A LOOK AT PEGMATITE CLASSIFICATIONS Skip Simmons Department of Geology and Geophysics, University of New Orleans, New Orleans, Louisiana 70148 USA

Modern pegmatite classification schemes are strongly influenced by the depth-zone classification of granitic rocks published by Buddington (1959), and the Ginsburg et al. (1979) classification which categorized pegmatites according to their depth of emplacement and relationship to metamorphism and granitic plutons. Černý's (1991) revision of that classification scheme (Table 1) is the most widely used classification of pegmatites today. His classification is a combination of depth of emplacement, metamorphic grade and minor element content. His 1991 classification has 4 main categories or Classes. These are **Abyssal** (high grade, high to low pressure), **Muscovite** (high pressure, lower temperature), **Rare-Element** (low temperature and pressure), and **Miarolitic** (shallow level). The Rare-Element Classes are subdivided based on composition into **LCT** and **NYF** types: **LCT** for Lithium, Cesium, and Tantalum enrichment and **NYF** for Niobium, Yttrium, and Fluorine enrichment. The Rare-Element Class is further subdivided into types and subtypes according to the mineralogical / geochemical characteristics as shown in Table 2. This scheme has been used in most modern pegmatite studies.

Many pegmatites fall nicely into these categories, but during the last decade various investigations have revealed pegmatites that don't fit into these categories. Most notably pegmatites of the NYF affiliation have required a more detailed classification as more studies revealed a greater diversity of NYF-type pegmatites. One problem is the classification of some pegmatites as NYF that contain little or no yttrium or others that contain little or no niobium. Many pegmatites from Madagascar described by Pezzotta that are hyper-enriched in Cs don't fall into these categories. Additionally, a number of pegmatites show "mixed NYF and LCT characteristic and these are not addressed in the classification. Moreover attempts to relate pegmatite types or subtypes to magma genesis or tectonic regimes as has been attempted in granite classifications are not satisfactory (Simmons et al. 2003). Also, Černý's 1991 classification fails to address the possibility of pegmatites forming by direct anatexis. Consequently, over the last few years several new modifications of Černý's classification have been proposed. A few selected examples that illustrate the direction that classifications are evolving are presented below.

A basic classification for pegmatites of Madagascar (Table 3), based in part on Černý's 1991 classification, was introduced by Pezzotta (2001). This classification retains much of the nomenclature and framework of the older depth-related classification schemes, but is modified by pegmatite mineralogy which relates to pegmatite bulk chemistry. New types and subtypes were introduced that better represent the compositions of some of the Madagascan pegmatites that are virtually unique. Pezzotta's Class I, the Abyssal Class, applies to pegmatites found at low to high pressure and the highest temperatures. Generally, these pegmatites are poorly mineralized but may contain ceramic materials to make them economically important. Class II, the Rare Element Class, is the most mineralized and most mineralogically diverse. It is subdivided on the basis of a characteristic mineral assemblage for the pegmatite. In some cases, a distinction as to NYF and LCT types is specified. Class III, the NYF Miarolitic Class, is based on a low pressure regime. These pegmatites are rich in miarolitic cavities and typically occur at relatively shallow depth.

Wise (1999) introduced a new expanded classification of NYF pegmatites (Table 4). His classification relates pegmatites with NYF geochemistry to A-type granite plutons. He related these pegmatites to post-tectonic to anorogenic plutons formed in continental or oceanic rift zones. His classification has three main categories based on aluminum saturation of the parent granite. The three groups are peralkaline, metaluminous, and peraluminous. Within each group, pegmatite types are distinguished by mineralogical and geochemical characteristics. This classification is comprised of 6 types and 9 subtypes (Table 4). His classification relates NYF pegmatite mineralogy to variations in the alkalinity of the parental granitic melts.

Zagorsky, Makagon & Shmakin (1999) proposed a new classification based on pressure, pegmatite formation, geochemical / mineralogical sequences, and structural types (Table 5). A point emphasized in this

scheme is the observation that miarolitic cavities can occur in all 3 of their types. They propose the idea of a miarolitic facies which can occur in a greater or lesser degree in almost any pegmatite sequence.

