contributes to the rising of atmosphere O2 
concentration (Berner and Canfield 1989). Sulfate, meanwhile, can be buried as gypsum and 
anhydrite in evaporites (Claypool et al. 1980; Crockford et al. 2019; Spencer 2000) or as barite 
in sedimentary rocks (Hanor 2000; Bao et al. 2008; Peng et al. 2011; Griffith and Paytan 2012; 
Crockford et al. 2016). 

Sedimentary rocks can be uplifted and weathered with or without being subducted, melted, 
or metamorphosed. Thus, the initially buried sulfur minerals are transformed and eventually 
turned to sulfate under oxidizing atmosphere through pyrite oxidation and evaporite dissolution 
(Bottrell and Newton 2006). Any sulfur-bearing minerals in igneous and metamorphic rocks 
will also eventually be released as sulfate upon oxidative weathering and carried to the oceans. 

The oxygen isotope composition of sulfate reveals the chemical pathways sulfate has 
experienced during its formation and consumption in sulfur cycling (Fig. 1). Secondary 
atmospheric sulfate can carry atmospheric O3 and/or O2 signature (Savarino et al. 2000; 
Harris et al. 2013; Bao 2015). At the surface, sulfate formed through sulfide mineral oxidation 
carries atmosphere O2 and ambient water oxygen isotope signatures (Bao 2015). During MSR, 
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sulfate can exchange its oxygen isotope composition with ambient water via intermediates 
toward thermodynamic equilibrium (Wortmann et al. 2007; Zeebe 2010), erasing some or all 
the O2 and water oxygen isotope signatures the sulfate may have acquired initially (Mizutani 
and Rafter 1973; Fritz et al. 1989; Brunner et al. 2005). Evaporite sulfate represents well the 
contemporary seawater sulfate of geological times (Claypool et al. 1980; Crockford et al. 2019). 

Sulfate’s oxygen isotope composition has received less attention than sulfate’s sulfur 
isotope composition, due largely to oxygen’s multiple sources and variable non-equilibrium 
isotope signatures. The normalized 18O/16O ratio or the δ18O value is traditionally measured 
(Lloyd 1967, 1968). In the last 20 years, data on triple oxygen isotope composition (i.e., 
Δ′17O ≡ δ′17O − 0.5305  ×  δ′18O) of sulfate has been accumulating. Distinctly large positive and 
negative 17O anomalies have been found in the atmosphere and/or geological sulfate deposits 
(see review papers Thiemens 2006; Bao 2015; Crockford et al. 2019). These discoveries have 
provided exciting new insights into past atmospheric processes associated with volcanism (Bao 
et al. 2010), desert salt deposits (Bao et al. 2000a,b), snowball Earth (Bao et al. 2008, 2009), 
and gross primary productivity (Crockford et al. 2018; Hodgskiss et al. 2019). 

Over the years, researchers have discovered that there are analytically resolvable differences 
in the Δ′17O of sulfate produced by entirely mass-dependent reactions that do not involve 
O3, an oxidant bearing a large 17O anomaly (Bao et al. 2008; Sun et al. 2015; Killingsworth 
et al. 2018; Waldeck et al. 2019; Hemingway et al. 2020). We call these differences small 
triple oxygen isotope variations or small 17O deviations (Bao 2019). Apparently intriguing 
patterns have been reported and geological and environmental significances inferred. 
However, interpreting small sulfate Δ′17O data is not a trivial matter.

 In this chapter, we will explore the origins of small 17O deviations or small Δ′17O values 
in sulfate. Large positive or negative sulfate 17O anomalies will, therefore, not be covered 
here, and the readers can refer to recent reviews (Thiemens 2006; Bao 2015; Crockford et 
al. 2019) for details. Small sulfate Δ′17O values are sensitive not only to source of oxygen 
but also to reaction mechanisms because equilibrium and kinetic processes generate different 
small non-zero Δ′17O values (Young et al. 2002; Angert et al. 2004; Barkan and Luz 2007; 
Pack and Herwartz 2014; Bao et al. 2015). Sulfate reduction drives the remaining sulfate 
oxygen toward isotope equilibrium with ambient water, resulting also in a change of the small 
sulfate Δ′17O value. Since the change during sulfate reduction process is largely controlled 
by ambient water isotope composition, this review will focus more on reaction mechanism 
and associated oxygen isotope effects on sulfate formed via pyrite oxidation. We adopt the 
approach of isotopologue-specific kinetic analysis (Cao and Bao 2017; Cao et al. 2019), 

Figure 1. A global sulfur cycle in light of sulfate oxygen sources and sinks. Grey texts are sulfur reser-
voirs, bold black texts list the potential sources of oxygen for product sulfate during sulfur oxidation, MSR 
refers to microbial sulfate reduction, and arrows mark processes. 
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which helps to identify and subsequently estimate the most important parameters in determining 
sulfate’s small Δ′17O values. Isotopologue specific kinetic details during sulfate redox reactions 
are sketchy at this time and we will approach the problem using endmember scenarios. 
The intrinsic triple isotope parameters determined will then be used to construct Δ′17O − δ18O 
space for sulfates derived from different endmember scenarios. Such Δ′17O − δ18O space 
should be applicable not only to small Δ′17O but also to the δ18O or large Δ′17O values, and 
therefore can be tested and further revised. Specific examples on riverine and lake sulfate data 
will be analyzed to show potential applications. Analytical methods and issues in measuring 
small sulfate Δ′17O and future research opportunities are outlined in the end.

TRIPLE OXYGEN ISOTOPE SYSTEM

Oxygen has three stable isotopes, i.e., 16O, 17O, and 18O. The δ notation is introduced to describe 
their small relative abundance variation in nature, and it is defined as (McKinney et al. 1950)
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where 17,18R is the mole ratio of 17,18O/16O; Rsample and Rref refer to R value for samples of 
interest and reference, respectively. Standard Mean Ocean Water (SMOW) (Craig 1961) (later 
Vienna-SMOW) is the reference material in most oxygen isotope studies. The notion of δ′ is 
often used in triple oxygen isotope community for its many advantages (Miller 2002; Young et 
al. 2002). Here (Hulston and Thode 1965) 
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When oxygen isotopes fractionate in a defined process, the corresponding fractionation 
factor is defined as (McCrea 1950)
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where A and B are reactant and product or the transition state of a reaction path and the 
reactant, respectively. When A and B reach isotope equilibrium, α is the equilibrium isotope 
effect (EIE). When A and B  is the transition state and the reactant, respectively, α is the kinetic 
isotope effect (KIE) (Bigeleisen and Wolfsberg 1958; Bao et al. 2015). EIE and KIE are two 
fundamental parameters of isotope fractionation. When we venture into the high-dimensional 
triple oxygen isotope relationship between 17αAB and 18αAB, the community has invented a 
designated Greek symbol. This is the θ value or the triple isotope exponent, defined as (Mook 
2000; Angert et al. 2003; Barkan and Luz 2005, 2007; Cao and Liu 2011)
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For mass-dependent processes that have fractionation larger than a few per mil, the θ normally 
varies between 0.5 and 0.5305 (Bao et al. 2015; Dauphas and Schauble 2016; Hayles et al. 
2017). Often, a defined process cannot be an elementary process. In that case, the θ is apparent 
or diagnostic for that defined process or processes. The θ value only exists when a process is 
specified, but any oxygen-bearing compound can have its δ17O and δ18O values, and thus, its 
small 17O deviation, i.e., the Δ′17O value. The Δ′17O is calculated once a reference slope C is 
given (Angert et al. 2003; Pack and Herwartz 2014), 
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      17 17 18O O O C (5)

We recommend a C value of 0.5305 mainly because this value is the triple oxygen isotope 
exponent at high-temperature limit for all equilibrium processes (Cao and Liu 2011; Pack and 
Herwartz 2014). Detailed arguments can be found in Bao et al. (2016). 

SULFOXYANIONS–WATER OXYGEN ISOTOPE EXCHANGE

Sulfur has multiple sulfoxyanion species. Among them, sulfate (SO4
2−) is the final stable 

form during the oxidation of sulfur-bearing compounds while sulfite (SO3
2−) is arguably the most 

important intermediate with thiosulfate (S2O3
2−) being somewhat important during pyrite oxidation. 

The kinetic and equilibrium oxygen isotope exchange between the three sulfoxyanions and water 
are crucial to interpreting oxygen isotope compositions in sulfate. They will be briefly reviewed here.

