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Statistically most probable stoichiometric formulae
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Abstract

A method of calculating the most probable chemical formula of a compound from its
measured (and therefore inaccurate) chemical analysis is presented. The method, which
uses a Lagrange multiplier technique, allows testing of the hypothesis that a given analysis
conforms to specific formula constraints. An example involving ferrous/ferric ratio
estimation is given.

Introduction

It is commonly useful to determine the stoichiometric
formula of a mineral from its chemical analysis. If this
analysis were both perfectly accurate and complete for all
elements, such recalculation would be unambiguous.
However, real analyses as obtained for example with an
electron microprobe, are neither perfect nor complete.
The problem of obtaining the "true" formula from incom-
plete or inaccurate data can be visualized geometrically.
The measured chemical analysis of a mineral containing n
elements is representable as a point in an n-dimensional
space where each coordinate axis represents the concen-
tration of one of the elements in the mineral. All points in
this space, however, do not yield possible or probable
formulae, that is, the analysis point may recalculate to a
formula which has an impossible or improbable ratio of
total anions to total cations. or atoms in tetrahedral sites
to atoms in octahedral sites, etc. The locus of all possible
or permissible elemental concentrations forms a subspace
contained within this n-dimensional analysis space having
the property that all points on this subspace conform
exactly to a set of specified stoichiometric formula con-
straints. In order to emphasize the geometric conception
of this method, it is convenient to think of this subspace
as a surface imbedded within the n-dimensional volume.
As the measured analysis point does not in general fall on
this surface, the problem is to find that point on the
stoichiometric surface which is "nearest" (in a least
squares sense) the measured analysis point. This nearest
point on the stoichiometric surface yields the statistically
most probable formula while the distance between the
analysis point and the nearest stoichiometric point carries
information regarding the probability that this analysis
conforms to the specified stoichiometry.

Method of solution

Let Y1, . . ,,Y. represent the measured concentrations
of the n elements (or more generally, oxide components)
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and X1, . . .,X. represent the corresponding concentra-
tions of the stoichiometric analysis point nearest the
measured analysis point. The sum of the squares of the
differences between the X's and corresponding Y's is a
measure of the distance between these points. However,
in order to combine data for several elements it is
necessary to express the differences between measured
and theoretical concentrations in terms of the number of
measurement standard deviations this difference repre-
sents. Thus the appropriate distance (squared) between
the measured analysis point and the nearest stoichiomet-
ric analysis point is given by:

n

U:  >  ( y i_x )z tu? ,  ( t )

where oi i, ,ft" ,runO*ldeviation in the measurement of
the concentration ofelement i. The problem is to choose
values of X which minimize U but also conform to all
stoichiometric constraints. The method of Lagrange mul-
tipliers is well suited to this type of optimization and can
be used here (e.9., Hildebrand, 1965, p. 120).

The constraints on a chemical formula can be written as
a series of m linear equations in terms of the concentra-
tions of the elements present. Thus for the j-th constraint,

0 = l ' . . . , m ) :
n

C ; , "  :  )  C : i ' N i ,
i :  I

where N1 is the number of atoms of type i in the formula,
the Ci,i's are the constraint coefficients and C.;,o is the
constraint sum. For example, in the case of plagioclase
the following equations can be written:

8 = 0.5 NN' * 1.0 Ns' + l '5 Nal + 2.0 Nsi
4 : 0.0 NNu * 0.0 N6. * 1.0 Na1 + 1.0 N5;
I : l '0 NN. * 1.0 Ngu + 0.0 Na1 + 0.0 Nsi

These particular equations specify that in the ideal plagio-
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clase formula there are eight total oxygens, four atoms in
tetrahedral sites, and that the sum of Na * Ca is equal to
one. If an element such as potassium is also present an
additional term can be added to each constraint equation,
and so forth.

The number of atoms per formula unit is related to the
oxide component concentrations, X1 by:

N ; : k X ; / W ; ,  ( 3 )

where W; is the molecular weight (per metal atom) of the
i-th oxide and k is a normalization constant that is to be
determined. Thus for the j-th constraint, (j : l, . . .,m):

0:  -c j ,Jk *  
, f  
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In addition to these constraints, an equation stating that
the sum of the components is equal to unity can be
written:

0 :  - l  *  )  x , .  ( 5 )
i = l

For convenience, the presently unknown variable, l/k,
can be replaced by an ancillary variable, namely, Xn11. In
the Lagrange multiplier method the function to be mini-
mized is:

H=U*! 'q .n , ,  (6)
j :  I

where U is as defined above, the Li are constants
(Lagrange multipliers) whose values are to be determined
and the h.; are the right hand sides of the constraint
equations given above (equations (4) and (5)). Note that H
is the (weighted) sum of the deviations between measured
and stoichiometric concentrations plus the (weighted)
sum of the constraint equations and that when the con-
straints are obeyed, all h, : 0 and, under these condi-
tions, H = U.