In examining more than 500 pegmatite descriptions, Ercit (2004) found a low degree of correlation between accessory mineralogy and depth of emplacement for NYF pegmatites (Table 6). Building on the Wise classification, he proposed that NYF pegmatites belong to the Abyssal, Muscovite-rare-element class, as well as the Rare-element and Miarolitic classes. He also subdivided the abyssal class into two subdivisions: the allanite-monazite-uraninite subtype and the (Y, REE)-Nb-oxide subtype. In the rare element class, the rare earth fluorine type is defined and subdivided into three subdivisions based on HREE vs. LREE and mineralogy: allanite-monazite, euxenite, and gadolinite subtypes (Table 7).

A new classification scheme by Černý and Ercit (2005) has just been proposed at the GAC/MAC meeting in Halifax, Canada last week and is in press. This scheme combines the Černý 1991 and Ercit 2004 classifications (Tables 8 and 9) and introduces a new petrogenetic classification (Table 10) in which three families are distinguished: "an NYF family with progressive accumulation of Nb, Y and F (besides Be, REE, Sc, Ti, Zr, Th and U), fractionated from subaluminous to metaluminous A- and I-granites that are generated by a variety of processes involving depleted crust and/or mantle contribution; a peraluminous LCT family marked by prominent accumulation of Li, Cs and Ta (besides Rb, Be, Sn, B, P and F) derived mainly from S-granites, less commonly from I-granites; and a mixed NYF + LCT family of diverse origins (e.g., NYF plutons contaminated by digestion of undepleted supracrustals)".

New also (GAC/MAC 2005) is the proposal by Martin & De Vito (2005) which contends that the depthzone classification cannot account for the two main geochemical categories of pegmatites: LCT and NYF. They propose that the tectonic setting determines the nature of the parent magma and the derivative rare-elementenriched magmas. Thus, LCT pegmatites are generated in compressional tectonic settings (orogenic suites) and NYF from extensional tectonic settings (anorogenic suites). Mixed NYF and LCT are proposed to be the result of contamination, either at the magmatic or postmagmatic stage, in which the evolved NYF rocks get "soaked" with a fluid bringing in not only Li and B, but also Ca and Mg from the host rock, such that part of the pegmatite body may contain dravitic, elbaitic and liddicoatitic tourmaline, danburite, and other exotic species such as microlite, fersmite, londonite and pezzottatite. They propose that some of the exotic Madagascar pegmatites with a hybrid or "mixed" NYF / LCT character may be caused by remelting of just-formed-NYF pegmatites by such metasomatic fluids. They also propose that pegmatites may form by anatexis from both crustal and mantle rocks, which may have been previously metasomatically altered.

It is clear that a trend toward a petrogenetic classification is emerging. A petrogenetic classification that can relate pegmatites to tectonic regimes and the related magma generating processes, is essential in order to advance our understanding of pegmatite genesis within the larger-scale earth processes. The Martin and De Vito (2005) classification is a significant step in that direction. Perhaps now is the time to develop a committee to address the problems of pegmatite classification such as was done for the classification of igneous rocks by the IUGS.