Sulfate–water system

Sulfate is a non-labile oxyanion. Experimental results indicate its oxygen isotope 
composition remains unchanged for 109 years at most Earth surface conditions (Zak et al. 1980; 
Chiba and Sakai 1985; Rennie and Turchyn 2014). The preservation of large positive and negative 
non-mass-dependent 17O anomalies from ~30 Ma (Bao et al. 2010), 635 Ma (Bao et al. 2008, 
2009), and from the mid- and early Proterozoic samples (Crockford et al. 2018; Hodgskiss et al. 
2019) attests to sulfate oxygen’s endurance. When microbial sulfate reduction occurs, however, 
the sulfate in solution can exchange oxygen isotopes with water via intermediate sulfite due to 
reversibility of enzymatic reactions (see section Microbial Sulfate Reduction). 

Sulfate δ18O has been observed to be 14.8‰ to 28‰ higher than that of ambient water during 
MSR (Zeebe 2010; Brunner et al. 2012; Antler et al. 2017; Bertran et al. 2020). The variation 
may reflect different degrees of reversibility. At 0  °C to 150 °C, the equilibrium oxygen isotope 
fractionation between sulfate and water is predicted computationally to follow (Zeebe 2010)
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where T is the temperature in Kelvin. At 25 °C, 1000 ln SO H O
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be smaller than SM H O
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2 , and assumed to be 0.524 here. This value will be applied to construct 
endmember sulfates in Δ′17O–δ18O space. 

Sulfite–water system 

Here we use sulfite to represent all the dissolved S(IV) species, including dissolved sulfur 
dioxide (SO2(aq)), bisulfite (SHO3

−), sulfite (SO3
2−), and pyrosulfite (S2O5

2−) (Horner and Connick 
2003). Bisulfite has two isomers, HSO3

− where the hydrogen is bonding to sulfur and SO3H− 
where the hydrogen is bonding to oxygen. Oxygen isotope exchange between sulfite and water 
occurs via three proposed chemical reactions (Betts and Voss 1970; Horner and Connick 2003).
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where ‘*’ denotes oxygen from the SO3H− species prior to exchange. When bisulfite is the 
dominant species, the exchange rate is determined by (Horner and Connick 2003) 
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where at 25  °C k7a and k7bc (k7bc = k7b + k7c) are 1.4 × 108 M−1s−1 and 8.0 × 103 M−1s−1, respectively 
(Horner and Connick 2003). When sulfite is the dominant species, the exchange rate is (Horner 
and Connick 2003)
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The values of Q2 and Q4 are 10−6.34 and 4.9, respectively (Horner and Connick 2003). 
Considering internal consistency, we adopt the value 4.9 instead of the newly determined 
result 2.7 (Eldridge et al. 2018) for Q4 because k7a and k7bc were initially determined using Q4 

of 4.9. Using the values of k7a, k7bc, Q2, and Q4 given above and 0.75 for the activity coefficient 
of hydrogen ion [H + ] at pH 8.9 and [SO3

2−] at 0.3 M, we estimated the half-life of sulfite–
water oxygen exchange to be 75 s, which is consistent with the experimentally obtained 78 s 
at the given chemical condition (Betts and Voss 1970). At pH 9.8, the exchange half-life is 
estimated to be 79 min, being consistent with the 82 min determined by Betts and Voss (1970) 
but is inconsistent with the 24.3 min determined by Wankel et al. (2014). The cause for the 
discrepancy is unclear but may have to do with the pH buffer glycine used by Wankel et al. 
(2014) because glycine, a potentially general acid catalyst (Horner and Connick 2003), could 
have catalyzed the exchange reactions. At pH of 7, the half-life is estimated to be less than 
1s for dilute solutions (e.g. 0.1 mM). In addition, exchange rate is dependent on [SO3

2−], as 
shown in Equations (8) and (9). These analyses demonstrate that oxygen isotope exchange 
between sulfite and water is rapid, especially at low pH conditions. 

Although the equilibrium isotope fractionation between individual sulfite species and 
water varies only with temperature, the fractionation between total dissolved S(IV) and water, 
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where t is temperature in Celsius in the range of 2 °C to 95 °C and pH in the range of 4.5 
to 9.8. According to Equation (10), the 1000 ln 18
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3
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   at 23 °C should be 9.5‰ and 

9.3‰ at pH 7.2 and 8, respectively. This is different from an experimentally determined 
1000 ln 18 
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2
   value of 15.2‰ at 22 °C, a value displaying no pH dependence in the range 

of 6.3 to 9.7 (Müller et al. 2013b). The difference between the three experimental studies is 
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as large as 7.3‰. As of now, the value of 1000 ln 18 
SO H O
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3
2

2
  lies between 7.9‰ and 15.2‰ at 

22 °C and further calibration effort is warranted. This issue will be revisited later. 

Triple oxygen isotope exponent for equilibrium sulfite–water exchange, i.e., 
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construct endmember sulfates in Δ′17O–δ18O space.

Thiosulfate–water system 

Although thiosulfate (SSO3
2−) has a chemical structure similar to that of sulfate, 

experimental results show that thiosulfate readily exchange oxygen isotopes with water (Pryor 
and Tonellat 1967; Betts and Libich 1971). At pH > 5, oxygen exchange between thiosulfate 
and water proceeds mainly through thiosulfate–sulfite–water exchange pathway in which 
sulfite acts as a catalyst (Betts and Libich 1971). Two chemical reactions are responsible for 
the oxygen exchange (Betts and Libich 1971)
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where ‘*’ denotes the sulfur and oxygen prior to the change in thiosulfate and water, 
respectively. Reaction (11b) refers to an overall oxygen exchange reaction represented by 
chemical reactions (7a–7c). When pH is in the range of 5 to 10, the oxygen exchange rate 
between thiosulfate and sulfite is far slower than the one between sulfite and water, hence the 
overall exchange rate between thiosulfate and water can be approximated by the slower step, 
i.e., the exchange rate between thiosulfate and sulfite (Betts and Libich 1971)
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and at 25 °C k11a = 2.07 × 10−4 M−1s−1. When pH goes up to the range of 10 to 11, the two 
rates are comparable, therefore, the overall oxygen exchange rate is determined by both 
thiosulfate–sulfite and sulfite–water exchange rates. At even higher pH, e.g., above 11, the rate 
of thiosulfate–sulfite exchange is faster than that of sulfite–water exchange, thus, the overall 
exchange rate can be estimated by Equation (9). In acidic condition (pH < 4), thiosulfate is 
unstable (Xu and Schoonen 1995). 

No experimental or theoretical thiosulfate–water equilibrium α value is available in 
literature at this time. According to Betts and Libich’s (1971) experiments, thiosulfate may 
be enriched in heavy oxygen isotopes relative to sulfite, and the 18O enrichment is about 1‰ 
at pH of 10.8 and t of 50.3  °C. At lower temperature, the enrichment is expected to be larger. 
Similarly, no θ calibration has been conducted for thiosulfate–water equilibrium. For now, we 
will adopt the value 0.524 to construct endmember sulfates in Δ′17O–δ18O space. 

MICROBIAL SULFATE REDUCTION (MSR)

Early on, researchers found that sulfate exchanges its oxygen isotopes with water through 
intermediates during the reversible microbial sulfate reduction (MSR) processes (Mizutani 
and Rafter 1973; Fritz et al. 1989) (Fig. 2). Several models have been proposed to calculate 
sulfate δ18OSO4

 during MSR (Brunner et al. 2005, 2012; Turchyn et al. 2010; Antler et al. 
2013, 2017; Wankel et al. 2014; Bertran et al. 2020). Generally, the δ18OSO4

 is a function of the 
initial δ18OSO4

, δ18OSO3
, δ18OAMP (AMP: adenosine monophosphate), δ18OH2O, the rate and the 
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reversibility of the involved individual steps between sulfate and sulfite (Brunner et al. 2012; 
Bertran et al. 2020) (Fig. 2). In the meantime, the δ18OSO3 and δ18OAMP themselves vary with 
oxygen exchange rates between sulfite, AMP, and water, as well as their respective oxidation 
rates to APS (Adenosine−5′-phosphosulfate). All these parameters are case specific and have 
so far been under-constrained. Therefore, we are not attempting to explore all the possibilities 
here. Instead, only the endmember case when the MSR processes approaching thermodynamic 
equilibrium caused by the high level of MSR reversibility (Zeebe 2010) is considered. For this 
case, sulfate oxygen isotope composition is calculated by,

17 18 17 18 17 18

4
2

4
2

, , ,R R
SO SO H O

EQ
H O

2 2
   (13)

and 17,18αSO4-H2O
EQ estimated by Equation (6), and the θ value is at 0.524. 

