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ABSTRACT

Three variables may be charted in a triangle by the use of trilinear coordinates, and four
variables in a tetrahedron by means of quadriplanar coordinates. Negative trilinear and
quadriplanar coordinates may also be used to advantage. These unique properties of the
triangle and tetrahedron suggest that similar properties exist for hypertetrahedra of »
dimensions.

By mathematical generalization, it is possible to predict the number of vertices, edges,
triangular faces, tetrahedra, and hypertetrahedra that bound an n-dimensional hypertetra-
hedron. A tabulation of these boundaries, up to the ninth dimension, is given. The number
of vertices in each hypertetrahedron corresponds to the number of variables that may be
charted within it. Hypertetrahedra of 4, 5, and 6 dimensions, having 5, 6 and 7 vertices,
are bounded respectively by 10, 20, and 35 triangular faces.

Four variables may be charted in a tetrahedron by constructing geometrically or by
deducing analytically the resulting surface, which may then be shown either in perspective
or by projection as a topographic map. Another method is to develop the tetrahedron onto
a plane, and merely to plot the triads 123, 124, 134, and 234, each recomputed to 100
per cent. The first method is inapplicable to hypertetrahedra, and the second method may
not be exactly applied, as hypertetrahedra can not be developed. The triangles bounding
the hypertetrahedra, however, may be arranged empirically, so as to constitute a com-
pound system of trilinear coordinates for charting the triads 1,2+ (p—1),3:--9,
2,3+ (w=1),4---9,3,4---(v=1), 5. 1, etc., where » means both vertices and
variables.

Coordinate systems of this kind have been prepared for charting 5, 6, and 7 variables.
Some choice exists in the arrangement of the triangles, but the factor of compactness prac-
tically eliminates all but one arrangement. Such coordinates may be given algebraic mean-
ings within individual triangles, but not between them. The composite charts, however,
afford geometrical pictures which, if conventionalized, may be as effective as a true system
of analytical coordinates.

Four analyses of platinum metals are used to illustrate the charting of 6 variables on the
20 triangular faces of a hypertetrahedron of 5 dimensions. Variable scales are required for

best delineation of the resulting curves, and methods are given for producing such changes
in scale.

! Published by permission of the Director, U. S. Geological Survey.
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INTRODUCTION

Physical measurements commonly involve three or more components
or variables, and the relations between them are most readily grasped if
they can be shown in graphic form. Numerous systems of 3-dimensional
coordinates have been devised for this purpose, but 3-dimensional rec-
tangular cartesian coordinates are generally used. Any equation in three
variables may thus be charted, but an equation in four variables presents
difficulties. A 3-dimensional surface may be projected orthogonally onto
a plane, thus reducing by one its number of dimensions, and producing a
topographic map. Similarly, but by the use of analytical methods, an
equation in four variables, representing a 4-dimensional continuum, may
be projected into three dimensions; but the resulting representation will
comprise a series of 3-dimensional surfaces, as numerous as the contours
on a topographic map. Graphs of this kind are impracticable for four
variables, and are almost impossible for five or more variables.

All systems of coordinates for charting more than three variables are
impaired by shortcomings of this, or some other kind. Partial success has
been achieved by combining components, by making multiple curves or
diagrams, by the use of nomograms, and by other devices, but restrictions
of some sort are invariably required. One of the limitations that may be
tolerated, particularly in charting chemical analyses, is that the sum of
the variables shall equal unity, or 100 per cent. With this limitation,
three variables may be charted within a triangle, and four within a tetra-
hedron. This unique property, possessed by the triangle and tetrahedron,
is also possessed by hypertetrahedra of » dimensions, so that any number
of components whose sum is unity may theoretically be charted. But it is
impossible to depict graphically such #-dimensional continua, so that
further restrictions and compromises must be made. This paper is an ex-
position of one method for utilizing the concept of hypertetrahedral
charting.

TRILINEAR AND QUADRIPLANAR COORDINATES

Trilinear coordinates are so commonly used in the graphic representa-
tion of 3 variables that no description of this usage seems necessary. Little
application is made, however, of the analytical geometry of trilinear co-
ordinates, whereby trilinear equations may be written to show relation-
ships between curves that are experimentally derived and graphically
presented. American textbooks on elementary analytical geometry are
particularly reticent on this subject. Two elementary statements and
one complete treatise on trilinear coordinates, all of British origin, are
cited herewith:
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Surta, CHARLES, An elementary treatise on conic sections by the methods of coordinate
geometry. Macmillan & Co., Ltd., London, pp. 341-389 (1919).