	THE FOUR CLASSES OF GRANITIC PEGMATITE ČERNÝ, 1991								
Class	Family	Typical Minor Elements	Metamorphic Environment	Relation to Granite	Structural Features	Examples			
Abyssal		U, Th, Zr, Nb, Ti, Y, REE, Mo poor (to moderate) mineralization	(upper amphibolite to) low- to high-P granulite facies ~4-9 kb ~700-800°C	none (segregations of anatectic leucosome)	conformable to mobilized cross-cutting veins	Rae and Hearne Provinces, Sask. (Tremblay, 1978); Aldan and Anabar Shields, Siberia (Bushev and Koplus, 1980); Eastern Baltic Shield (Kalita, 1965)			
Muscovite	_	Li, Be, Y, REE, Ti, U, Th, Nb > Ta poor (to moderate) mineralization, micas and ceramic minerals	high-P, Barrovian amphibolite facies (kyanite-sillimanite) ~5-8 kb ~650-580°C	none (anatectic bodies) to marginal and exterior	quasi- conformable to cross- cutting	White Sea region, USSR (Gorlov, 1975); Appalachian Province (Jahns <i>et al.</i> , 1952); Rajahstan, India (Shmakin, 1976)			
- Element	LCT	Li, Rb, Cs, Be, Ga, Nb <,> Ta, Sn, Hf, B, P, F poor to abundant mineralization, gemstock industrial minerals	low-P, Abukuma amphibolite to upper greeenschist facies (andalusite-sillimanite) ~2-4 kb ~650-500°C	(interior to marginal to) exterior	quasi- conformable to cross- cutting	Yellowknife field, NWT (Meintzer, 1987); Black Hills, South Dakota (Shearer <i>et al</i> , 1987); Cat Lake-Winnipeg River field, Manitoba (Černý <i>et al.</i> , 1981)			
Rare -	NYF	Y, REE, Ti, U, Th, Zr, Nb > Ta, F poor to abundant mineralization, ceramic minerals	variable	interior to marginal	interior pods, conformable to cross- cutting exterior bodies	Llano Co., Texas (Landes, 1932); South Platte district, Colorado (Simmons <i>et al.</i> , 1987); Western Keivy, Kola, USSR (Beus, 1960)			
Miarolitic	NYF	Be, Y, REE, Ti, U, Th, Zr, Nb > Ta, F poor mineralization, gemstock	shallow to sub-volcanic ~1-2 kb	interior to marginal	interior pods and cross- cutting dikes	Pikes Peak, Colorado (Foord, 1982); Sawtooth batholith, Idaho (Boggs, 1986); Korosten pluton, Ukraine (Lazarenko <i>et</i> <i>al.</i> , 1973)			

Table 1	The four	classes	of g	ranitic	pegmatite	Černý	(1991)
			<u> </u>	/	10	2	

CLASSIFICATION OF PEGMATITES OF THE RARE ELEMENT CLASS						
Pegmatite type	Pegmatite subtype	Geochemical signature	Typical minerals			
PARE-FARTH	allanite-monazite	(L)REE, U, Th (P, Be, Nb > Ta)	allanite monazite			
	gadolinite	Y, (H)REE, Be, Nb > Ta, F (U, Th, Ti, Zr)	gadolinite, fergusonite, euxenite, (beryl) (topaz)			
DEDVI	beryl-columbite	Be, Nb >< Ta (± Sn, B)	beryl columbite-tantalite			
DERIL	beryl-columbite- phosphate	Be, Nb $><$ Ta, P (Li, F \pm Sn, B)	Beryl, columbite-tantalite, triplite, triphylite			
	spodumene	Li, Rb, Cs, Be, Ta >< Nb (Sn, P, F ± B)	spodumene(amblygonite)beryl(lepidolite)tantalite(pollucite)			
COMPLEX	petalite	Li, Rb, Cs, Be, Ta $>$ Nb (Sn, Ga, P, F \pm B)	petalite (amblygonite) tantalite beryl (lepidolite)			
(rare element)	lepidolite	F, Li, Rb, Cs, Be Ta $>$ Nb (Sn, P \pm B)	lepidolite microlite beryl topaz (pollucite)			
	amblygonite	P, F, Li, Rb, Cs Be, Ta $>$ Nb (Sn \pm B)	amblygonite (lepidolite) beryl (pollucite) tantalite			
ALBITE- SPODUMENE		Li (Sn, Be, Ta >< Nb ± B)	spodumene (beryl) (cassiterite) (tantalite)			
ALBITE		Ta >< Nb, Be (Li ± Sn, B)	tantalite (cassiterite) beryl			

Table 2.	Classification of pegmatites of the Rare-Element class. (Černý, 1991)
----------	---	--------------

I. Abyssal Class
1. potassium feldspar type
2. corundum type
II. Rare Element Class
1. beryl type (LCT)
1a. beryl-columbite subtype
1b. beryl-columbite-uranium subtype
1c. beryl-columbite-phosphate subtype
1d. chrysoberyl subtype (miarolitic or massive)
1e. emerald subtype
2 rare earth type (NYF)