SULFIDE OXIDATION MECHANISMS

The oxidation of mineral sulfides to sulfate on the Earth surface occurs mostly in aqueous 
conditions. The process involves multiple reaction steps and multiple sulfur intermediates. 
Oxygen from dissolved O2 and water can both be incorporated into sulfate. Atmospheric O2 
(23.88‰ in δ18O and −0.553‰ in Δ′17O according to Barkan and Luz 2011) and water have 
very different δ18O and Δ′17O. In addition to this source difference, the relative proportion of 
these two sources depends on the oxidation pathway, which differs in equilibrium and kinetic 
isotope effects. All these factors should be considered in interpreting sulfate δ18O value as 
summarized in van Stempvoort and Krouse (1993) and must be considered in interpreting 
sulfate’s small Δ′17O as well. There are uncalibrated parameters for δ18O and even more 
uncalibrated ones for triple oxygen isotope behaviors during sulfide oxidation processes. In this 
section, we begin to unravel factors that matter to sulfate triple oxygen isotope compositions 
by examining endmember cases.

Thiosulfate oxidation on pyrite surface

Pyrite oxidation has been extensively studied due to its detrimental environmental impact 
and connection to the mineral resource. Electrochemical oxidation is the widely accepted 
mechanism (Luther 1987; Moses et al. 1987; Moses and Herman 1991; Rimstidt and Vaughan 
2003). Previous studies show that factors, such as Eh, pH, oxidant type and concentration, grain 
size, can affect the oxidation process. Readers should refer to (Rosso and Vaughan 2006; Chandra 
and Gerson 2010) for comprehensive reviews on these topics. Here we focus on the oxygen 
isotope compositions in sulfate formed via pyrite oxidation in responding to these factors. 

Pyrite is a semiconductor, and its oxidation and reduction happen at different sites on 
the pyrite surface. According to the proposed electrochemical model (Rimstidt and Vaughan 
2003), three distinct reaction steps are involved. First, O2 or Fe3 +  acquires electrons from an 
Fe2 +  site, i.e., the cathodic site, and Fe2 +  is oxidized to Fe3 + . Second, electrons are transferred 
from the sulfur site, i.e., the anodic site, to the Fe3 +  at the cathodic site. The third step is 

Figure 2. Sketch of a model for microbial sulfate reduction. The grey dashed circle marks the cell mem-
brane; oxygen exchange between sulfate and water is achieved by sulfite and AMP exchange with ambient 
water and oxidized back to sulfate internally; APS and AMP are adenosine-5′-phosphosulfate and adenos-
ine monophosphate, respectively. 
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water molecule reacting with sulfur to form sulfoxyanion at the anodic site. These reactions 
are repeated until thiosulfate is formed. At low pH conditions, thiosulfate is further oxidized 
to sulfate on the surface (Rimstidt and Vaughan 2003). All the oxidation steps on the sulfur 
(anodic) sites involve only water, no O2 bonds directly with S. We can, therefore, conclude that 
oxygens in sulfate formed by thiosulfate oxidation on pyrite surface at low pH conditions all 
come from water. Sulfate of this origin serves as an endmember case. Further elaboration of 
this endmember is given below.

(1) Pyrite oxidation via Fe3 +  happens via thiosulfate at surface (not in solution) at 
low pH. Observed apparent sulfate–water oxygen isotope fractionation, Δδ18OSO4–H2O, during 
pyrite oxidation by Fe3 +  is in the range of 2.3‰ to 2.9‰ (Balci et al. 2007; Mazumdar et 
al. 2008; Heidel and Tichomirowa 2011). However, observed apparent Δδ18OSO4–H2O during 
sulfite oxidation by Fe3 +  in solution is ~ 5.9‰ (Müller et al. 2013a) or 8.2‰ (Balci et al. 2012 
and section Sulfite oxidation by Fe3 +  in solution). A likely cause of this discrepancy is that 
thiosulfate on pyrite surface does not enter solution but is oxidized by Fe3 +  on pyrite surface 
straight to sulfate at acidic conditions. This conclusion is also supported by the experiment 
that showed sulfate was the first dominant sulfur species detected in solution (Borilova et al. 
2018). Indeed, thiosulfate is unstable in solution and will be converted to sulfite at this low pH 
conditions (see the next section for details).

One may argue that this discrepancy is caused by sulfite being out of oxygen isotope 
equilibrium with water when sulfite is oxidized to sulfate by Fe3 +  in solution. Müller et 
al. (2013a) do conclude that sulfite–water was not at oxygen isotope equilibrium for their 
sulfite oxidation by Fe3 +  experiments. However, if this were the case, the rate of sulfite to 
sulfate oxidation by Fe3 +  would have to be faster than the rate of sulfite–water oxygen isotope 
exchange, which is certainly not the case. The oxidation rate is ~ 3.2 × 10−2 M−1s−1 for their 
experiments at pH 1.0 (Müller et al. 2013a). The sulfite–water exchange rate is, however, 
~1.4 × 108 M−1s−1, i.e., k7a for reaction (7a), at pH 1, which is ten orders of magnitude faster 
than the oxidation rate. Therefore, the observed small apparent disequilibrium in Muller et al.’s 
experiment might be caused by other factors. We suspect that the high concentrations of sulfite 
and Fe3 +  used in the experiment may have slowed down sulfite–water isotope exchange due to 
the formation of FeSO3

 +  and Fe2(OH)SO3
3 +  complexes in solution (Lente and Fábián 2002). 

At low sulfite and Fe3 +  concentrations as in most natural solutions, however, such complexes 
are minimal. At low pH conditions, sulfite is in oxygen isotope equilibrium with water at all 
time during Fe3 + oxidation in the solution, especially at low sulfite and Fe3 +  concentrations. 

(2) Kinetic isotope effects are responsible for the apparently smaller Δδ18OSO4–H2O  
during pyrite oxidation by Fe3 + . If indeed sulfate–water oxygen isotope fractionation is 
smaller when going through thiosulfate oxidation on pyrite surface than going through sulfite 
oxidation in solution, the underlying mechanism must be explored. At this time, no study has 
been done on the subject. We can speculate that thiosulfate oxidation on the surface would 
have to break the S–S bond in addition to the formation of S–O bond, and this additional bond-
breaking process adds a corresponding kinetic oxygen isotope effect to SO3

2− in SSO3
2− on the 

surface, which reduces the level of 18O enrichment in final product sulfate. 

(3) Thiosulfate on pyrite surface is likely at oxygen isotope equilibrium with water 
before being oxidized to sulfate. At low pH, the rate of oxygen isotope exchange between 
thiosulfate and water is high (Pryor and Tonellat 1967; Betts and Libich 1971), but the rate of 
thiosulfate oxidation to sulfate on pyrite surface is absent, which renders a direct rate comparison 
unattainable for now. However, two indirect lines of evidence suggest that the exchange rate 
is much higher. First, different research groups have obtained similar apparent Δδ18OSO4–H2O 
value for this oxidation process, ranging from 2.3‰ to 2.9‰, at variable overall oxidation rates 
(Balci et al. 2007; Mazumdar et al. 2008; Heidel and Tichomirowa 2011). If isotope exchange 
between sulfoxyanions and water were relatively slow, the sulfoxyanions-water system would be 
out of equilibrium at different degrees, and the Δδ18OSO4–H2O would be highly variable. Second, 
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the δ18O of product sulfate via thiosulfate oxidation on the pyrite surface can be calculated by
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whereas the δ18O of product sulfate via sulfite oxidation by Fe3 +  in the solution is given by
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If 18KIEH2OSO4
 is assumed to be the same for these two alternative processes, the value 

of 18KIESSO3SO4
  ×  18
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EQ

3
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 

 is roughly estimated to be ~0.994 times of that of 
18KIESO3/Fe3 + SO4  ×  18

SO H O
EQ

3
2

2
   in order to fit the observations. Since 18KIESSO3SO4 

is smaller 
than 18KIESO3/Fe3 + SO4  (see analysis in this subsection (2) above) and 18
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  and 
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2
   can be treated as the same in value (see section Thiosulfate–water system), the 

simplest explanation is that the two αEQs in Equations (14a, 14b) are both fully expressed, 
i.e., rapid exchange equilibrium with water, and 18KIESSO3SO4

 is 0.994 times of the 
18KIESO3/Fe3 + SO4 in this case. 

Therefore, the δ18O for sulfate derived from thiosulfate oxidation by Fe3 + on pyrite surface 
is determined by
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The related kinetic and equilibrium triple isotope effects will be constrained by Monte Carlo 
technique later. 

Sulfite oxidation by O2 in solution

The electrochemical model of pyrite oxidation (Rimstidt and Vaughan 2003) precludes 
any O2 being incorporated into sulfate if all the oxidation steps occur on the pyrite surface. 
However, experimental results (Balci et al. 2007; Heidel et al. 2009; Tichomirowa and 
Junghans 2009; Heidel and Tichomirowa 2010; Kohl and Bao 2011) and field observations 
(Bao et al. 2008; Crockford et al. 2018; Killingsworth et al. 2018; Hodgskiss et al. 2019) 
demonstrate to variable degrees that O2 isotope signal is incorporated in sulfate during pyrite 
oxidation in aerated solution, which means that thiosulfate can be released from pyrite surface 
to solution, even at low pH conditions. Thus, sulfite oxidation by O2 at low pH can serve as 
another endmember case of sulfate formation. We elaborate on our argument below.