LonEy, SIoNEY L., The elements of coordinate geometry: part II, trilinear coordinates.
Macmillan & Co., Ltd., London, 228 pp. (1923).

WaiTworTH, WiLLiam A., Trilinear coordinates and other methods of modern analytical
geometry of two dimensions. Deighton, Bell & Co., London, 506 pp. (1866).

Trilinear coordinates are built about any 3 non-parallel non-concur-
rent lines in a plane, which intersect to form a triangle of reference, com-
monly called a trigon. This triangle may have any shape, but both

of4,8 —-2)

AVA
AVAIA

v . o(-333,5,833
INONINONININ

VAV, A
WAVAVAVAVAVAVAVAVAVAM

of=I,~1,12)

ols,-2,-3

POSITIVE AND NEGATIVE TRILINEAR COORDINATES

Fic. 1

graphics and analysis are simplified if an equilateral triangle is used.
Such a trigon is illustrated by Fig. 1. The three coordinates of a point,
written as («, 8, v), are measured on normals to the edges, drawn in the
direction of the opposite vertices for positive values, and in the reverse
direction for negative values. One or two coordinates may be negative,
but not three.
If the sides of a trigon are represented as a, b, and ¢, and its area as
4, it is readily shown that
g + 68 +7ov

- 1
A 1. (6))

Any term of any trilinear equation may therefore be multiplied one or
more times by the left side of equation (1), without changing the value
of the equation. Hence all algebraic trilinear equations are, or can be
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rendered, homogeneous. Thus the general equations for a straight line
and for a conic section are respectively as follows:
lo+mB+ny=0
aa® + b? + ov? + 2fBy + 2gva + 2hef = 0.
Trilinear coordinates are readily transformed to rectangular cartesian
coordinates by means of the following formulae:

a=xcosf+ ysinf — p/ 2)
8 = xcos O + ysin 6, — P, 3)
¥ = xcos 03 + ysin 8; — p3 4)

where p1, po, and ps are the trilinear coordinates of the origin of cartesian
coordinates, and 61, 6, and 65 are the angles which normals from a point

TRANSFORMATION OF COORDINATES
Frc. 2

to the sides of the trigon make with the X axis. These relationships are
shown in Fig. 2. For further information on trilinear coordinates, the
reader is referred to the publications cited above.

Quadriplanar coordinates bear the same relation to a tetrahedron as
trilinear coordinates do to a triangle. Commonly a regular tetrahedron of
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reference is used, having equilateral triangular faces. Positive coordinates
are measured on a normal from each face in the direction of the opposite
apex; negative coordinates are measured in the reverse direction. One,
two, or three negative coordinates may exist, but not four. All algebraic
quadriplanar equations are, or may be rendered, homogeneous by the
same method heretofore shown for trilinear coordinates; and the trans-
formation to 3-dimensional rectangular cartesian coordinates is made by
the use of four formulae analogous to (2), (3), and (4).

APPLICATION OF NEGATIVE COORDINATES

The point (2, 3, 5) is one of those charted in Fig. 1. Its coordinates
may be considered to represent the composition of a rock composed of 2
parts quartz, 3 parts feldspar, and 5 parts mafic minerals. Suppose
another rock exists whose composition is 2 parts nepheline, 3 parts feld-
spar, and 5 parts mafic minerals. As quartz and nepheline are incom-
patible, the mode of this alkaline rock might be given as (—2, 3, 5). But
the sum of these numbers is 6 instead of 10, wherefore each must be
multiplied by 42 to produce the true coordinates (—3.33, 5, 8.33). This
point may then be charted, as shown in Fig. 1, to represent the composi-
tion of the alkaline rock. If in some comagmatic region, other igneous
rocks exist whose modes lie between or beyond the points (2, 3, 5) and
(—3.33, 5, 8.33), they may also be charted, and their loci may be joined
by a fitted curve whose trilinear equation can be written with reference
to the trigon 4 BC. This would not be possible if the alkaline rocks had
been charted with reference to a contiguous trigon, say ACD.