The function H is minimized by setting each of the
derivatives of H with respect to X1, . . . , Xn and to Xn+ r :
l/k equal to zero. This in turn gives n equations of the
form:

m

0 :2 (X i  -Y ) td+  
)  L : .C . ; , i /W i

j :  I

and one of the form:

*  L-+r ,  i  :  l ,  .  ,n  (7)

L : 'C : ,o .  ( 8 )
m
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These n * I equations when added to the m * I
constraint equations yield a total of n + m + 2 linear
equations in n + m * 2 unknowns (the n values of X. the

value of the normalization constant and the m + I
Lagrange multiplier values). Provided this system of
equations is not singular, it can be solved by conventional
asymmetric matrix inversion methods to yield the desired
concentrations and normalization constant.

In addition to the concentrations and resulting most
probable formula, this analysis provides a measure of the
statistical likelihood that a particular analysis conforms to
the particular set of formula constraints employed. Thus
the quantity U from equation (l), or more conveniently
the square root of the mean value of its component terms,
rms U (referred to herein as the "rms analysis error"), is
an index useful in hypothesis testing. Note that in this
formulation it has been assumed that the measurement
elTors are independent of each other. An analysis which
yields an rms analysis effor on the order of one sigma or
less is thus highly probable and is the normal expectation.
On the other hand, an rms analysis error on the order of
three sigma or more is rather improbable and indicates an
unexpectedly large measurement error has occurred or
that one or more of the hypothesized formula constraints
is inappropriate.

Standard deviations

The comparison of theoretical and measured concen-
trations requires a knowledge ofthe standard deviation of
measurement for each element (or oxide component)
present. In the absence of any systematic error these
could be obtained by repeated analyses. In practice, since
there no doubt are systematic errors present in concentra-
tion measurements, careful consideration of test data
from well characterized standards may be needed to
obtain appropriate measurement standard deviations. In
the present treatment it has been found convenient to
formulate the standard deviations as a linear function of
concentration:

o i  :  Y i 'G i  -  E )  +  E i ,  i  :  1 ,  . , n ,  ( 9 )

where E1 and Fi are the estimated standard deviations for
element i at concentrations of 0 and 1, respectively. Ei is
comparable to the minimum detectable concentration
under the analysis conditions and F1 is the rms analysis
error that would be observed in analyses ofpure compo-
nent i.

Analy s is c o nc e ntration to t al

Though frequently tabulated (and occasionally incor-
rectly used as the principal index ofanalysis quality), the
sum of concentrations of components in an analysis
usually has no influence on the resultant chemical formu-
la no matter whether that total is lNVo or l50Vo. This is.
ofcourse, because the formula represents only the ratios
of elements present. However, the statistically most
probable chemical formula may be influenced by the
deviation from l0o7o.

Consider, for example, an olivine of 50 molVo Mg2SiOa
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and 50% Fe2SiO4, which due to measurement errors gave
an analysis lVo too high for the MgO and FeO concentra-
tions and the correct value for the SiOz concentration.
Recalculated simply on the basis of four total oxygens,
the formula of this olivine is Mg1.s3Fe1 s1Sis.e6Oa. The
statistically most probable formula for this particular
example (assuming no further formula constraints) is
exactly the same provided that the standard deviation of
measurement of all three components was the same. If,
however, the standard deviation of MgO was (say) twice
that of the others, the statistically most probable formula
would be Mg1 s1Fel.s1Sio.seOl. That is, a larger share of
the 2% analysis excess would be apportioned to the
component with the larger probable measurement error
than to the other components thereby altering the most
probable elemental ratios. Simple formula recalculation
neglecting measurement errors thus makes the possibly
unwarranted assumption that all elements are measured
with equal accuracy.

