Under Physical and Optical Properties

P. 614, line 9: instead of $2V_y = 96 - 115^{\circ}$, read $2V_{\gamma} = 65^{\circ}$ (red)-84° (violet)

P. 614, lines 9–10: after $Z \wedge c = 21^{\circ}$, add in the obtuse β angle

Under X-Ray Study

P. 615, lines 3-4 of text: instead of C_2h^4 , P2/c read $C_{2h}^4 - P2/a$

Under References

P. 616, line 3 up: *instead of* crystallographique, *read* cristallographique. P. 616, line 2 up: *instead of* Soc. Chem. Belgique, *read* Soc. chim. belges.

REFERENCE

Murdoch, J. and Geissman, T. A. (1967) Amer. Mineral., 52, 611-616.

THE AMERICAN MINERALOGIST, VOL. 53, MAY-JUNE, 1968

THERMAL BEHAVIOR OF SiO₂-X AND ITS RELATION TO THE NATURAL SILICA MINERALS: A CORRECTION

ROBERT GREENWOOD, Department of Geological Sciences, University of Maine, Orono, Maine.

The author (Greenwood, 1967) mistakenly attributed ideas about the ordering of SiO_2 sheets to W. Eitel. As Eitel himself recognizes in the article cited, these ideas originated with O. W. Florke (1955).

Regarding the "disordered" phase of SiO₂-X (Greenwood, 1967, p. 1665), I would concur with Prof. Florke, who suggests (private communication) that this apparent disorder may be an effect of extremely small crystallite size.

REFERENCES

FLORKE, O. W. (1965) Ber. Deutsch. Keram. Ges. 32, 369–381. GREENWOOD, R. W. (1967) Amer. Mineral. 52, 1662–1668.