The expansion shown above, to obtain coordinates whose algebraic
sum equals 10, is more generally accomplished by multiplication by
L/[S], where L is the number of divisions into which each side of the
trigon is divided, and [S] is the absolute value of the algebraic sum of
the original ratios of the mode. Attention is called to the fact that a, B,
and v become points at infinity if S=0. The original ratios may be re-
covered from the expanded coordinates by means of the equation

S P Y -y |

where 7 refers to one of the three original ratios of the mode, and « refers
to its coordinate. Similar formulae, of course, are used for s and ¢, the
other two ratios of the mode, and for 8 and v, their derived coordinates.
The use of negative coordinates thus permits the analytic charting of
four variables in a plane, if two of these variables are incompatible; and
of five variables in a plane, if two pairs of variables are incompatible.
Negative quadriplanar coordinates may also be used to advantage, as
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shown in the following example. The six platinum metals, when analyzed,
are first treated in hot aqua regia, but an insoluble residue remains that
must be fused with a flux. The soluble and insoluble fractions are sepa-
rately analyzed, and are afterwards combined in proper proportions to
give the complete analysis. The soluble fraction contains platinum, irid-
ium, rhodium, and palladium; the insoluble fraction contains platinum,
iridium, rhodium, osmium, and ruthenium. Palladium is thus absent from
the insoluble fraction, and osmium and ruthenium are absent from the
soluble fraction. The analysis of the soluble fraction may be charted in
quadriplanar coordinates as a point within a tetrahedron of reference
whose vertices are Pt, Ir, Rh, and Pd. By combining the hexagonal
elements osmium and ruthenium, and considering them as incompatible
with palladium, the component Os-Ru may be plotted as negative in re-
lation to the vertex Pd. Thus the analysis of the insoluble fraction may be
represented as a point outside the same tetrahedron of reference. A series
of such analyses can therefore be represented as two surfaces, one inside
and the other outside the tetrahedron; and thereafter both surfaces may
be shown as topographic maps. Similarly six variables may be charted in
quadriplanar coordinates, if two pairs of variables are incompatible;
and seven variables may be charted if three pairs are incompatible.

HYPERTETRAHEDRAL CHARTING

From the properties of the triangle and the tetrahedron, it follows by
mathematical induction that # variables may be charted in hyper-
tetrahedra of #-1 dimensions. The boundaries of such hypertetrahedra,
up to the ninth dimension, are shown in the following tabulation:

DIMENSIONS OF HYPERTETRAHEDRA

Boundaries I Fourth Fifth || Sixth ‘ Seventh | Eighth Ninth
Vertices 5 g8 1" 7 ‘ 8 9 10
Edges 10 15 21 | 28 36 45
Triangles 10 20 35 56 84 120
Tetrahedra 5 15 35 ‘ 70 126 210
H, 1 6 21 56 126 252
H; 0 1 @ 28 84 210
Hse 0 0 1 8 36 120
H, 0 0 0 1 9 45
H, 0 0 0 0 1 10
H, | 0 0 0 0 0 1

In this tabulation, Hy, Hy, etc. refer to hypertetrahedra of the fourth, fifth, and higher
dimensions.
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The charting of continua, and their fitting to experimental data, are
possible and feasible by analytical methods, but unfortunately no prac-
tical method exists for a graphic presentation of the results. Compromises
must therefore be sought. Consider the problem of charting 5 variables.
At first sight it might seem that the best method would be to utilize
quadriplanar coordinates, charting the data in the tetrahedra that bound

FOUR ARRANGEMENTS OF TEN TRIGONS
F16. 3

a hypertetrahedron of 4 dimensions. But there are 5 such tetrahedra, so
that it would be necessary to chart a surface in each of the tetrahedra
1234, 1235, 1245, 1345, and 2345, only two of which could have common
bases. This would be a laborious procedure that few would attempt. An
alternative would be to develop the 5 tetrahedra, preserving each de-
veloped tetrahedron as a unit, and showing the triad relationships on 20
triangular faces. But this is wasteful of space, because 10 faces bound a
hypertetrahedron of 4 dimensions, and therefore only 10 triangles need
to be shown to convey the same amount of information.
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The simplest arrangement for the 10 triangles 123, 124, 125, 134, 135,
145, 234, 235, 245, and 345 is in rows and columns, as in a rectangular
array, but such an assembly would be uneconomical of space, and would

'show no relationships between adjoining triads. When assembled as a
single diagram, however, some choice still exists in the arrangement of
trigons, but conservation of space largely eliminates such choice. Figure
3, for example, shows 4 ways in which the 10 trigons mentioned above
may be arranged. Arrangements C and D require more space than 4 or
B, and therefore for a diagram of given size, the trigons of C and D would
have to be smaller. Arrangements 4 and B have the same size and shape,
but 4 preserves one developed tetrahedron, whereas B does not. Arrange-
ment 4 is obviously the best one.