2a. allanite-monazite subtype
2b. monazite-thortveitite subtype
2c. bastnäsite subtype
3 complex type (LCT)
3a. lepidolite subtype (miarolitic or massive)
3b. amblygonite subtype
3c. elbaite subtype (miarolitic or massive)
3d. danburite subtype (miarolitic or massive)
III. NYF Miarolitic Class

	CLAS	SIFICATION OF NYF-T	YPE PEGMAT	TITES
	1	MIKE WISE (1	.999)	
PEGMATITE TYPE	PEGMATITE SUBTYPE	ASSOCIATED ACCESSORY MINERALS	GEO- CHEMICAL SIGNATURE	EXAMPLES
		PERALKALINE G	ROUP	
Fayalite		magnetite, (hematite, ilmenite, epidote, titanite, allanite)	Fe (Ti, Ca)	Velence Mtns., Hungary; Sawtooth batholith, Idaho; Rockport, Massachusetts; Strzegom-Sobotka, Poland; Mt. Perdosu, Sardinia
Amphibole	Aegirine- Arfvedsonite	fluorite, allanite, zircon (columbite fergusonite, monazite, pyrochlore)	Na, Fe, Zr, F (± Ti, REE, Nb)	Zomba, Malawi ; Strange Lake Complex, Quebec ; Stettin Complex, Wisconsin
	Riebeckite	zircon, fluorite, (magnetite, rutile, ilmenite, monazite, columbite, pyrochlore)		Mt. Rosa (St Peter's Dome), Colorado; Quincy, Massachussetts; Hurricane Mtn., New Hampshire; Granite Peak, Franklin Mtns., Texas
	Allanite	zircon, (beryl, apatite)		Pacoima Canyon, California
		METALUMINOUS	GROUP	
Allanite	Allanite	(fluorite, magnetite, monazite, zircon, ilmenite, rutile)	LREE (± Ti, Zr, F)	South Platte (south), Colorado Red Rock, Nevada; Gold Butte, Clark Co., Nevada; Amherst Co., Virginia
	Euxenite (Polycrase)	monazite, zircon, xenotime, ilmenite, (fergusonite, aeschynite, rutile, tourmaline)	LREE→HREE Nb > Ta, Ti, Zr, Y, P	Trout Creek, Colorado; Gloserheia, Norway; West Portland, Quebec; Evans-Lou, Quebec
	Gadolinite	fergusonite, xenotime, samarskite, zircon, (euxenite, ilmenite, rutile, magnetite, fluorite)	Y+HREE, Nb > Ta, Be, Ti, Zr, P, (F)	South Platte (north), Colorado Pyörönmaa, Finland Ytterby Sweden; Barringer Hill, Texas; Clear Creek, Texas
		PERALUMINOUS (GROUP	
Beryl	Beryl	zinnwaldite, spessartine, fluorite, hematite, muscovite	Be (Li, F)	Mt. Antero, Colorado Sawtooth batholith, Idaho
	Tourmaline	topaz, lepidolite, fluorite. danburite, hambergite	Be, B, Li, F	Leduc, Quebec, Rangkul, Pamirs, Tadjikistan, Russia; Borshchovochny, Transbaikalia, Russia
	Topaz	muscovite, monazite, euxenite, fluorite, columbite,	Be, F (± B, Li)	Luumäki, Finland; Klein Spitzkoppe, Namibia; Tordal, Norway; Volhynia, Ukraine;

	zinnwaldite (phenakite, lepidolite, schorl, zircon, cassiterite)		Morefield-Rutherford-Herbb #2, Virginia
Phenakite	muscovite, fluorite, (topaz, beryl, bertrandite, ilmenite, zircon)	Be, F	Mt. Antero, Colorado; Pikes Peak, Colorado; South Baldface Mtn., New Hampshire; Nine Mile Pluton, Wisconsin
Topaz	zinnwaldite, muscovite, fluorite, hematite, spessartine, cassiterite	F, (Be, Li, Sn)	Mt. Antero, Colorado; Sawtooth batholith, Idaho
Fluorite	calcite, hematite	F	Khantau massif, Kazakhstan

 Table 4. Classification of NYF pegmatites, (modified from Wise, 1999).