(1) Sulfite is an important intermediate for sulfur oxidation to sulfate. Thiosulfate 
decomposes to S0 and sulfite at low pH conditions or tetrathionate (S4O6

2−) in the presence of 
pyrite (Xu and Schoonen 1995). At pH 6, tetrathionate is observed to be the most abundant 
intermediate (Goldhaber 1983). When oxidized to sulfate, tetrathionate is converted to sulfite 
first (Druschel et al. 2003). Sulfur chain shortening is suggested to be one possible mechanism 
(Druschel et al. 2003), although how exactly the conversion takes place is not clear (Moses 
et al. 1987). Regardless of the pathway thiosulfate decomposes, sulfite is the inevitable 
intermediate to the final oxidation product sulfate.

(2) Fe3 +  loses out to O2 as a competitive oxidant at low pH. While sulfite oxidation has 
a higher rate via Fe3 +  than via O2 at low pH conditions, e.g., about two orders of magnitude 
faster at pH 1 (Müller et al. 2013a), the Fe3 +  oxidation pathway cannot be sustained if its 
reduction product Fe2 +  is not oxidized to Fe3 +  by O2 quickly. At low pH conditions, the rate of 
Fe2 +  oxidation by O2 is sufficiently slow, e.g., 10−7 min−1 at pH 2 and pO2 of 0.2 Atm (Singer 
and Stumm 1970), so that sulfite oxidation by O2 should dominate the oxidation process, 
especially for experiments with no Fe3 +  added initially. 
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(3) Sulfite maintains its oxygen isotope equilibrium with water during its oxidation 
by O2 at low pH. This is logical because, as shown in the above subsection (1), sulfite–water 
oxygen isotope exchange rate is several orders of magnitude higher than the oxidation rate by 
Fe3 + , and the oxidation rate by Fe3 + is higher than by O2.

(4) The final product sulfate has 1/4 of its oxygen coming from O2 and 3/4 from 
water. It has been proposed that sulfite oxidation by O2 is a radical chain reaction as described 
below (Zhang and Millero 1991; Kuo et al. 2006)

Initiation M Mn n      SO SO3
2 1

3
•

Propagation SO SO3 2 3
• •  O OO

SO SO SO SO3 3
2

3
2

3OO OO• •     

Oxidation SO SO SO3OO O2
3
2

3
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2

2

SO SO S O23 3 6
2
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in which oxygen sourced from O2 is in bold. Because sulfite–water oxygen isotope exchange is 
rapid at low pH conditions, sulfite always carries equilibrated water oxygen isotope composition 
before being oxidized to sulfate. In the oxidation step, the product sulfate obtains its 1/4 oxygen 
from O2. This mechanism is supported by sulfite (Holt et al. 1981; Müller et al. 2013a) and pyrite 
oxidation experiments (Tichomirowa and Junghans 2009; Kohl and Bao 2011). O2 does not 
exchange oxygen isotopes with sulfite or water in the processes (Krouse et al. 1991). 

Therefore, for this endmember case, i.e., sulfite oxidation by O2 in low pH solutions, the 
sulfate oxygen isotope composition is determined by,
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The related kinetic and equilibrium triple isotope effects will be constrained by Monte Carlo 
technique later. 

Sulfite oxidation by Fe3 +  in solution

As discussed in the above section, thiosulfate can be released into solution and converted 
to sulfite before being oxidized to sulfate at low pH conditions. If this sulfite is oxidized by 
Fe3 +  rather than O2 in solution, the product sulfate will have all of its oxygens sourced from 
water. Here, we place sulfite oxidation by Fe3 +  in solution as another endmember case. 

In nature, this endmember case may be rare. One likely example is pure ZnS oxidation 
by Fe3 + . Pure ZnS is acid-soluble, and its oxidation process was proposed to proceed entirely 
in solution (Moses et al. 1987). The Δδ18OSO4–H2O obtained in pure ZnS oxidation via Fe3 +  
experiments is 8.2‰ (Balci et al. 2012), which is close to the 5.9‰ obtained from sulfite 
oxidation by Fe3 +  in solution (Müller et al. 2013a). The 2.3‰ difference could arise from 
the different sulfite and Fe3 +  concentrations and Fe3 + /sulfite ratios in the two experiments. 
The concentration difference may affect the oxidation kinetics (Lente and Fábián 2002) and 
consequently, the oxygen isotope fractionations. 
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As discussed in the section above, sulfite should have maintained its oxygen isotope 
equilibrium with water at low pH conditions. Thus, the oxygen isotope composition of sulfate 
derived from sulfite oxidation by Fe3 +  in solution can be calculated by,
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The related kinetic and equilibrium triple isotope effects will be constrained by Monte Carlo 
technique later. 

The role of microbes on oxygen isotope composition of sulfate derived from sulfur 
oxidation 

Microbial enzymatic processes affect sulfate oxygen isotopes during sulfur oxidation. 
Two metabolic mechanisms can be identified (Fig. 3). One catalyzes the Fe2 +  oxidation to 
Fe3 +  with O2 as the ultimate electron acceptor at low pH conditions and the product Fe3 +  in 
turn oxidizes sulfur abiotically (Fig. 3a) (Singer and Stumm 1970; Balci et al. 2007; Brunner 
et al. 2008). The other catalyzes direct sulfur oxidation in which both Fe3 +  and O2 can act as 
oxidants (Fig. 3b) (McCready and Krouse 1982; Sand et al. 1995; Balci et al. 2012). Note that 
these two mechanisms often work jointly (Schippers et al. 1996; Brunner et al. 2008; Vera et al. 
2013), and no clear boundary exists for this division. In fact, even for enzyme-mediated direct 
sulfur oxidation, there are different enzymatic pathways involved (Fig. 4), including sulfite 
oxidation through sulfite dehydrogenase (Feng et al. 2007) or APS (Kelly 2003), tetrathionate 
hydrolysis (Ghosh and Dam 2009), and Sox reactions (Friedrich et al. 2001). Therefore, 
multiple oxidation pathways compete when microbes are participating in sulfur oxidation 
processes. Oxygen isotope exchange between intermediates and water, substrates used by 
enzymes, and the reversibility of enzymatic reactions could all influence the oxygen isotope 
composition of the final sulfate. Experiments targeted at individual variables are scarce at this 
time. As a result, these multiple, interacting factors make a quantitative prediction difficult 
on the oxygen isotopes of sulfate derived from microbial oxidation. However, some general 
conclusions on the role of microbes in sulfate oxygen isotopes during oxidation can be drawn.

Balci et al. (2007) found that their microbial anaerobic (Fe3 +  as the oxidant) and aerobic (O2 
as the oxidant) long-term pyrite oxidation experiments resulted in similar Δδ18OSO4–H2O. Their 
interpretation is that Fe3 +  is the direct oxidant in their experiments, even when O2 is the ultimate 
electron acceptor in the aerobic experiments. Their later ZnS and S oxidation experiments (Balci 
et al. 2012) support the interpretation. If correct, microbes appear to catalyze Fe2 +  oxidation by 
O2, which diminishes the fraction of O2 signature being incorporated in product sulfate (Fig. 3a). 

When sulfur is oxidized directly via microbial enzymatic reactions and sulfite–water 
oxygen isotope equilibrium is maintained, sulfite dehydrogenase pathway may have a similar 
oxygen isotope effect as does the sulfite oxidation by Fe3 +  (Fig. 4), in which the Δδ18OSO4–H2O 
is ~ 8‰. Sulfite oxidation through APS (Fig. 4) is expected to be similar to microbial sulfate 
reduction (Fig. 2), which can result in a Δδ18OSO4–H2O value at 14.8‰~28‰ depending 
on reaction reversibility. However, this pathway may not be highly expressed during sulfur 
oxidation (Klatt and Polerecky 2015). If tetrathionate can reach oxygen isotope equilibrium 
with water, tetrathionate hydrolysis (Fig. 4) will have a similar isotope effect, as does thiosulfate 
oxidation on pyrite surface i.e., about 2.6‰. However, existing experimental results indicate 
that the rate of oxygen isotope exchange between tetrathionate and water is slow compared 
with the rate of tetrathionate hydrolysis (Balci et al. 2017). Sox pathway has variable substrates, 
e.g., SO3

2−, S2−, and S2O3
2− (Fig. 4). When sulfite is the substrate, the corresponding isotope 

effect is expected to be similar to that for thiosulfate oxidation on the pyrite surface, i.e., about 
2.6‰. When S2− is the substrate, four oxygen addition steps are required to produce sulfate. 