Example of application

The most probable stoichiometric formula calculations
outlined above have been programmed and applied to
numerous analyses. An example will serve to illustrate
some of the applications of this technique. Miyano and
Miyano (1982) have published electron microprobe analy-
ses of ferri-annites from Western Australia. As they have
not reported standard deviations of measurement for
individual elements, values which are consistent with
microprobe technology in general and their data in partic-
ular were estimated. The standard deviation of measure-
ment of all elements was estimated as I wt.Vo at concen-
trations of IOO% decreasing as a linear function of
concentration to 0.05 wt.%o at a concentration of vVo.
Although no doubt incorrect in detail, and specifically
violating the caution mentioned above, these estimates
are adequate for demonstration purposes.

A most probable formula analysis was applied in sever-
al steps. In the first step only the constraint of 22 total
oxygens in the anhydrous formula was applied. The
resulting cation proportions are then as reported by
Miyano and Miyano in their Table I and 2. As a second
step the analyses were constrained to total to 100%o and
H2O was added as an analysis component. Because
hydrogen was not measured, its concenteration was en-
tered as zero but its estimated error of measurement was
entered as infinity. The first constraint was rewritten to
give 24 total oxygens and the number of hydrogens was
constrained to 4. If this latter constraint were not speci-
fied, the rms analysis error could be made zero by setting
the H2O content equal to the di-fference between the
anhydrous total and l00Vo.

In general, the analyses including this constrained
amount of H2O total slightly below 100%. The rms
analysis errors are on the order ofone standard deviation
or less showing that the analyses largely fall within the

assumed experimental errors. Furthermore, the generally

small deviations from l00Vo totals can be removed by

converting some of the presumed Fe2* to Fe3+ because of
the larger proportion of oxygens contributed by the latter
species. This is illustrated by the dotted line curves in

Figure I for typical analyses Zll5 andZ278. At a ratio of

Fe2*/(Fe2*+Fe3*) equal to 0.36 and 0.54, respectively,
the analysis totals go to lN% thereby yielding calculated
analyses that match the observed analyses exactly, that is

the rms analysis error drops to zero. Note' however, that

the slope of the dotted line curves is so low that essential-
ly any ferric/ferrous ratio will give an acceptable rms

analysis error. Thus, as is well known, the estimation of
ferrous-ferric contents from analysis totals is generally

too imprecise to be useful.
In the next step, the sum of the cations in the tetrahe-

dral plus octahedral sites was constrained to 14 (eight

tetrahedral sites and six octahedral sites per 24 oxygen
atom formula). Whether or not this constraint holds in

individual micas is a subject of debate and will be tested
here. As shown by previous authors (e.g., Finger' 1972)
the ferric-iron proportion can be adjusted to give a
prescribed cation/anion ratio. The solid line curves in

Figure I show the rms analysis errors for these same two

analyses under the assumption of this additional con-
straint. Note that these curves are much steeper than the
dotted line curyes and the location of the minimum can be
used to estimate the ferric-iron proportion provided that
the constraints which fix the cation/anion ratio are war-
ranted. This in turn can be determined by the height of the
minima in these curves. That is, using the assumed
measurement standard deviations, the minimum rms

analysis errors are much less than one sigma and there-
fore the assumption offull occupancy of the tetrahedral
and octahedral sites is consistent with the analyses. The

6rr46f+Fer)

Fig. l. Rms analysls error versus ferric iron proportion for two

ferri-annites calculated from measurements of Miyano and

Miyano, 1982.
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probable error in the ferric proportion estimated in this
manner, is related to the steepness of the solid line
curyes. If a one sigma or less rms analysis error is
considered probable, then the ferric-iron proportion is
estimated to +6Vo for these analyses. The asterisk shown
on the solid line curyes corresponds to the minimum
ferric iron proportion estimated by Miyano and Miyano
under the assumption "that all Fe3+, Al and Si are located
on tetrahedral sites totalling 8 cations". That the minima
occur at slightly higher ferric iron proportions indicates
that an additional small proportion of the octahedrally
coordinated iron atoms are also ferric species.

As a last step it is possible to test the hypothesis of full
occupancy of the interlayer sites in these micas by K +
Na + Ca atoms. Inclusion of this additional constraint
seems unwarranted, however, as the rms analysis errors
then rise to generally over three standard deviations and
the apparent error in the K2O content rises to the highly

improbable value of E sigma. Thus the deficiency of the
interlayer site appears to be real, at least for these micas.
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