Systematics of Granitic Pegmatites

т							
1.	Low-Pressure Pegmatites 1. Crystal-bearing Formation a. Fluorite-rock crystal-bearing Subformation						
	b. Subrare-metal (with precious stones) Subformation						
	Miarolitic Facies Evolution Sequences: Topaz-Beryl and Tourmaline						
	2. Rare-metal – Rare-earth Formation						
	Evolutionary Sequences: Nb-Y, F-Ta-Y and Be-REE						
	Miarolitic Facies Evolution Sequences: Amazonite						
II.	Moderate-Pressure Pegmatites						
	1. Rare-metal Formation						
	a. Petalite Subformation						
	Evolutionary Sequences: Be. Li. P-Ta-Li. F-Ta-Li and Cs-Ta-Li						
	b. Spodumene Subformation						
	Evolutionary Sequences: Ta-Be, Li, Ta-Sn-Li, P-Ta-Li and Cs-Ta-Li						
	Miarolitic Facies Evolutionary Sequences for the Formation as a whole. Bervl						
	(morganite)-Tourmaline Tourmaline-Kunzite and Phosphate-Tourmaline						
	(morganite) Fourmanne, Fourmanne Runzite, und Fnosphate Fourmanne						
III.	High-Pressure Pegmatites						
	1 Mica-bearing Formation						
	a Rare-metal – Muscovite Subformation						
	Evolutionary Sequences: Columbite-Muscovite and Beryl-Muscovite						
	Miarolitic Facies Evolutionary Sequence: Beryl-Tourmaline						
	h Museovite Subformation						
	U. Museovite Subjoination Evolutionary Sequences: Quertz Museovite and A. shane Museovite						
	Evolutionary Sequences. Quartz-Muscovite and A-shape Muscovite						

2. Feldspar Formation Evolutionary Sequences: U-REE and Non-specialized **Table 5.** Systematics of Granitic Pegmatites Zagorsky, Makagon & Shmakin (1999)

Classification of granitic pegmatites of the NYF family Ercit 2004

Class	Affiliation	Туре	Typical	Metamorphic	Examples
			Minor	Environment	
			Elements	(Peak Conditions)	
Abyssal	None to NYF	Rare Earth	U, Th, Zr Nb, Ti, Y, REE, Mo	high P,T (6-10 kb, 700-800 °C) upper amphibolite to granulite facies	Rae & Hearne provinces, SK, Canada, Grenville province, ON-QC, Canada; Aldan and Anabar Shields, Russia
Muscovite	Generally none		(none, but giant muscovite)	high P, moderate T (5-8 kbar 580-650 °C): amphibolite facies	Mama-Vitima region, Siberia; most of the Appalachian mica belt; USA
Muscovite- rare- element	NYF	Muscovite- -REE	Y, REE, Ta, Nb, Ti, U, Th, Be	mod-high P, moderate T (3-7 kb, 540-650 °C: amphibolite facies	Spruce Pine, NC, USA; parts of Chupa- Yena district, NW Russia
	LCT	(unnamed)	Li, Be, Nb (no, Y, REE)	(as prev.)	Bihar belt, India; much of Shelby- Hickory, NC, USA
Rare- Element	NYF	Rare-Earth- Fluorine	REE, U, Th, Be, Nb>Ta, F	moderate-low P, moderate T (2 -4kb, 500-650 °C): upper green- schist to amphibolite fades	Barringer Hill, TX, South Platte, CO, USA; Ytterby, Sweden, Evje-Iveland, Norway, Kitsamby, Madagascar
	LCT	Beryl	Be, Nb	(as prev.)	Greer Lake, MB, Canada; Hagendorf- Süd, Germany, Murzinka, Ural Mts., Russia: Donkethoek. Namibia
	LCT	Complex	Li, Rb, Cs, Ta, Be	(as prev.)	Tanco, MB, Canada; Harding, NM, USA; Bikita, Zimbabwe; Greenbushes, Australia
	LCT	Albite- Spodumene	Li, Sn, (Be, Ta)	(as prev.)	Preissac-Lacore, QC and Little Nahanni, NWF, Canada; Kings Mt., NC; Volta Grande, Brazil
	LCT	Albite	Ta, (Sn)	(as prev.)	Hengshan, China; Tin Dike, MB, Canada
Miarolitic	NYF	(unnamed)	Y, REE, Ti, U, Th, Zr, Nb, F	very low P (1-1.5 kbar)	Pikes Peak, CO and Sawtooth, batholith, ID, USA; Korosten Pluton, Volyn region, Ukraine
	LCT	(unnamed)	Li, Be, B, F	low P (1.5-3 kbar)	San Diego Co., CA, USA; Safira dist.,