474 Cao & Bao

If these steps are irreversible and oxygen isotope exchange rates between the intermediates 
and water are relatively slow, a negative Δδ18OSO4–H2O value is expected due to kinetic isotope 
effects. Negative Δδ18OSO4–H2O observed in elemental sulfur oxidation by A. thiooxidans (Smith 
et al. 2012; Balci et al. 2017) may indicate the operation of a Sox pathway. When SSO3

2− is the 
substrate, the Δδ18OSO4–H2O is expected to have a value in between the ones where SO3

2− and 
S2− are substrates, respectively, since the oxidation of SSO3

2− can be regarded as the oxidation 
of SO3

2− and S2− continuously via Sox pathway (Fig. 4). However, we should note that these 
rough estimations are only for specific oxidation pathway instead of for specific microbial 
community because one community may operate multiple oxidation pathways at the same time 
(Bobadilla Fazzini et al. 2013). Because most of these microbial mediated sulfur oxidation 
steps are physically separated from O2 reduction steps by specific enzymes (Kelly 1982; Balci 
et al. 2017), the chance for O2 to be directly bonded to S and eventually to product sulfate is low.

Figure 3 Two endmember metabolic mechanisms (a and b), yet often working jointly, affect oxygen iso-
tope composition of sulfate derived from sulfur oxidation. The grey dashed circles mark the cell mem-
brane. Black arrows indicate the reaction path from reactants to products. 

Figure 4. Enzyme-catalyzed sulfur oxidation pathways. The substrates can be SO3
2− (Kelly 2003; Feng 

et al. 2007), S4O6
2− (Ghosh and Dam 2009), S2− (Friedrich et al. 2001), or S2O3

2− (Friedrich et al. 2001), 
respectively; these substrates may or may not readily exchange oxygen with water during oxidation; the 
added oxygens to these substrates are exclusively from water. Chemical compounds marked with bold 
black are sulfur and oxygen sources in product sulfate.
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In summary, the overall impact of microbial involvement in sulfate production via 
sulfur oxidation is a reduction of the proportion of O2 isotope signal that could otherwise be 
incorporated in sulfate if oxidation occurs abiotically. 

Comments on laboratory experiments

While the results on oxygen isotope effects from the published sulfur oxidation 
experiments generally converge, discrepancies and uncertainties exist. Knowing these caveats 
help to scrutinize data for our prediction for sulfate endmembers in Δ′17O–δ18O space later.

Most of abiotic, aerated pyrite oxidation experiments show that less than 15% of the 
oxygen in product sulfate is sourced from O2 (Taylor et al. 1984a; Balci et al. 2007; Heidel et 
al. 2009; Tichomirowa and Junghans 2009; Heidel and Tichomirowa 2010), while Kohl and 
Bao (2011)’s experiments show that more than 20% oxygen in sulfate is derived from O2 even 
with Fe3 +  added. We infer that strong hydrodynamics brought about by constant shaking in 
Kohl and Bao’s experiments may have enhanced the release of thiosulfate into solutions, which 
increases O2 incorporation in product sulfate. Also, Tichomirowa and Junghans (2009)’s and 
Heidel et al. (2009)’s experiments indicate that smaller pyrite grain size (e.g., smaller than 
63 μm) increases the release of thiosulfate and therefore also the O2 fraction in sulfate. 

Pyrite oxidation experiments show that the duration of aerobic experiments 
(Tichomirowa and Junghans 2009) and Fe3 + /surface ratio of anaerobic experiments (Heidel 
and Tichomirowa 2011) affect sulfate oxygen isotope composition. Both factors point to the 
importance of thoroughly washing clean pyrite grains before the experiment. Sulfate initially 
presented on sulfide mineral surface is often difficult to eliminate, and a long experimental 
duration may be required to overwhelm this “background” sulfate. A higher fraction of O2 
signal in sulfate collected at the beginning of an experiment (Balci et al. 2007; Heidel et al. 
2009; Tichomirowa and Junghans 2009; Heidel and Tichomirowa 2010; Ziegler et al. 2010) 
may be explained by this high “background”. 

Most laboratory experiments on pyrite oxidation were conducted at pH ~ 2 (Taylor et al. 
1984a; Balci et al. 2007; Mazumdar et al. 2008; Tichomirowa and Junghans 2009; Heidel and 
Tichomirowa 2011). In Kohl and Bao (2011) some of the pyrite oxidation experiments were 
carried out in solutions buffered at higher pH conditions in which negative Δδ18OSO4–H2O were 
observed, indicating that sulfite, the assumed intermediate, probably did not reach oxygen isotope 
equilibrium with the water. We calculated, based on Equation (9), that sulfite–water oxygen 
isotope exchange rate is at ~9 × 10−5, 9 × 10−7, and 9 × 10−9 s−1 at pH 9, 10, and 11, respectively. 
These rates are slower than the oxidation rates at pH 9 and 10 in the initial 10−20 weeks, and also 
slower than that at pH 11 at all times, according to Kohl and Bao (2011). Therefore, sulfate–water 
oxygen isotope fractionation at acidic conditions does not apply to cases at alkaline conditions. 
In addition, the pH buffered solution may affect the pyrite oxidation process. For example, the 
fraction of O2 signal in sulfate decreased at pH 10 and 11 when compared to the acidic conditions 
even without the addition of Fe3 +  ion. A possible explanation is that carbonate ion in the buffered 
solution accelerates the oxidation of Fe2 +  to Fe3 +  when pyrite is oxidized in aerated solution 
(Caldeira et al. 2010) which enhances iron’s reactivity. Likewise, the fraction of the O2 signal 
in sulfate is higher at pH 7 even with Fe3 +  addition than at other pH conditions. A possible 
explanation is that phosphate in the buffered solution was precipitated with Fe2 + and Fe3 + as 
solids (Nriagu 1972; Singer 1972), resulting in a reduced iron’s reactivity in solution.

The concentration of sulfite, the most important intermediate during sulfur oxidation, 
as well as sulfite/oxidant ratio, can affect the rate of oxidation (Lente and Fábián 2002), 
and therefore the Δδ18OSO4–H2O. This can explain why different oxygen isotope effects were 
observed in the similar sulfite oxidation experiments by O2 (Oba and Poulson 2009; Müller et 
al. 2013a) or among experiments of sulfite, ZnS, and S oxidation by Fe3 +  (see section Sulfite 
oxidation by Fe3 + in solution). 
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It was observed that ~40% of the oxygen in sulfate derived from copper-catalyzed 
aerated oxidation of sulfite is sourced from O2 (Holt et al. 1981). We think this explains the 
43% O2-sourced oxygen in sulfate derived from the chalcopyrite abiotic oxidation experiments 
conducted by Thurston et al. (2010). It also explains the 8% O2-sourced oxygen in sulfate 
derived from pyrite and pure ZnS microbial oxidation experiments conducted by Balci et 
al. (2007, 2012). In Balci et al.’s experiments, CuCl2 was added in their microbial culture 
medium. Further examination of the role of copper ion is warranted.

Constraining intrinsic equilibrium and kinetic oxygen isotope effects during sulfide 
oxidation

We need the EIEs and KIEs to predict the Δ′17O–δ18O space for endmember sulfates 
quantitatively. These intrinsic isotope effects can be obtained by examining the published 
experimental data. The knowledge synthesized in the previous sections allows us to avoid 
potentially messy and misleading data while focusing on the Δδ18OSO4–H2O values obtained from 
abiotic experiments that were conducted in acidic conditions with a sufficiently long duration.

Let us begin by considering the KIE and EIE for sulfite oxidation by O2 in solution. 
Here we use Monte Carlo technique, an approach we have applied to analyze methane 
KIEs (Cao et al. 2019), to constrain the values of KIESO3/O2SO4
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, and KIEO2SO4
 in 

Equation (16). Results from laboratory-controlled aerobic pyrite oxidation experiments at 
pH 2 (Tichomirowa and Junghans 2009; Kohl and Bao 2011), in which about 25% oxygen 
in sulfate was found to come from O2, were used as input constraints. We used 24.2‰ as 
the δ18O for dissolved O2 (Kroopnick and Craig 1972; Reuer et al. 2007; Li et al. 2019). We 
obtained values of KIESO3/O2SO4
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, and KIEO2SO4
 in Equation (16) at 0.9916 ± 0.0003, 

1.0129 ± 0.0001, and 0.9850 ± 0.0010, respectively (Table 1). The determined KIE for sulfite is 
close to the experimentally determined 0.9903 by Muller et al (2013a). The 

SO H O
EQ

3
2

2
   of 1.0129 

is within the range of 7.9‰ and 15.2‰ fractionation determined experimentally (Brunner et 
al. 2006; Müller et al. 2013b; Wankel et al. 2014). The determined KIEO2SO4

 of 0.9850 is, 
however, rather different from 0.997 (Oba and Poulson 2009) and 1.007 (Müller et al. 2013a) 
determined experimentally through sulfite oxidation by O2. It should be noted that the Monte 
Carlo method determines possible EIE and KIE solutions and their probability. The isotope 
effects presented above are the most likely solutions under given constraints. The results can 
be changed when some of the parameters are constrained to be different in the future.