The hypertetrahedra of higher dimensions show further difficulty in
the utilization of quadriplanar coordinates. Tt will be noticed, as the
number of variables increases, that the number of bounding tetrahedra
increases faster than the number of bounding triangles, so that the labor
of charting .surfaces increases progressively. Thus for 7 variables, the
number of tetrahedra equals the number of triangles; but for more than 7
variables, the tetrahedra are more numerous than the triangles. All these
considerations have impelled the writer to the use of compound systems
of trilinear coordinates, wherein the bounding triangles are shown only
once.

THE CHARTS

Figures 4, 5, and 6 show the most compact arrangements of the tri-
angular faces that bound hypertetrahedra of 4, 5, and 6 dimensions; and
these render possible the charting, respectively, of 5, 6, and 7 variables.
A chemical analysis, for example, is computed to total unity, or 100
per cent, after which all possible triads are also recomputed to unity.
These values are then plotted in their respective trigons.

One of the difficulties in any system of charting is scale. Certain sets of
values may be well represented at one scale, whereas others, plotted at
the same scale, will fail to show distinct relationships. This is overcome
in cartesian coordinates by a change in scale of the ordinates or abscissae,
or both. The same problem necessarily occurs in trilinear coordinates,
where several sets of coordinates that should delineate a curve, may be
SO near to one another that the resulting curve is too small for satisfactory
inspection. Amplification of the curve is therefore desirable, but such
amplification must not result in the charting of points outside the trigon
in which their coordinates belong. The accomplishment of this objective
is found to depend upon the minimum value of the largest coordinates
among the sets to be charted within a single trigon.
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The relationship between magnification and coordinates is given by
the following formula:

Mx—-M+1=0 ®

where M is the possible magnification of scale, and # is the minimum
value of the largest coordinate in a number of sets. Thus it may happen
that the minimum value of the largest coordinate in several sets is not
less than .80, from which it follows that the maximum amplification of
scale is 5. Attention is directed to the fact that it is immaterial whether
the largest coordinates in the sets are @, 8, or v, or a mixture of these.
Some of the possible magnifications are shown below:

Possible Minimum Value of
Magnification (M) Mazximum Coordinates (x)
M=100 x=.990
50 .980
25 .960
15 .933
10 .900
9 .889
8 .875
7 .857
6 .833
5 .800
4 .750
3 .667
2 .500
13 .333

The value of a magnified maximum coordinate is obtained from the
following formula:

V = LMC — L(M — 1) ()

where C is the numerical value of the maximum coordinate, L is the
number of divisions of each side of the trigon, M is the magnification,
and V is the required value of the maximum coordinate in the magnified
scale. Thus, if C =a=.824, L=20 (as in Figs. 4, 5, and 6), and M =35
(as indicated from the preceding tabulation), the value of V will be 2.4
divisions of the scale. The value of the magnified minor coordinates is
obtained from the equation:

v = LMc
where ¢ is the numerical value of either of the minor coordinates, and v
is the required value of a minor coordinate in the magnified scale.
Magnification of scale is commonly necessary. Each trigon, however, is
a separate and distinct unit, so that the methods of trilinear analytical
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geometry may be applied within trigons, but not from one trigon to
another. Therefore no objection exists to showing different trigons at
different scales; and where this is done, the magnification is given as a
single large numeral within the trigon. Magnification of scale is imprac-
ticable where negative coordinates are utilized.

An example of the charting of 6 variables is shown in Fig..7. For this
purpose, four analyses of platinum metals, taken from a report by the
writer? are used, each of which is a mean of a number of analyses. The four
analyses are shown at the left of the subjoined tabulation, followed to the
right by all possible triads recomputed to unity. All but one of the 20
trigons are used at magnified scales. Curves have been drawn through
the charted points, to show the modes of variation; and arrows have been
placed on the curves to show the relative positions of the four analyses.

REsuME

A method is shown for charting 5, 6, and 7 variables on the triangular
faces of hypertetrahedra of 4, 5, and 6 dimensions. The triangles repre-
senting these faces are empirically arranged for the maximum conserva-
tion of space. The variables are computed into triads, each of which
total unity, and are then charted in their respective trigons by the use
of trilinear coordinates. Different scales are commonly required in the
different trigons, and methods are given for producing such changes in
scale. The charting of 6 variables is illustrated by the use of 4 analyses of
platinum metals from the Goodnews Bay district, Alaska.

% Mertie, J. B., Jr., The Goodnews platinum deposits, Alaska: U. S. Geol. Survey, Bull.
918, 77-79 (1940).