Table 6. Classification of granitic pegmatites of the NYF family Ercit 2004

Examples of granitic pegmatites of the NYF family Ercit 2004

Class	Туре	Subtype	Examples	References
Abyssal	Rare Earth	Allanite-	Wolverine field, Mt Bisson, BC	Halleran and Russell (1993)
		monazite-	Five Mile mine, Madawaska, ON	Storcy & Vos (1981)
		urammu	Mt. Launer, QC & Sharbot Lake, ON	Henderson (1982), Ford (1982)
			St-Pierre-dc-Wakefield quarry, Gatineau, QC	Rose (1960)
			Rae & Heame provinces, SK	Tremblay (1978)
			part of Chupa-Yena dist., Karelia, Russia	Leonova & Polezhaeva (1975)
		Y-Nb-	Party Sound, Hybla and Madawaska dists., ON	Hewitt (1955, 1967), Goad (1990)
		oxide	Evans-Lou, and Lapointe quarries, Gatineau, QC	Hogarth (1972) Spence (1932)
			Gloserheia, Norway	Bugge (1943), Amli (1975, 1977)
			Aldan, Anabar shields, Siberia, Russia	Bushev and Koplus (1980)
			Kitsamby-Antsirabé, Madagascar	Joo' (1970), Bourret (1988)
Muscovite-	Muscovite-		Mattawa, ON	Ercit (1992)
Elemen	KEE		Spruce Pine clist, NC	Olson (1944), Lesure (1968)
Liemen			most of Chupa-Yena dist, Karelia, Russia	Leonova and Polezhaeva (1975)
			some migmatite terranes of the Ural Mts., Russia	Ayzderdzis (1976)
Rare-	Rare -	Allanite	Pacoima pegmatite, Los Angeles Co., CA	Moller (1995)
Element	Fluorite	monazite	southern group, South Platte dist, CO	Simmons et al. (1987)
	1 1001100		Helle, Kokjen and Sônnevig, Hitterö, Norway	Adamson (1942)
			most of the Oku-Tango belt, Japan	Tatekawa (1955)
		Euxenite	Georgeville, NS	MurphyctaL (199
			Trout Creek pass, CO	Hanson et 31. (199
			Topsham, ME	Hanson et al. (1998)
			most of the southern Iveland dist., Norway	Bjorlykke (1935)
			Alto Mólocué, Mozambique	Cilek (1989)
			Otozan and Morigami pegs., Ryoke belt, Japan	Minakawa et al. (1978)
			most of the Mukinbuin field, WA, Australia	M. Jacobson (pers. comm.)
		Gadolinite	Shatford Lake group, MB	Cerny et al. (1981)
			White Cloud mine, South Platte dist, CO	Simmons et at (1987)
			Central Mineral dist., TX	Ehlmann et at (1964)
			most of the northern Iveland dist., Norway	Bjorlykke (1935)
			Ytterby, Osterby and Falun, Sweden	Smeds (1990)
			West Keivy, Kola Peninsula, Russia	Lunts (1972)
			Mategawa and Hama, Ryoke belt, Japan	Minakawa et at (1978)
			Cooglegong, WA, Australia	Simpson (1951)