Experimental results from the abiotic ZnS oxidation by Fe3 +  (Balci et al. 2012) are chosen to 
represent an endmember case of sulfite oxidation by Fe3 +  in solution. Instead of linear regression 
used by Balci et al. (2012), the oxygen isotope composition in water and sulfate, as depicted by 
Equation (17), is used here directly to calculate the apparent αSO4–H2O, which is determined to 
be 1.0079 ± 0.0009. If 

SO H O
EQ

3
2

2
   is assumed to be 1.0129, KIESO3/Fe3+SO4 and KIEH2OSO4

  are 
determined to be 0.9984 ± 0.0008 and 0.9976 ± 0.0014, respectively by Monte Carlo method 
(Table 1). Again, these values are the most probable solutions for the observed sulfate–water 
oxygen isotope fractionation, and further constraints can revise and improve these values. 

Abiotic anaerobic oxidation of pyrite conducted by Balci et al. (2007), Mazuzumdar et al. 
(2008), and Heidel and Tichomirowa (2011) are chosen here to represent the endmember case 
of thiosulfate oxidation by Fe3 +  on pyrite surface. Sulfate–water oxygen isotope fractionation is 
calculated to be 1.0027 ± 0.0007 using Equation (15). If 

SSO H O
EQ

3
2

2
  and KIEH2OSO4

 are set to be 
1.0129 and 0.9976, respectively, KIESSO3SO4

 is estimated to be 0.9916 ± 0.0005 (Table 1). 

The θ values for the many important KIEs during sulfide oxidation are underconstrained 
for now. If reduced masses, i.e., imaginary frequency term in transition state (Young et al. 
2002; Bao et al. 2015), are used to calculate the values of θ for these KIEs, the range is 0.5052–
0.5168 (Table 1). Lower θKIE values are associated with thiosulfate or sulfite, while higher 
values are obtained for H2O and O2. However, the exact θKIE values cannot be determined at 
this time. An arbitrary value of 0.5110, i.e., the mean of the maximum (0.5168) and minimum 
(0.5052) θKIE in Table 1, will be used for discussion hereafter. 
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Table 1. Constrained intrinsic or diagnostic KIE, EIE, and θ values for sulfide oxidation processes. 
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EQ
2  (see section Sulfoxyanions–water 

oxygen isotope exchange); The θ value for all KIEs is set to 0.511 which is equal to the mean value 
of maximum and minimum θRM. 

Values of EIE/KIE θRM valuese θ values

18
SO H O
EQ

4
2

2
 

1.023 -- 0.524g

18
SO H O
EQ

3
2

2
 

a 1.0129 ± 0.0001 -- 0.524

18
SSO H O
EQ

3
2

2
 

1.0129 ± 0.0001 -- 0.524

KIEO2SO4

b 0.9850 ± 0.0010 0.5109 0.511

KIESO3/O2SO4

c 0.9916 ± 0.0003 0.5064 0.511

KIEH2OSO4

d 0.9976 ± 0.0014 0.5168/0.5161f 0.511

KIESO3/Fe3 + SO4

d 0.9984 ± 0.0008 0.5067 0.511

KIESSO3SO4 0.9916 ± 0.0005 0.5052 0.511

a: 18
SO H O
EQ

3
2

2
 

was determined to be about 1.008 (Brunner et al. 2006), 1.009 (Wankel et al. 2014), and 1.015 (Müller et al. 2013b), respectively; 

b: KIEO2SO4
 was determined to be ~ 0.997 (Oba and Poulson 2009) and 1.007~1.023 (Müller et al. 2013a), respectively; c: KIESO3/O2SO4

 was 
determined to be ~ 0.990~0.995 (Müller et al. 2013a); d: 3/4  ×  KIESO3/Fe

3 + 
SO4

 + 1/4 × KIEH2OSO4
 was determined to be ~ 0.994 (Müller et al. 2013a); 

e: θRM = ln(17μ/16μ)/ln(18μ/16μ), where μ is the reduced mass of associated reactants, e.g. O2 and SO3
2−; f: 0.5168 and 0.5161 are for sulfite and 

thiosulfate oxidation processes, respectively; g: the value of 0.524 was taken from the θ values for sulfate minerals-water determined by Schauble 
and Young (2021, this volume).

APPLICATIONS

As shown in Equations (13) and (15–17), given the triple oxygen isotope compositions of 
water and O2 and the constrained KIEs, EIEs, and θs, we can predict the values of δ18O and 
small Δ′17O for endmember sulfate identified above. The predicted results can be compared 
with field observations. Because the triple oxygen isotope compositions of water and O2 
of the geological past are not well constrained, we will only explore the small Δ′17OSO4

 in 
modern sulfate. Specifically, modern sulfate from Ace lake in Antarctica and Mississippi and 
Marsyangdi river basins will be analyzed. 

Predicted sulfate δ18O and small Δ′17O

Let us first set the triple oxygen isotope compositions of water and dissolved O2 that are 
required to make the prediction. The meteoric water is assumed to be on the Global Meteoric 
Water Line (GMWL) (Luz and Barkan 2010),

 ’ ’. .17 180 528 0 000033O O   (18)

and we will use the range of −20‰ to 0‰ for δ18OH2O with a corresponding δ17OH2O calculated 
using Equation (18). For dissolved O2, we use fixed δ18O and Δ′17O at 24.2‰ and −0.554‰, 
respectively (Kroopnick and Craig 1972; Reuer et al. 2007; Barkan and Luz 2011; Li et al. 2019). 

Using the constrained endmember triple oxygen isotope parameters in Table 1 and Equations 
(13, 15−17), we have constructed sulfate Δ′17O–δ18O space for four different endmember cases 
given the range of δ18OH2O (Fig. 5). The results show that sulfate Δ′17O is apparently negatively 
correlated with its δ18O. Sulfate derived from surface oxidation has the most positive Δ′17O 
values. Its Δ′17O can be even more positive than that of its ambient water. As graphically 
illustrated in Figure 6a, the combination of EIE and KIEs during sulfide oxidation can produce 
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a diagnostic θSO4–H2O value higher than 0.5305. Comparing with Figure 6c, Figure 6a shows 
that a smaller KIESSO3SO4

 (i.e., ln (KIESSO3SO4
) being more negative than ln (KIESO3/Fe3 + SO4

), 
see Table 1) associated with thiosulfate oxidation to sulfate on pyrite surface is the key to 
achieve a diagnostic θSO4–H2O value larger than 0.5305. Interestingly, the Δ′17O of sulfate derived 
from solution oxidation by dissolved O2 is only slightly more negative than that of the water, 
even though 25% oxygen of this sulfate is derived from O2, which carries a Δ′17O of −0.554‰ 
to begin with. Figure 6b shows that the negative Δ′17O signal in O2 is largely erased by its 
KIE when O2 is incorporated into the sulfate. The Δ′17O value of sulfate derived from solution 
oxidation by Fe3 +  (Fig. 6c) is even more negative than that derived from the O2 oxidation 
pathway (Fig. 6b). The most negative Δ′17O value is possessed by the equilibrated sulfate (Figs. 
5 and 6d), attributed largely by its more positive δ18O value riding on a θEQ value smaller than 
the reference 0.5305. All these results highlight the importance of knowing the intrinsic isotope 
effects during sulfate formation when a small sulfate Δ′17O is of interest, and isotopologue 
specific kinetic analysis is critical to correctly interpreting small Δ′17O. 

The distinct curves in Figure 5 demonstrate that sulfate δ18O and Δ′17O can be used to 
differentiate sulfate of different oxidation origins. The distribution of curves also reveals that 
sulfates derived from the two solution oxidation pathways, by O2 and by Fe3 + , are difficult to 
tell apart. Since the Fe3 +  path is only dominant in very acidic conditions such as acid mine 
drainages because Fe3 +  precipitates at higher pH (Stefánsson 2007), its geological significance 
is, therefore, limited. However, we should note that the results presented in Figure 5 are obtained 
according to our best estimations for the intrinsic or diagnostic EIEs and KIEs presented in 
Table 1. When the values of these EIEs and KIEs are further constrained to be different sulfate 
δ18O and Δ′17O should be changed accordingly.