Miarolitic		Mt Antero, CO	Switzer (1939)
		Pikes Peak, CO	Foord (1982)
		Sawtooth batholith, ID	Menzies and Boggs (1993)
		Baveno, Italy	Pezzotta et at (1999)
		Luumäki, Finland	Lahti and Kinnunen (1993)
		Korosten pluton, Volyn region, Ukraine	Lazarenko et at (1973)
		Amazonitic pegmatite, Rangkul' field, Tajikistan	Skrigitil' (1996)

 Table 7 Examples of granitic pegmatites of the NYF family Ercit 2004

THE CLASS SYSTEM OF GEOLOGICAL, PARAGENETIC AND GEOCHEMICAL CLASSIFICATION OF GRANITIC PEGMATITES Černý & Ercit 2005

Class	Subclass	Туре	Subtype
Abyssal	AB-LREE		
(AB)	AB-HREE		
Muscovite			
(MS)			
Muscovite -	MREL-REE		
Rare-element	MREL-Li		
(MSREL)			
Rare-element	REL-REE	allanite-monazite	
(REL)		euxenite	
		gadolinite	
	REL-Li	beryl	beryl-columbite
			beryl-columbite-phosphate
		complex	spodumene
			petalite
			lepidolite
			elbaite
			amblygonite
		albite-spodumene	
		albite	
Miarolitic	MI-REE	topaz-beryl	
(MI)		gadolinite-fergusonite	
		1 1.	
	MI-L1	beryl-topaz	
		MI-spodumene	
		MI-petalite	
		MI-lepidolite	

 Table 8. The Class System of Geologic, Paragenetic and Geochemical Classification of Granitic

 Pegmatites

Černý & Ercit 2005

GRANITIC PEGMATITES modified from Cerný & Ercit 2005						
Class	Typical minor	Metamorphic	Relation to			
Subclass	elements	environment	granites			
Type - <u>Subtype</u>			-			
Abyssal (AB)	U Th Zr Ti Nh Y	upper amphibolite	none			
AB-HREE	LREE HREE	to low- to high-P	(segregations of			
AR_I REF	poor to moderate	Granulite facies:	anatectic			
AD-LKLL AR II	mineralization	A to 0 kbar	laucosoma)			
AB-C	mineralization	$\sim 700 \text{ to } 800^{\circ}\text{C}$	icucosonic)			
		~700 10 800 C				
Muscovite (MS)	Ca, Ba, Sr, Fe>Mn no rare-element mineralization (micas and ceramic minerals)	high-P, Barrovian amphibolite facies (kyanite-sillimanite) 5 to 8 kbar, ~650 to 580°C	none (anatectic bodies) to marginal and exterior			
Muscovite – Rare-element (MSREL)						
MSREL-REE	Be, Y, REE, Ti, U, Th, Nb-Ta: muscovite, biotite, almandine-spessartine garnet, (kyanite, sillimanite)	moderate to high P, (T) amphibolite facies; 3 to 7 kbar, ~650 to 520°C	interior to exterior; sometimes poorly defined			
MSREL-Li	Li, Be, Nb beryl, cassiterite, columbite, lepidolite, (spodumene)					
Rare-element (REL)						
REL-REE Allanite-Monazite Euxenite gadolinite	Be, Y, REE, U, Th, Nb>Ta, F	variable, largely shallow and postdating regional events affecting host rocks	interior to marginal (rarely exterior)			

PRINCIPAL SUBDIVISION AND CHARACTERISTICS OF THE FIVE CLASSES OF

REL-Li Beryl -B <u>eryl-columbite</u> - <u>Beryl-columbite-phosphate</u> Complex - <u>Spodumene</u> - <u>Petalite</u> - <u>Lepidolite</u> - <u>Elbaite</u> - <u>Amblygonite</u> Albite-Spodumene	Li, Rb, Cs, Be, Ga, Sn, Hf, Nb-Ta, B, P, F	low-P, Abukuma amphibolite (andalusite- sillimanite) to upper greenschist facies; ~2 to 4 kbar, ~650 to 450°C	(interior to marginal to) exterior
Albite			
Miarolitic (MI) <i>MI-REE</i>	Be, Y, Nb, REE, F, Ti, U, Th,, Zr,	very low P, postdating regional events that affect host rocks	interior to marginal
MI-Li	Li, Be, B, F, Ta>Nb	low-P amphibolite to greenschist, 3 to 1.5 kbar, 500 to 400°C	(interior to marginal) to exterior
		D I A CODIN	200 <i>5</i>