Figure 5. Triple oxygen isotope compositions of sulfate derived from different mechanisms in a given water 
body. The value of δ18OH2O is set to range from −20‰ to 0‰ with the corresponding δ17OH2O being estimated 
by Equation (18); “EQ. sulfate” refers to sulfate at oxygen isotope equilibrium with water; “sulfate derived 
from surface oxidation” refers to the endmember from thiosulfate oxidation on pyrite surface; “sulfate derived 
from solution oxidation by O2” refers to the endmember from sulfite oxidation by O2 in solution; “sulfate 
derived from solution oxidation by Fe3 + ” refers to the endmember from sulfite oxidation by Fe3 +  in solution; 
EIEs, KIEs, and their corresponding θs presented in Table 1 are used to determine the triple oxygen isotope 
compositions in these endmember sulfates. “Water line” indicates global meteoric water line.
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 Lake sulfate 

Ace lake, Antarctica, is a meromictic lake with an active microbial sulfur cycling 
(Burton and Barker 1979; Lauro et al. 2011). Two sulfate samples, from a depth of 5.5 m 
and 15.5 m, respectively, have been measured for their δ34S, δ18O and Δ′17O (Fig. 7) (Sun 
et al. 2015). The water temperatures were ~ 1 °C and ~ 3 °C, respectively, for these two 
samples (Lauro et al. 2011), and δ18OH2O value was ~ −16.7‰ (Sun et al. 2015). The observed 
apparent Δδ18OSO4–H2O is, therefore, 25.2 ± 0.7‰ at 15.5 m (Fig. 7), which is very close to 
the equilibrium Δδ18OSO4–H2O value of 27.2‰ calculated at 3 °C based on Equation (6). This 
similarity suggests that sulfate and water have probably reached oxygen isotope equilibrium 
at 15.5 m in this permanently stratified lake. Given the measured δ18O and δ17O of sulfate and 
assuming a θSO4-H2O

EQ of 0.524, we determined that the Δ′17O in water is −0.146 ± 0.043‰. A 
negative Δ′17OH2O suggests a highly evaporated water body (Surma et al. 2015; Gázquez et 
al. 2018; Passey and Ji 2019), as is likely the case based on Ace lake water history (Roberts 
et al. 1999). At 5.5 m, the apparent Δδ18OSO4–H2O is 20.0 ± 0.7‰ which is much smaller than 
Δδ18OSO4–H2O

eq, i.e., 27.7‰ at 1 °C, suggesting that sulfate and water are not in oxygen isotope 
equilibrium at this shallower depth (Fig. 7). Given the lake water oxygen isotope composition, 
we calculated the apparent θ for sulfate of the MSR pathway, MSR

app , to be at 0.5288 ± 0.0028, 
which is higher than the equilibrium θ value of 0.524 we concluded earlier and close to the 
θMSR value of 0.5285 ± 0.0026 estimated by Waldeck et al. (2019). These data suggest that 
the non-equilibrium MSR processes possess higher θ values than a sulfate–water equilibrium 
system. The case of Ace Lake sulfate illustrates the potential of using small Δ′17O in sulfate 
to constrain sulfur cycling in lake systems and lake water triple oxygen isotope compositions.

Figure 6. Schematic illustration of the generation of small Δ′17O in sulfate derived from four different end-
member cases. Water is at the origin, and the black dashed line is the reference line going through the origin 
with a slope of 0.5305. “EQ. sulfite” and “EQ. sulfate” refer to the sulfite and sulfate when at oxygen isotope 
equilibrium with water, respectively; “KIE + EQ. sulfite”, “KIE O2”, and “KIE water” mark the triple oxygen 
isotope compositions of sulfite, O2, and water when they are incorporated into sulfate, respectively; The 
number “0.25” means that 25% oxygen of sulfate sourced from “KIE water” or “KIE O2”, respectively, and 
“0.75” means that 75% oxygen of sulfate sourced from “KIE + EQ. sulfite”. The black dot “sulfate” located 
at the middle of a grey dashed line connecting “0.25” and “0.75”is where the final product sulfate sits in 
Δ′17O–δ18O space. The slope of a solid grey line marks specific equilibrium, kinetic, or apparent θs. 
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Riverine sulfate

Mississippi river sulfate. Killingsworth et al. (2018) presented a four-year monthly to 
biweekly δ34S, δ18O, and Δ′17O dataset for sulfate from Mississippi River Basin (MiRB). The 
four-year average values of δ18OSO4

 and Δ′17OSO4
 are 3.4‰ and −0.09‰, respectively. Given 

an average δ18OH2O value of −6.6‰ for MiRB (Killingsworth et al. 2018), if the sulfate were 
all derived from thiosulfate oxidation on pyrite surface, we would predict a δ18OSO4 of −3.9‰. 
If the sulfate were all derived from sulfite oxidation by O2 in solution, we would anticipate 
a δ18OSO4 of 0.5‰. Both predicted endmember δ18OSO4

 values are lower than the observed 
average δ18OSO4

 of 3.4‰. From the δ34SSO4
 data and considering the contribution of sulfate 

from evaporite source, Killingsworth et al. (2018) estimated the fraction of pyrite derived 
sulfate in MiRB to be ~72%. Given this percentage and evaporite δ18OSO4

 of 10‰ to 20‰ 
(Calmels et al. 2007), we estimate sulfate derived from sulfide oxidation in MiRB would have a 
δ18O value of 0‰ to 2.8‰ or 3.2‰ to 6.0‰ if pyrite oxidation is through thiosulfate oxidation 
on pyrite surface or sulfite oxidation by O2 in solution, respectively. These estimates offer no 
information on the relative dominance of either of the endmember pyrite oxidation pathways 
in MiRB due to their close δ18O values. However, the small Δ′17OSO4

offers a better resolution 
to this distinction. We estimate that the Δ′17OSO4 for surface and solution oxidation are 0.121‰ 
and 0.030‰, respectively (Fig. 5). Using a Δ′17O of −0.057‰ for evaporite sulfate (Cowie and 
Johnston 2016) and the 72% fraction of pyrite derived sulfate, the Δ′17O of MiRB sulfate should 
be 0.071‰ and 0.006‰, respectively, for the surface and solution oxidation endmembers. 
Obviously, both values are higher than the observed value of −0.09‰. The observed more 
negative Δ′17O in MiRB sulfate is not likely caused by MSR process (Hemingway et al. 2020) 
because MSR can increase δ18OSO4

 at the same time, which is not observed. One reason for 
this apparent discrepancy is that the measured Δ′17OSO4

 in the Mississippi river sulfate is more 
negative than its real value due to the partial yield of O2 during laser fluorination. The data of 
Δ′17OSO4 in Killingsworth et al. (2018) were measured at Bao’s laboratory at Louisiana State 
University. Comparing Bao et al.’s NBS 127 Δ′17OSO4

value to the one determined by Cowie 
et al. in Johnston’s laboratory (Bao and Thiemens 2000; Cowie and Johnston 2016), Cowie et 
al.’s Δ′17OSO4

 is ~0.088‰ (or ~0.07‰, personal communication with David Johnston) higher 
than the one obtained by Bao et al. If this 0.088‰ (or 0.07‰) is added to Killingsworth et al.’s 
measured Δ′17OSO4

 data, the averaged Δ′17OSO4
 will be −0.002‰ (or −0.02‰), which matches 

Figure 7. Oxygen and sulfur isotope compositions in sulfate from two different depths in Ace Lake, Ant-
arctica. The large δ18O difference between sulfate and water at 15.5 m, i.e., 25.2 ± 0.7‰, suggests sulfate 
and water may have achieved oxygen isotope equilibrium. 
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well with the pathway of sulfite oxidation by O2 in solution. However, this agreement might 
be fortuitous because Δ′17OSO4

 for seawater sulfate measured in Bao’s lab and Johnston’s lab 
is almost identical, i.e., ~ −0.01‰ (Bao and Thiemens 2000; Cowie and Johnston 2016). 
In addition, the average MiRB Δ′17OH2O may be off the GMWL given by Equation (18) (Li et 
al. 2015; Sharp et al. 2018; Bindeman et al. 2019), and there are uncertainties in our estimated 
EIE and KIE values and their corresponding θs. Nevertheless, this specific case reveals that 
small Δ′17OSO4 can add additional constraints on the origin of riverine sulfate, although further 
calibration work is required to substantiate and expand this utility. 

Marsyangdi river sulfate. Hemingway et al. (2020) presented a δ18O and Δ′17O data 
set for sulfate from Marsyangdi River Basin (MaRB), Nepal. Remarkably, some of the 
upper-valley sulfates have Δ′17O values as positive as 0.18‰, even more positive than the 
one estimated for the ambient water. Pyrite oxidation by atmospheric H2O2 was proposed 
to interpret the rather positive Δ′17OSO4

 values (Hemingway et al. 2020). However, it is not 
clear how H2O2 is delivered to the pyrite oxidation site (Hemingway et al. 2020). From our 
analysis (Fig. 8), a positive Δ′17OSO4 

can be achieved if sulfate is derived from thiosulfate 
oxidation on the pyrite surface. Using the measured water isotope data, we estimate this 
endmember sulfate’s δ18O and Δ′17O at −12.1‰ and 0.14‰, respectively. Both of them are 
in close agreement with the observed ones (Fig. 8). The discrepancy between our predicted 
0.14‰ and the highest observed 0.18‰ may result from uncertainties associated with the 
Δ′17O of ambient water, EIE and KIE, and their respective θ values.

MaRB Δ′17OSO4
 decreases toward downstream and microbial sulfate reduction and 

reoxidation are proposed as the cause (Hemingway et al. 2020). This interpretation is 
comparable to the Ace lake case where MSR processes are shifting sulfate oxygen isotope 
composition toward equilibrium (Fig. 8). 

ANALYTICAL METHODS 

O2 is the gaseous analyte for accurate triple oxygen isotope analysis due to its minimal 
isobaric interference. Other gases, e.g., CO2, CO, or SO2, certainly cannot deliver a Δ′17O 
uncertainty down to  ± 0.01‰ required in studying small Δ′17O variations, e.g., from −0.3 
to  + 0.3‰. O2 generation from sulfate is done by converting SO4

2− ion into a solid form, either 
BaSO4 or Ag2SO4. The powdery sulfate solids can be fluorinated (Bao and Thiemens 2000; Bao 
2006; Cowie and Johnston 2016) or in the case of Ag2SO4 thermally decomposed (Savarino 
et al. 2001; Schauer et al. 2012; Geng et al. 2013) to generate O2. Sample purification is 
important during the precipitation of solid sulfate from the solution because other oxygen-
bearing compounds can be incorporated into BaSO4 or Ag2SO4. When the sample size is not 
an issue, BaSO4 is the recommended solid to work with. BaSO4 is easy to handle and to be 
purified using a chelating method (Bao 2006).

One important caveat in generating O2 from sulfate solids is that O2 yield is not quantitative, 
ranging from 20−35% (Bao and Thiemens 2000) to 50% (Cowie and Johnston 2016) when 
BrF5 and F2 vapor are used in laser fluorination, respectively. The partial O2 yield results in 
the raw δ18O value being 8‰ to 20‰ lower than the true δ18O value we separately obtain by 
analyzing CO gas generated by an online Temperature-conducive elemental analyzer connected 
to an isotope-ratio mass spectrometer (IRMS). We calculate the Δ′17O, however, using the raw 
δ18O and δ17O measured simultaneously in dual-inlet model on an IRMS. This is hardly an 
issue when a large sulfate Δ′17O is of interest. However, a small sulfate Δ′17O value is sensitive 
to both the δ18O value and the triple oxygen isotope exponent of the reaction that generates the 
partial O2 yield. Laboratory tests show that the Δ′17O from three ~10% aliquots of O2 generated 
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sequentially from the same BaSO4 sample are nearly the same (Bao and Thiemens 2000), which 
suggests that O2 yields between 10−30% will produce the same Δ′17O but does not exclude the 
possibility that these O2 with lower than 30% yield are systematically different from the 100% 
O2 in the Δ′17O. Cowie and Johnston (2016) concluded from a regression line generated by 38 
analyses of an inhouse BaSO4 standard that the ~50%-yield processes have followed a slope 
of 0.5301 which is analytically unresolvable from the reference slope 0.5305 when calculating 
the Δ′17O. If 0.5301 were indeed the diagnostic θ value for the partial O2 generation reaction, 
the Δ′17O calculated using the raw δ18O and δ17O of the ~50%-yielded O2 would represent the 
Δ′17O of quantitative O2 from BaSO4. Unfortunately, the underlying reaction mechanism for the 
spread of the inhouse raw δ18O and δ17O data is not known a priori. Therefore the diagnostic 
θ value for the partial O2 generation from BaSO4 may not be close to the reference slope 0.5305. 
As mentioned in the riverine sulfate cases, this is one of the uncertainties that have prevented us 
from quantitatively interpreting the small sulfate Δ′17O variations. 

FUTURE OPPORTUNITIES

Small triple oxygen isotope variation in sulfate, measured by Δ′17OSO4
, is a high-dimensional 

parameter that reveals the dynamics and pathway of sulfur cycling at present and in the past. 
The four sulfate endmembers we identified in this chapter are going to help us to interpret the 
measured small Δ′17OSO4

. As discussed above, uncertainties exist even for these endmembers. 
There are ample research opportunities along this line, and here we outline the most pressing ones.

Figure 8. Triple oxygen isotope compositions of Marsyangdi River Basin sulfate and sulfate of different 
endmember pathways. The value of Δ′17O in “Marsyangdi river water” is estimated by Equation (18); triple 
oxygen isotope compositions in “Marsyangdi river sulfate” is from Hemingway et al. (2020); “Sulfate 
derived from surface oxidation” refers to the endmember from thiosulfate oxidation on pyrite surface, and 
EIE, KIEs, and their corresponding θs presented in Table 1 are used to determine its triple oxygen isotope 
compositions; triple oxygen isotope composition of the “Shifted Ace lake sulfate” represents sulfate of 
non-equilibrium MSR at 5.5 m depth in Ace lake but the values are shifted by replacing Ace lake water with 
the average MaRB water; “EQ. sulfate” represents sulfate calculated by Equation (13) using the average 
water isotope data and at temperature 8.3  °C, i.e., the mean of Mean Annual Temperature (MAT) within 
Marsyangdi River Basin. 



Small 17O Variations in Sulfate: Mechanisms and Applications 483

Calibrating small Δ′17OSO4 measurement. Accurate measurement of Δ′17OSO4
 is necessary 

to power the small Δ′17OSO4 research. Although uncertainty for Δ′17OSO4
 measurement can reach 

0.01‰ or less (Cowie and Johnston 2016), the O2 generation reactions all have only partial O2 
yields. Such obtained Δ′17O values are inherently less robust or stable than those of quantitative 
yield. Linking Δ′17OSO4

 with that of water or O2 at the intrinsic level demands a quantitative 
yield or well-calibrated θ values for partial-yield reactions. At this time, there is an urgent need 
to revisit the partial yield effect on triple oxygen isotope compositions of sulfate. Quantitative 
conversion of sulfate to carbon dioxide and equilibrating CO2 and O2 at high temperature 
assisted by a Pt catalyst (Mahata et al. 2013; Barkan et al. 2015) might be a way to resolve this 
problem, although this issue is not important when dealing with large 17O anomalies.

Calibrating intrinsic triple oxygen isotope effects.  Several EIEs, KIEs, and their 
associated θs determine sulfate triple oxygen isotope compositions. For now, only the 
equilibrium 18αSO4–H2O is relatively converged in literature, while some of the other key 
parameters, e.g., αsulfite–H2O and αthiosulfate–H2O, are exhibiting a range of values or entirely absent. 

Calibrating reaction rate constants. Multiple electron transfers and thus multiple 
chemical reactions are involved in sulfur oxidation or sulfate reduction. Meanwhile, some 
intermediates exchange oxygen isotopes with water with different rate constants. These rates 
are competing with each other and determine the reversibility of a sulfur redox reaction and 
isotope equilibrium or non-equilibrium state of relevant intermediates. For some endmember 
cases, e.g. sulfite, its oxidation and oxygen exchange kinetics are well understood while 
others, e.g. oxidation and oxygen exchange kinetics for thiosulfate and tetrathionate, are 
poorly constrained or entirely unknown. 

Sorting out reaction pathways. Sulfate can have different oxygen sources, and reaction 
pathways control the relative fractions of these different oxygen sources. Pyrite oxidation has 
the most geological implication. Molecular O2 and water can both be incorporated into sulfate 
during pyrite oxidation. Several laboratory experiments have been conducted to constrain the 
relative proportions of O2 and water in pyrite derived sulfate (Taylor et al. 1984a, Balci et al. 
2007; Heidel et al. 2009; Tichomirowa and Junghans 2009; Heidel and Tichomirowa 2010; 
Kohl and Bao 2011). Nevertheless, factors controlling the reaction pathways and thus the 
relative fraction of incorporated O2 in sulfate are still nebulous, and the observed results are 
not converging among different laboratories. Experiments using novel designs, e.g., 17O label 
technique, are needed to understand reaction pathways, especially in pH-buffered solutions. 

Knowing the role of microbes. Although biotic redox reaction is similar to the abiotic 
one to a great extent, it has unique characteristics. For example, the O2 reduction and sulfur 
oxidation sites are often physically separated in enzymatic reactions (Kelly 1982; Balci et al. 
2017); multiple sulfur oxidation pathways can occur concurrently in one microbe community 
(Bobadilla Fazzini et al. 2013); the reversibility of redox reactions is highly dependent on the 
energy status or thermodynamic potential (Wing and Halevy 2014). Well-controlled experiments 
and numerical models for abiotic redox reactions are essential to unsealing of the black boxes.
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