Table 9. Principal Subdivision and Characteristics of the Five Classes of Granitic Pegmatites Černý & Ercit 2005

THE FAMILY SYSTEM OF PETROGENETIC CLASSIFICATION OF GRANITIC PEGMATITES OF PLUTONIC DERIVATION Černý & Ercit 2005

Family	Pegmatite subclass	Geochemical signature	Pegmatite bulk composition	Associated granites	Granite bulk composition*	Source lithologies**
			•		•	
LCT	REL-Li MI-Li	Li, Rb, Cs, Be, Sn, Ga, Ta>Nb, (B, P, F)	peraluminous to subaluminous	synorogenic to late-orogenic (to anorogenic); largely heterogeneous	peraluminous, S, I or mixed S+I types	Undepleted upper- to middle-crust supracrustals and basement gneisses
NYF	REL -REE MI-REE	Nb>Ta, Ti Y, Sc, REE, Zr, U, Th, F	subaluminous to metaluminous (to subalkaline)	syn-, late, post- to mainly anorogenic; quasi- homogeneous	pera!uminous to subaluminous and metaluminous; A and I types	depleted middle to lower crustal granulites, or juvenile granitoids
Mixed	Cross-bred: LCT & NYF	mixed	metaluminous to moderately peraluminous	postorogenic to anorogenic; heterogeneous	subaluminous to slightly peraluminous	mixed protoliths or assimilation of supracrustals by NYF granites

Table 10 The Family System of Petrologic Classification of Granitic Pegmatites of Plutonic Derivation Černý & Ercit 2005

Potential subdivisions in the LCT family:

LCT-I fertile granites generated by low-percentage anatexis of igneous protoliths and subsequent extensive differentiation; subaluminous fertile granites and derived pegmatites poor in B, P, S, with relatively low δ^{18} O; *e.g.*, the Greer Lake leucogranite + pegmatite suite, MB (Černý *el al.* 2004a); part of the Yellowknife field – Meintzer (1987)

LCT-S fertile granites generated by anatexis of metasedimentary protoliths and subsequent differentiation; peraluminous fertile granites and derived pegmatites enriched in B, P, S, with high δ^{18} O; *e.g.* the Osis Lake leucogranite + pegmatite suite, MB (Černý & Brisbin 1982), and the Preissac-Lacorne suite, QC (Mulja *et al. 1995*, Ducharme *et al.* 1997)

Potential subdivisions in the NYF family:

- NYF-A anorogenic granites, as members of bimodal gabbro-granite suites, generated by partial melting of depleted lower crust; fluorite-bearing largely metaluminous (to subalkaline) pegmatites with the prototype" NYF signature; *e.g.*, the South Platte granite + pegmatite system, CO (Simmons *et al.* 1987), and the Grotingen granite + Abborselet and other associated pegmatites, Sweden (Kjellman *et al.* 1999)
- NYF-I syn- to late-orogenic granites generated by high-percentage anatexis of igneous protoliths and subsequent moderate differentiation; topaz-bearing pegmatites; *e.g.*, the Lac du Bonnet biotite granite + Shatford Lake pegmatite group, MB (Buck *et al.* 1999), and the Stockholm granite + the Ytterby pegmatite group, Sweden (Kjellman *et al.* 1999)

*peraluminous, A/CNK>1; subaluminous, A/CNK~1; metaluminous, A/CNK<1 at A/NK>1; subalkaline, A/NK~1; peralkaline, A/NK<1, where A = Al_20_3 , CNK = CaO + Na₂O + K₂O, and NK = Na₂O + K₂O (all in molecular values; Černý 1991).